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Value is a foundational concept in reinforcement learning and economic
choice theory. In these frameworks, individuals choose by assigning
values to objects and learn by updating values with experience.
These theories have been instrumental for revealing influences of
probability, risk, and delay on choices. However, they do not explain
how values are shaped by intrinsic properties of the choice objects
themselves. Here, we investigated how economic value derives
from the biologically critical components of foods: their nutrients
and sensory qualities. When monkeys chose nutrient-defined liquids,
they consistently preferred fat and sugar to low-nutrient alternatives.
Rather than maximizing energy indiscriminately, they seemed to
assign subjective values to specific nutrients, flexibly trading them
against offered reward amounts. Nutrient–value functions accu-
rately modeled these preferences, predicted choices across contexts,
and accounted for individual differences. The monkeys’ preferences
shifted their daily nutrient balance away from dietary reference
points, contrary to ecological foraging models but resembling hu-
man suboptimal eating in free-choice situations. To identify the sen-
sory basis of nutrient values, we developed engineering tools
that measured food textures on biological surfaces, mimicking oral
conditions. Subjective valuations of two key texture parameters—
viscosity and sliding friction—explained themonkeys’ fat preferences,
suggesting a texture-sensing mechanism for nutrient values. Ex-
tended reinforcement learning and choice models identified can-
didate neuronal mechanisms for nutrient-sensitive decision-making.
These findings indicate that nutrients and food textures constitute
critical reward components that shape economic values. Our nutrient-
choice paradigm represents a promising tool for studying food–
reward mechanisms in primates to better understand human-like
eating behavior and obesity.
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The concept of “value” plays a fundamental role in behavioral
theories that formalize learning and decision-making. Eco-

nomic choice theory examines whether individuals behave as if
they assigned subjective values to goods, which are inferred from
observable choices (1, 2). In reinforcement learning, values in-
tegrate past reward experiences to guide future behavior (3, 4).
Although these theories have been critical for revealing how
choices depend on factors such as probability, risk, and delay
(2, 4, 5), they do not explain how values and preferences are sha-
ped by particular properties of the choice objects themselves. Why
do we like chocolate, and why do some individuals like chocolate
more than others? In classical economics, one famously does not
argue about tastes (6). By contrast, biology conceptualizes choice
objects as rewards with well-defined components that benefit sur-
vival and reproductive success and endow rewards with value (4).
Here we followed this approach to investigate how the biologically
critical, intrinsic properties of foods—their nutrients and sensory
qualities—influence values inferred from behavioral choices and
help explain individual differences in preference.
The reward value of food is commonly thought to derive from

its nutrients and sensory properties: sugar and fat make foods

attractive because of their sweet taste and rich mouthfeel. Sensory
scientists and food engineers seek to uncover rules that link food
composition to palatability (7–10). Similarly, ecological foraging
theory links animals’ food choices to nutritional quality (11). By
contrast, in behavioral and neuroscience experiments, food com-
ponents are often only manipulated to elicit choice variation but
rarely studied in their own right. Here, we aimed to empirically
ground the value concept in the constitutive properties of food
rewards. We combined a focus on specific nutrients and food
qualities with well-controlled repeated-choice paradigms from
behavioral neurophysiology and studied the choices of rhesus
monkeys (Macaca mulatta) for nutrient-defined liquid rewards.
Like humans, macaques are experts in scrutinizing rewards for

sophisticated, value-guided decision-making (4, 12–15). This be-
havioral complexity, the closeness of the macaque brain’s sensory
and reward systems to those of humans (16), and the suitability for
single-neuron recordings make macaques an important model for
studying food–reward mechanisms with relevance to human eating
behavior and obesity (17).
Previous studies in macaques uncovered key reward functions

and their neuronal implementations, including the assignment of
values to choice options (13, 18–25), reinforcement learning (4, 26)
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and reward-dependence on satiety and thirst (7, 27, 28). Despite
these advances, behavioral principles for nutrient rewards in ma-
caques remain largely uncharacterized. The typical diet of these
primates includes a broad variety of foods and nutrient composi-
tions (29, 30). Their natural feeding conditions require adaptation
to both short-term and seasonal changes in nutrient availability
and ecologically diverse habitats (31, 32). Thus, the macaque reward
system should be specialized for flexible, nutrient-directed food
choices. Accordingly, we manipulated the fat and sugar content of
liquid food rewards to study their effects on macaques’ choices.
We addressed several aims.
First, we tested whether macaques’ choices were sensitive to

the nutrient composition of rewards, consistent with the assign-
ment of subjective values. In previous studies, macaques showed
subjective trade-offs between flavored liquid rewards (12, 13).
We hypothesized that nutrients and nutrient-correlated sensory
qualities constitute the intrinsic food properties that shape such
preferences. We focused on macronutrients (carbohydrates, fats,
and proteins), specifically sugar and fat, because of their relevance
for human overeating and obesity, and their role in determining
sensory food qualities. As nutrients are critical for survival and
well-being, nonsated macaques should prefer foods high in nu-
trient content. In addition, like humans, they may individually
prefer specific nutrients and sensory qualities (e.g., valuing isoca-
loric sweet taste over fat-like texture). Because nutrients are basic
building blocks of foods, establishing an animal’s “nutrient–value
function” could enable food choice predictions across contexts.
Second, to identify a physical, sensory basis for nutrient preferences,

we developed engineering tools to measure nutrient-dependent
food textures on biological surfaces that mimicked oral conditions.
Although sugar is directly sensed by taste receptors (33), the
mechanism for oral fat-sensing remains unclear. While the existence
of a “fat taste” in primates is debated (34), substantial evidence
points to a somatosensory, oral–texture mechanism (7, 9). Fat-like
textures reliably elicit fatty, creamy mouthfeel (8) and activate
neural sensory and reward systems in macaques (35) and humans
(36, 37). Two distinct texture parameters are implicated in fat-
sensing: viscosity and sliding friction, reflecting a food’s thickness
and lubricating properties, respectively (38–40). We hypothe-
sized that these parameters mediate the influence of fat content
on choices.
Third, we compared the monkeys’ choices to ecologically relevant

dietary reference points. In optimal foraging theory (41), animals
maximize energy as a common currency for choices (“energy
maximization”). Alternatively, animals may balance the intake of
different nutrients (“nutrient balancing”) (42–44) or choose food
based on the reward value of specific sensory and nutrient com-
ponents (“nutrient reward”) (7, 45). We evaluated these strategies
in a repeated-choice paradigm suited for neurophysiological re-
cordings and derived hypotheses about the neuronal mechanisms
for nutrient-sensitive decision-making (e.g., “energy-tracking neu-
rons” versus “nutrient–value neurons”—Discussion).
Finally, based on our behavioral data, we explored in compu-

tational simulations how theories of reinforcement learning and
economic choice can be extended by a nutrient–value function.
Together with recently proposed homeostatic reinforcement
learning (46), nutrient-specific model parameters may optimize
predictions when choices depend on nutrient composition and
homeostatic set-points.

Results
Nutrient–Choice Task and Nutrient–Reward Design. Three rhesus
monkeys performed in a binary choice task in which they re-
peatedly chose between varying amounts of dairy-based liquid
rewards that differed in nutrient content (Fig. 1A and SI Appen-
dix). Each testing day, two liquids were pseudorandomly selected
from a 2 × 2 factorial design with fat and sugar level as factors
(Fig. 1B and SI Appendix, Table S1): the low-fat low-sugar liquid

(LFLS), the high-fat low-sugar liquid (HFLS), the low-fat high-
sugar liquid (LFHS), and the high-fat high-sugar liquid (HFHS).
The LFLS liquid was lowest in energy content; the HFLS and
LFHS liquids were matched in energy content (isocaloric) at an
intermediate level; and the HFHS liquid was highest in energy
content. Liquid types were cued by conditioned visual stimuli;
varying reward amounts were cued by pretrained magnitude bars.
This design allowed us to test how fat, sugar, and their interactions
influenced the monkeys’ choices. Importantly, the rewards were
matched in juice flavor (peach or blackcurrant), temperature, and
other ingredients (protein, salt, etc.). Systematic choice biases
could therefore only be attributed to manipulated nutrient content
and nutrient-related sensory qualities.
All three monkeys were motivated by the nutrient rewards to

perform hundreds of choice trials each day (Fig. 1C). Across an-
imals, choice frequencies for the different liquids indicated clear
preferences for high-nutrient rewards (Fig. 1D): the HFHS liquid
was most frequently chosen, the LFHS liquid was preferred over
the HFLS liquid, and the LFLS liquid was least preferred. Thus,
dairy-based, nutrient-defined liquids constituted potent rewards
and the monkeys preferred liquids with high nutrient content.

Preferences and Economic Values for Fat and Sugar Rewards: Example
Data. In the two sessions shown in Fig. 1E, monkey Ya chose be-
tween a low-nutrient liquid (LFLS) and liquids with either added fat
(HFLS, top panel) or sugar (LFHS, bottom), all of which were
peach flavored. The monkey preferred high-fat and high-sugar
liquids by choosing them more frequently and more repeatedly,
as indicated by repeated choice counts (“run lengths”). In both
sessions, the monkey showed a marked choice bias for high-nutrient
liquids (green, blue) over the low-nutrient liquid (yellow), resulting
in higher choice frequencies than expected by chance (P < 10−10,
binomial test) and higher repeated choice counts (P < 10−10, like-
lihood ratio test). To quantify the monkey’s willingness to trade
reward magnitudes for fat and sugar (i.e., give up liquid to obtain
nutrients), we calculated the percentage intake of nutrients and
liquid amounts compared to the total offers in each session. The
monkey gave up 8% of offered reward magnitudes to obtain an
additional 33% of fat (compared to an agent who maximized re-
ward magnitudes) and gave up 26% of offered magnitudes to
obtain an additional 45% of sugar. These trade-offs suggested that
the monkey assigned subjective, economic values to fat and sugar
for making choices.
We constructed “nutrient–value functions” that related the ra-

tio of offered liquid magnitudes to the monkey’s choice frequency
to quantify subjective nutrient values (Fig. 1F). From fitted psy-
chometric functions, we identified the magnitude ratio at which
the monkey chose both options with equal probability. This “in-
difference point” revealed how many units of low-nutrient reward
were equally preferred to one unit of high-nutrient reward; it thus
measured value on the common scale of the low-nutrient refer-
ence. Indifference points were right-shifted from the point of
objective equality (magnitude ratio = 1), indicating that more low-
nutrient reward was required to compensate for its lower value
compared to the high-nutrient rewards. Specifically, the monkey
would choose the high-fat and low-nutrient liquids equally at a
ratio of 1.52 (LFLS/HFLS). Thus, one unit of high-fat liquid was
worth 1.52 units of low-nutrient liquid. The animal required even
higher low-nutrient magnitudes when choosing against the high-
sugar liquid. Small confidence intervals indicated precise estimates
of indifference points (Fig. 1 F, Inset).
Thus, the monkey’s preferences systematically reflected trade-

offs between reward amounts and nutrient compositions, con-
sistent with the assignment of economic values to choice options.

Nutrient–Value Functions for Fat and Sugar Rewards across Animals,
Food Flavors, and Choice Tasks. We found clear nutrient prefer-
ences in aggregated choice data across testing days and monkeys,
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despite individual differences. Choice frequencies, choice repeti-
tions, and explicit nutrient–magnitude trade-offs indicated that the
monkeys preferred the high-fat and high-sugar liquids to the low-
nutrient reference (SI Appendix, Fig. S1). Nutrient–value functions
showed that all three animals gave up more low-nutrient liquid in
exchange for fat and sugar, with particularly strong trade-offs in
monkeys V and Ya (Fig. 2A). Monkey V showed the strongest
sugar preference, requiring up to 32 times the offered high-sugar
reward amount to choose the low-nutrient liquid (in other words,
one unit of the LFHS liquid was worth 32 units of the LFLS liq-
uid). We validated these value estimates by transforming the
trial-by-trial offered magnitudes of each high-nutrient reward into
animal-specific value equivalents of the low-nutrient reference to
predict the animal’s choices (out-of-sample prediction; SI Ap-
pendix). The resulting value differences in units of the low-nutrient
reference predicted the animals’ choices well in all three monkeys,
as indicated by orderly psychometric curves and model-fit statistics
(Fig. 2B). Further analyses indicated that these values were robust
and complied with transitivity (SI Appendix, Figs. S2 and S3).
We used mixed-effects multinomial logistic regression to estimate

nutrient–value functions from the animals’ trial-by-trial choices
across all stimuli while controlling for reward magnitudes, left–
right biases, and random effects across testing sessions. Our main
regression (“nutrient model;” SI Appendix, Tables S2 and S3)
identified significant positive coefficients for fat and sugar in each
animal (Fig. 2C) in addition to magnitude effects. Pseudo-R2

values indicated good model fits (SI Appendix, Table S2). By
quantifying the subjective weight of specific nutrients on choices,
the regression coefficients modeled each animal’s nutrient–value
function. Regression coefficients for fat and sugar were stable in
all animals (Fig. 2D). Notably, because each liquid type was cued
by a new visual stimulus in each session, the observed stable nu-
trient effects that generalized across sessions were not explained
by preferences for specific visual cues. Effects of recent nutrient

choices on current-trial choices varied across animals but indi-
cated that recent fat choices increased the likelihood of current-
trial fat choice (positive feedback), whereas recent sugar choices
reduced fat choices (negative cross-nutrient feedback, SI Appen-
dix, Fig. S4).
In addition to nutrient content, food flavor is a key determinant

of reward value (7, 47). Mixed-effects regression on a separate
data set involving blackcurrant-flavored liquids showed significant
fat effects in all three animals and significant sugar effects in two
animals (SI Appendix, Table S3); the effect of sugar in animal V
was captured by a significant fat–sugar interaction, likely indicat-
ing subjective flavor–nutrient interaction. To quantify cross-flavor
generalization of nutrient preferences, we derived nutrient–value
functions from logistic regressions for one flavor to predict choices
for the other flavor. Model-fit statistics (cross-validated pseudo-
R2) confirmed accurate cross-flavor predictions for two animals
(Ya, Ym) and lower but above-chance accuracy for animal V
(Fig. 2E). Thus, nutrient preferences for fat and sugar were largely
consistent across juice flavors and could be predicted by an ani-
mal’s nutrient–value function.
The monkeys showed marked individual differences in their

nutrient preferences. To quantify this distinctiveness of nutrient
preferences, we used one monkey’s nutrient–value function to
cross-predict another’s choices. For each animal pair, we defined a
preference dissimilarity index (PDI) based on averaged log-likelihood
ratios of mutual cross-animal predictions (SI Appendix). Using
pairwise PDIs, we constructed a triangle whose side-lengths vi-
sualized discrepancies between animals’ nutrient preferences
(Fig. 2F). This procedure showed that monkey Ym had the most
distinct choice patterns, while monkeys V and Ya shared similar
preferences, indicated by small PDI and good cross-predictions.
Repeating the cross-predictions by including fat, sugar, or both
nutrient regressors showed that fat and sugar accounted for the
preference dissimilarities between animals, with sugar contributing

Fig. 1. Choice task and reward design for studying nutrient influences on monkeys’ choices. (A) Nutrient–choice task. Monkeys chose from two sequentially
presented options. Conditioned stimuli predicted different liquid rewards; magnitude bars predicted randomly varying reward amounts. (B) Nutrient–reward
design. Liquid rewards differed in sugar and fat concentration. LFLS: low-fat, low-sugar; HFLS: high-fat, low-sugar; LFHS: low-fat, high-sugar; and HFHS: high-
fat, high-sugar. Rewards were matched in flavor (peach of blackcurrant) and other ingredients (protein, salt, etc.); HFLS and LFHS were matched in energy
content (isocaloric); HFHS had a higher energy content; and LFLS was lowest in energy content. (C) Completed choice trials per testing session in each animal
(N: number of sessions). (D) Choice frequencies for each nutrient reward (± SEM), across sessions and animals (N = 55,205 trials). (E) Choice biases for fat and
sugar in single sessions. Trial-by-trial choice records of two representative sessions from monkey Ya choosing between a low-nutrient option (yellow) and
rewards with added fat (HFLS, green, Top) or sugar (LFHS, blue, Bottom). Upward/downward bars represent choices for high-/low-nutrient rewards; bar
height indicates repeated choice counts. Gray curve shows choice frequency for high-nutrient rewards (seven-trial running average). (F) Nutrient–value
functions. Choice frequencies for the low-nutrient reference as a function of offered magnitude ratio (LFLS/high-nutrient rewards ± SEM). Indifference points,
estimated by inflection points of fitted sigmoid curves, identify relative values of the high-nutrient rewards, measured on the common scale of the low-
nutrient reference. (Inset) Relative values of high-fat and high-sugar rewards and their 95% CIs.
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three to five times more than fat (Fig. 2G). Thus, distinct nutrient
valuations accounted for individual differences in preference.
We replicated and extended these findings in an additional

experiment in which monkeys chose directly between all nutrient
rewards, offered randomly in the same session at constant mag-
nitudes (SI Appendix, Fig. S5). We also included diluted cream as
a high-fat, low-sugar stimulus. Choice frequencies confirmed the
preference rankings observed in our main task, and regressions
confirmed significant sugar and fat influences on choices and in-
dividual differences (SI Appendix, Fig. S5).
Thus, by trading nutrients against reward quantities, the monkeys

chose as if they assigned economic values to specific nutrients.

These nutrient–value functions were stable within animals, gener-
alized across flavors and choice contexts, and explained individual
differences.

Food Texture: Viscosity and Sliding Friction as a Physical Basis for
Fat-Sensing. So far, we have shown that the monkeys’ choices
were guided by subjective evaluations of fat and sugar. These
findings naturally raise the question of how the animals sensed the
nutrient content of the liquids. To address this issue, we focused
on the sensing of fat from food texture, as sugar can be directly
sensed by taste receptors (33). Two specific texture parameters
have been implicated in oral fat-sensing (Fig. 3A): viscosity and
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Fig. 2. Nutrient–value functions explain monkeys’ fat and sugar preferences, predict choices across flavors, and account for individual differences. (A)
Nutrient–value functions in three animals across sessions. Choice frequencies for the low-nutrient reference as a function of offeredmagnitude ratios (error bars: SEM).
(Top) Indifference points identify animal-specific subjective values for high-nutrient rewards (relative values and 95% CIs). (B) Out-of-sample validation of subjective
values. Relationships between choice probabilities and subjective value differences. Subjective values were derived from animal-specific indifference points in A by
transforming offered magnitudes of high-nutrient rewards into value equivalents of the low-nutrient option (10-fold cross validation). (Insets) Adjusted R2 values from
sigmoid fits. (C) Nutrient values across all choice conditions. Mixed-effects logistic regression of monkeys’ choices on reward magnitudes (RM) and fat and sugar
contents (“nutrient model”), calculated over all sessions. All three animals showed significant coefficients (± SEM) for fat and sugar on choices. (D) Stable fat and sugar
effects across testing sessions, suggested by chronological session-wise regression coefficients from mixed-effects nutrient model. (E) Cross-flavor choice prediction.
Confusion matrices show cross-validated pseudo-R2 values obtained by fitting the nutrient regression on choices for one flavor (P: peach, B: blackcurrant) to predict
choices for the other flavor. (F) Cross-animal choice prediction. For each animal pair, we used one monkey’s nutrient–value function to predict the other monkey’s
choices. We defined a PDI based on the average log-likelihood ratio of mutual cross-animal predictions (shown as numbers in the triangle plot). Longer triangle side-
lengths represent larger discrepancies between animals’ nutrient preferences. (G) Fat–sugar contributions in explaining individual differences. Percentage in-
creases in PDIs after independently including fat or sugar regressors into the basic regression for pair-wise cross-animal predictions.
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the coefficient of sliding friction (CSF) (8, 38–40). We hypoth-
esized that these parameters mediated the influence of fat con-
tent on the monkeys’ choices. Testing this hypothesis required
first measuring viscosity and CSF of our liquid rewards under
biologically realistic conditions before relating these measures to
choices using regression analysis.
We combined engineering tools from rheology and tribology

to measure the viscosity and sliding friction of our nutrient re-
wards. The viscosity of a liquid is the resistance to motion against
an applied force, defined as the quotient of shear stress and shear
rate, commonly measured in a rotational rheometer (Fig. 3A)
(39). By contrast, sliding friction measures the resistance to rela-
tive motion between contacting surfaces. This resistance depends
on the loading force applied to the interface, the details of the
contacting surfaces, and the properties of any lubricant between
the surfaces (39). The CSF normalizes the friction force with the
loading force to characterize the lubricating properties of a test

liquid between contact surfaces. To approximate friction condi-
tions in the oral cavity (i.e., the tongue sliding over the palate), we
devised a tribometer using parallel-sliding pig tongues as biologi-
cal surfaces rather than standard tribometers with circular-rotating
glass and metal surfaces (Fig. 3 A and B and SI Appendix) (48). To
mitigate inevitable biological tissue variations, we normalized CSF
measurements to the CSF of the same tongue tissue lubricated
with water before averaging measurements across tongues.
In validation tests, the CSF measurements reliably reflected

increases in fat content in a series of fatty liquids (Fig. 3B). We
next examined how viscosity and CSF were related to fat and sugar
content in our nutrient-defined rewards. As expected, increased
fat content correlated positively with viscosity and negatively with
CSF (Fig. 3C). By contrast, sugar content had no significant cor-
relations with either viscosity or CSF (SI Appendix, Fig. S6). To
link these texture measurements to texture perceptions, we per-
formed a psychophysical experiment in which human participants

Fig. 3. An oral texture-sensing mechanism mediates the influence of fat on choices. (A) Rheology and tribology measurements. Rheology examines liquid
flow to characterize stimulus viscosity; tribology quantifies lubrication and friction between moving surfaces as the CSF. We measured viscosity by testing the
liquids in a rotational rheometer (Left). We measured CSF using a custom-designed tribometer (Right) with biological tissue (fresh pig tongues) mimicking oral
surfaces. We loaded 30 mL of testing liquid between pig tongues pulled by a slider controlled by an Instron Testing System from tongue base (posterior)
toward tongue tip (anterior) at constant velocity (v = 16 mm/s). (B) Sliding friction measurements. Curves show CSFs for liquids with increasing fat content,
measured from a single tongue (three repetitions per stimulus). CSF was normalized to the coefficients measured with water. (C) Viscosity and CSF as a
function of fat content in our stimulus set for the two flavors (orange: peach and purple: blackcurrant; linear regressions). Measurements are shown for 13
stimuli: the four factorial stimuli with each of the two flavors, diluted cream with each flavor, diluted fruit juices, and water. (D) Mediation analysis. The
aggregated influence of nutrient content on choices (total effects, path c) was decomposed into indirect effects mediated by texture (path a, path b) and
direct effects (path c’). Mediation effects were significant if texture parameters replaced regression coefficients of the total effects (c’ = c − b). (E) Mediation
effects of viscosity and CSF on the influences of fat and sugar on choices. Logistic regressions included fat and sugar regressors (“nutrient”) or additional
viscosity (“+ Viscosity,” brown) or CSF (“+ Friction,” orange) regressors. (F) Path diagrams describing correlational relationships between nutrient content,
texture parameters, and choices. Because the effect of fat on choices was fully accounted for by CSF (all animals) and viscosity (animal Ya), we included only
the direct sugar effect. Significance of path coefficients derived from bootstrap (1,000 iterations).
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(n = 23) sampled the liquids used in the monkey experiments and
rated subjective perceptions of the mouthfeel produced by the
liquids (SI Appendix). We found that human psychophysical rat-
ings of the thickness and oiliness of liquid rewards were positively
related to stimulus viscosity and negatively related to CSF (all P <
0.002, multiple regression; SI Appendix, Fig. S6), suggesting that
both texture properties contributed to texture sensations. Notably,
oiliness was more strongly related to CSF than to viscosity (P =
0.011, t test on regression coefficients).
Thus, viscosity and sliding friction tracked the fat content of liquid

nutrient rewards and produced distinct oral texture perceptions in
humans. High-fat liquids were more viscous and slippery, which
humans perceived as thick and oily mouthfeel, respectively.

Oral Texture-Sensing Mediates the Influence of Fat on Choices. To
test whether oral texture parameters mediated the effect of nu-
trients on choices, we used structural equation modeling (SEM)
based on a series of logistic regressions. We hypothesized that
sugar was mainly sensed from sweetness (33) and exerted a di-
rect, texture-independent influence on choices, whereas fat was
indirectly sensed from viscosity and sliding friction (8, 40), which
mediated the influence of fat on choices (Fig. 3D).
Regression-derived path coefficients within this framework

supported our hypothesis (Fig. 3 E and F). As described above,
viscosity and CSF correlated with fat but not sugar content. Al-
though fat content itself had a significant effect on choice, this
effect disappeared when texture parameters were included in the
regression; specifically, CSF seemed to account fully for the ef-
fect of fat on choices (complete mediation effect, Fig. 3E). Thus,
texture parameters accounted for the effect of fat on choices,
suggesting oral texture as a critical intermediate mechanism that
linked fat content to choices. By contrast, the effect of sugar on
choices was largely unaffected by viscosity and CSF, confirming a
direct, texture-independent influence. Across animals, CSF had
particularly strong and robust influences on choice (Fig. 3F):
negative and significant CSF path-coefficients indicated that the
monkeys preferred liquids with a slippery oral texture typical of
high fat content. By contrast, only monkey Ya had an addition-
ally significant and positive effect of viscosity on choices. This
result implied that whereas CSF mediated a common fat effect
on choices, viscosity contributed to individual differences between
animals.
We replicated and extended these findings in follow-up ex-

periments involving choices between all rewards in the same
session and an additional cream stimulus for wider nutrient and
texture variation. In this independent data set, sugar again had a
significant positive and direct effect on choice and the fat effect
was accounted for by texture parameters (SI Appendix, Fig. S7).
As in the main data set, CSF had a significant negative effect on
choice in two animals; different from the main data set, viscosity
had a significant positive effect on choice in all animals, likely
due to the addition of cream as a preferred high-viscosity liquid.
These results indicated that the animals sensed fat content

from viscosity and sliding friction and used this information for
nutrient valuation and decision-making.

Energy Maximization Does Not Explain the Influence of Nutrients on
Choices.According to optimal foraging theory, animals choose foods
by maximizing energy intake as a common currency (i.e., calories
per unit time) (41). We examined whether our animals’ choices
were guided by subjective valuations of specific nutrients or by a
behavioral strategy that maximized energy irrespective of nutrient
composition.
We first focused on sessions in which monkeys chose between

isocaloric high-fat and high-sugar rewards. Cumulative choice
plots showed the animals’ dynamic, trial-by-trial choice trajectories
and aggregated choice frequencies, which allowed comparisons
between choice strategies based on nutrient preferences or energy

maximization (Fig. 4A). Session-averaged choice trajectories showed
that initially indiscriminate choices (when novel visual cues were
introduced) gradually deviated toward the high-sugar reward to
various extents in all three monkeys (Fig. 4B). Trajectories quickly
deviated toward sugar in monkey Ya and monkey V, whereas
monkey Ym’s trajectories initially followed energy maximization
before deviating toward sugar. To directly examine the dynamics
of fat and sugar intake, we transformed choice trajectories from
reward space to nutrient space. We computed the ratio of fat to
sugar intake for every choice and transformed the cumulative
reward choices in Cartesian coordinates to angles in polar coor-
dinates (Fig. 4 C and D); angles between curves and the horizontal
axis thus represented the trade-off between fat and sugar. Dis-
tributing choices between reward options implied navigating the
nutrient space by changing the fat-to-sugar intake ratio. Both
monkey V and monkey Ya closely followed a sugar maximization
strategy, while monkey Ym’s choices reflected a mixture between
sugar and energy maximization. Additional tests involving isoca-
loric rewards with intermediate fat and sugar content confirmed
a stronger preference for sugar, even when energy content was
controlled (SI Appendix, Fig. S8).
We formally compared nutrient valuation and energy maximi-

zation choice strategies using logistic regressions on the full data
set. We combined nutrient concentrations with reward magnitudes
into a single energy content regressor (“energy model,” SI Ap-
pendix) and compared the energy model to the nutrient model
with independent fat and sugar regressors. The nutrient model
outperformed the energy model in explaining choices in all three
monkeys (Fig. 4E). Further, as we set the high-fat and high-sugar
level to be isocaloric, the normalized dichotomous fat and sugar
regressors represented the same amount of additional calories.
Therefore, the energy maximization strategy would predict equal
regression coefficients for the isocaloric high-fat and high-sugar
levels. By contrast, in all three monkeys, standardized regression
coefficients for sugar were significantly higher than those for fat
(Fig. 4F). Thus, monkeys did not equally value rewards with iso-
caloric fat and sugar content but preferred sugar over fat as source
of energy.
Taken together, nutrient-biased choice trajectories, model com-

parisons, and differential sensitivities to isocaloric nutrients argued
against strict energy maximization.

Monkeys’ Preferences Shift Their Nutrient Balance from Dietary
Reference Points. Balanced nutrient intake (i.e., maintaining sta-
ble proportions of nutrients) is crucial for health benefits and a
choice strategy adopted by various animal species (42–44). There-
fore, rather than only considering fat and sugar independently,
we used the proportion-based Geometric Framework for Nutrition
(44, 49) to model the relative fat and sugar intake in proportion
of total consumed energy. We positioned our liquid rewards in a
“mixer triangle” (49), based on their nutrient composition (percent-
age of total energy content, Fig. 5A). In the same space, the monkeys’
actual nutrient balances from their aggregated choices were linear
interpolations between the two reward options, determined by the
intake ratio of energy from each reward (Fig. 5A, red triangle).
This model allowed us to examine whether the monkeys balanced
nutrient intake or prioritized specific nutrients. We also compared
the monkeys’ nutrient balances with ecologically relevant dietary
reference points (Fig. 5A, black markers).
In the mixer triangle, the monkeys’ aggregate choices occupied

distinct and stable regions depending on the offered rewards
(Fig. 5B). Specifically, when choosing between the low-nutrient
reward and the high-fat or high-sugar liquids, nutrient balances
of all three monkeys were dominated by a preference for fat and
sugar, respectively. Consequently, the proportions of energy in-
take from individual nutrients were on average 35% from fat and
45% from sugar (high-fat exposure) and about 5% from fat and
75% from sugar (high-sugar exposure), with greater variability
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during high-fat exposure (by design, protein accounted for ∼20%
of total energy in all rewards). When offered nutritionally comple-
mentary rewards (LFHS and HFLS, Fig. 5C), about 15 to 25% of
energy intake derived from fat and 55 to 65% from sugar. For other
session types, energy intake derived to about 25 to 35% from fat
and 45 to 60% from sugar. Thus, nutrient balance was not constant
but varied with available food options, driven by a preference for
high-sugar and high-fat rewards when they were available.
To appreciate the physiological implications of the observed

nutrient balances, we compared them with two reference points, 1)
a standard recommended diet composition for adult macaques,
consisting of a low-fat, high-protein, and intermediate-carbohydrate
diet (29), and 2) macaque milk, the exclusive nutrient source for
infants (50). To determine whether the monkeys’ choices ap-
proximated these reference points, we projected each reference
point onto the segment that connected the two available rewards
in each choice condition (Fig. 5C). This segment defined the range
of nutrient balances the monkeys could achieve by distributing
their choices between the available rewards. When choosing be-
tween isocaloric high-fat and high-sugar rewards, nutrient balances
clustered loosely around the optimal diet reference, with balances
for monkeys Ya and Ym deviating toward higher sugar and fat
intake, respectively (Fig. 5C). By contrast, when choosing between
low-nutrient reward and high-fat or high-sugar rewards, all three
animals deviated markedly from the projected reference point in
the direction of higher fat or sugar content—they obtained ∼20%
more energy from fat or sugar compared to a standard diet com-
position (Fig. 5D). Specifically, exposure to the high-sugar reward
led to an increase of sugar intake of about 20% above reference,
whereas exposure to the high-fat reward resulted in nutrient balance
closer to the milk reference (Fig. 5D).

Thus, the monkeys’ preferences for high-sugar and high-fat re-
wards resulted in offer-dependent nutrient balances that deviated
from dietary reference points.

Nutrient-Sensitive Reinforcement Learning and Economic Choice Models.
Canonical behavioral frameworks such as reinforcement learning
and economic choice theory do not specify how rewards with par-
ticular properties can differentially affect learning and choice. Based
on the above findings, we examined whether a nutrient–value
function could meaningfully extend such choice models to explain
nutrient-sensitive choices.
Using simulations, we compared the performances of a Rescorla–

Wagner model and an extended reinforcement learning model
with a nutrient–value function (Fig. 6A). In a binary choice task,
an agent chose between cues predicting high- and low-nutrient
rewards with varying probabilities (SI Appendix, Fig. S9). By updating
values solely based on past reward frequency, the standard RL
model learned equally for both rewards regardless of nutrient
composition. By contrast, the nutrient-sensitive model assigned
higher value to high-nutrient reward outcomes, governed by a
nutrient-sensitivity parameter (Fig. 6B). Accordingly, the nutrient-
sensitive model learned faster when a high-nutrient reward was
associated with high reward probability, which resulted in higher
nutrient intake than the standard model at a similar reward rate
(Fig. 6C and SI Appendix, Fig. S9). Thus, sensitivity to nutrient
composition optimized learning performance when an agent’s
value function prioritized specific nutrients.
In economic revealed-preference theory, indifference curves

derived from choices connect multidimensional goods that differ
in composition (e.g., fat–sugar content) but have the same level
of satisfaction (utility) (1, 12). Multiple curves, each indicating a

Fig. 4. Energy maximization does not explain nutrient preferences. (A) Schematic of cumulative choice trajectory between isocaloric high-sugar (LFHS) and
high-fat (HFLS) rewards in reward space. (Inset) Proportions of fat and sugar to matched energy content in the two rewards. (B) Cumulative choices between
isocaloric high-sugar (LFHS) and high-fat (HFLS) rewards for the three animals (black: mean trajectory of actual choices, gray: single-session trajectories; colors:
simulated choice trajectories based on reference strategies maximizing calories, fat, or sugar). All three monkeys’ choice trajectories were biased toward high-
sugar reward. (C) Schematic of cumulative choices in nutrient space polar coordinates, showing dynamic fat–sugar trade-off (slope: relative fat–sugar intake
ratio and radius: trial progression). (D) Choice trajectories transformed from reward space into nutrient space (same sessions as in C; black: actual choices;
colors: reference simulated choices). (E) Model comparison based on Akaike Information Criteria (AIC) favored the nutrient model with separate fat and sugar
regressors over the energy model in explaining reward choices. (F) Higher sensitivities to sugar compared to fat despite matched energy content suggested by
differences in logistic-regression coefficients for isocaloric sugar and fat levels (P < 0.001, Wilcoxon signed-rank test).
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specific utility level, form an indifference map (Fig. 6D) that
summarizes preferences to predict choices. The presently identi-
fied stable nutrient–value functions (Fig. 2D) imply that indiffer-
ence maps can be defined in a common nutrient space to predict
choices beyond specific tested foods. Accordingly, we examined
how four representative reward bundles (A, B, C, and D) and their
indifference relationships could be transformed from a tested re-
ward (goods) space via a common fat–sugar nutrient space to an
untested reward space. Specifically, points in the reward A-B
space were linearly transformed to the underlying fat–sugar nu-
trient space with a nutrient–composition matrix and subsequently
transformed to the novel reward space C-D using an inverse
nutrient–composition matrix (Fig. 6D). Importantly, these trans-
formations preserved the preference ranking of the reward bun-
dles (A > B = C > D, indicated by stable bundle positions on
indifference curves). This value-preserving property resulted from
the underlying nutrient–value function that linked indifference
analyses across different reward sets through their common in-
gredients. Supplementary analyses illustrated how indifference
maps could be constructed from individual monkeys’ nutrient
choices (SI Appendix, Fig. S10), although constructing complete
nutrient–value functions would require more exhaustive tests.
These results suggest that incorporating nutrient-sensitivity in

reinforcement learning and economic choice models can extend
the predictive and explanatory validity of these models, especially
when learning and choice depend on intrinsic reward components.
Our data and simulations suggested candidate neuronal mecha-
nisms for nutrient-sensitive decision-making (Fig. 6 E–G), on which
we elaborate in Discussion.

Discussion
We combined approaches from economics, food engineering, and
ecology with a repeated-choice paradigm typical for neurosci-
ence to study how formally defined economic values derive from

a food’s nutrients and sensory qualities. We found that fat, sugar,
and nutrient-correlated food textures influenced choices in two
ways. First, they increased economic value in a manner that
generalized across animals: the monkeys preferred fat, sugar, and
related oral textures to low-nutrient alternatives. Second, they
explained individual differences in the animals’ choices: each
monkey showed an idiosyncratic trade-off between nutrients and
reward quantities, consistent with the assignment of subjective
values to choice options. Economic nutrient values were internally
consistent, as they predicted choices across sessions, conditioned
stimuli and food flavors, and were replicated in a separate ex-
periment with more varied rewards. Thus, stable nutrient–value
functions shaped the monkeys’ preferences. Cross-animal choice
predictions succeeded for animals with comparable nutrient–value
functions; nutrient and texture valuations accounted for individual
differences. These effects were not explained by preferences for
conditioned stimuli (which varied daily), other food properties
(which we controlled), or task variables (SI Appendix, Table S3).
Although object properties alone cannot fully explain reward
functions and must be combined with behavioral assessment (4),
our findings suggest that nutrients and food textures constitute
biologically critical sources of economic values.
Previous studies showed that decision parameters including

probability, risk, delay, and effort elicit subjective values in macaques
(4, 21, 26, 51). Here, we held these factors constant and instead
systematically varied the intrinsic, constituent properties of the
reward itself. To appreciate this difference, consider a macaque
pursuing a valued reward, such as a pomegranate. The fruit’s peel
and arils contain fiber, sugar, protein, vitamins, and minerals, and
its seeds are a source of fat. Together with the fruit’s sensory
qualities, specifically its sweet taste and juicy texture, these object-
defining intrinsic properties provide a physical basis for subjective
reward values. By contrast, extrinsic factors, such as the proba-
bility, risk, effort, and delay associated with obtaining the fruit vary

Fig. 5. Monkeys’ preferences for fat and sugar shift their daily nutrient balance away from dietary reference points. (A) Schematic of a mixture triangle (49)
that plots nutrient rewards, monkeys’ choices, and ecologically relevant reference points in a common space, defined by percentage proportions of fat, sugar,
and protein to total energy. (Protein content was constant by design; therefore, the protein axis was similar across stimuli and unlabeled.) Colored circles:
offered rewards; red triangle: nutrient balance resulting from monkey’s aggregated choices between LFLS and HFLS options (determined by the relative
energy intake from each reward); and black markers: reference points. (B) Nutrient balances from monkeys’ aggregate choices occupied distinct and stable
regions in nutrient space, depending on offered rewards. For choices between low-nutrient reward and high-fat or high-sugar options, nutrient balances
were dominated by preferences for fat and sugar. Ellipses: 95% CIs. Inset shows how nutrient balance shifts away from LFLS reference toward high-nutrient
stimuli. (C) Comparison with reference points: nutritionally optimal (low-fat, high-protein, and intermediate-carbohydrate) diet composition for adult ma-
caques based on dietary guidelines (black diamond) and macaque milk (black star). Inset shows reference points projected onto the line connecting offered
rewards (corresponding to the closest achievable approximations of reference points). (D) Monkeys deviated from optimal diet when choosing between high-
fat, high-sugar rewards and a low-nutrient option. Histograms of nutrient balances in all three animals deviated from the projected reference point toward
higher fat or sugar content (resulting in about 20% more fat or sugar intake than the optimal diet composition).
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arbitrarily with the animal’s location relative to the reward. The
distinction between intrinsic reward properties and external choice
parameters is conceptually important because intrinsic reward
properties are processed by dedicated neural and decision systems
and are targeted by homeostatic regulation (45). For example,
orbitofrontal cortex lesions impair macaques’ ability to adjust their
food choices after food-specific satiation, which requires assessing
the food’s intrinsic properties, but do not impair the tracking of
stimulus-reward probabilities (52). Accordingly, we propose that
sensitivities to nutrients and sensory food qualities constitute
critical features of an animal’s value function, with implications for
learning and choice theories, as discussed below.
Padoa-Schioppa and colleagues showed that macaques flexibly

choose between different liquid rewards offered in varying amounts
and that subjective values underlying these choices are explicitly
encoded by neurons in orbitofrontal cortex and amygdala (13, 19).
These brain structures are also essential for processing the current
value of foods as influenced by satiation and for linking arbitrary
visual stimuli to those values (14, 53). Other studies examined how
thirst influences monkeys’ risk preferences (27) and the trading of
reward bundles formalized by indifference maps (12). Building on
these pioneering studies, our data identify specific nutrients and
food textures as the sources of such subjective trade-offs in monkeys’
choices. Because nutrients and sensory properties are elementary
building blocks of foods, establishing an animal’s nutrient–value
function would enable choice predictions across foods and contexts
(Fig. 6D) and may help uncover tuning properties of reward neurons
(Fig. 6E). Notably, our study used nutrient-defined liquid rewards
to allow for precise texture quantification and controlled delivery
in neurophysiological recordings. Future studies could examine
subjective values for properties of solid foods, including dietary
fiber and crispy textures.
Supporting these notions, each monkey’s preferences were cap-

tured by a stable nutrient–value function that described how the
animal weighed nutrient and sensory properties for decision-making

(Fig. 2 A–D). This function predicted choices across different foods
and naturally extended the value function of reinforcement learning
models to nutrient rewards. We showed that incorporating nutrient-
sensitivity could optimize reinforcement learning in situations
when nutrients are behaviorally relevant, as in specific deficit states
(Fig. 6C). Future extensions could explore how nutrient-specific
values depend on changing physiological states (46).
Two key food texture parameters—viscosity and sliding

friction—accounted for the effect of fat content on the monkeys’
choices (Fig. 3). In previous studies, human food ratings reflected
these two properties in distinct ways (9, 40), but their impact on
choices in a formal behavioral framework was not studied. We
found that lower sliding friction of the liquid rewards was associ-
ated with increased choice. Thus, the animals preferred foods with
a smooth, oily texture typical of high-fat stimuli. By contrast, the
contribution of viscosity to fat preferences varied across animals.
Together, subjective valuations of viscosity and sliding friction
mediated the influence of fat content on choices and explained
individual differences in food preferences. These results identify
an oral texture-sensing mechanism as a sensory basis for nutrient
values. Notably, distinct neurons in primate orbitofrontal cortex
and amygdala encode oral viscosity and sliding friction (35), which
raises the intriguing possibility that these neurons underlie the
presently observed behavioral preferences.
We used the mixer triangle tool of the proportion-based Nutri-

tional Geometric Framework (44, 49) to examine nutrient balances
resulting from the monkeys’ choices. One influential view in ecology
suggests energy as a common currency that animals maximize (41).
More recent studies identified nutrient-balancing as a strategy
adopted by various animals in the wild (42–44, 49). In our experi-
ments, nutrient balances from monkeys’ choices were strongly offer
dependent (Fig. 5). The animals chose primarily high-fat and high-
sugar liquids when these were offered, suggesting a “nutrient–reward
strategy,” rather than trading nutrients interchangeably in order
to maintain a constant energy intake (“equal distance regulation”)
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Fig. 6. Nutrient-sensitive reinforcement learning, economic choice models, and candidate neuronal mechanisms. (A) A nutrient-sensitive reinforcement
learning model updates values of choice options based on the nutrient content of reward outcomes. Depending on an agent’s nutrient–value function, high-
nutrient rewards (RH > 1) elicit stronger value-updating than low-nutrient rewards (RL = 1). By comparison, a standard reinforcement model updates value
irrespective of nutrient content (RH = RL = 1). (B) Nutrient-sensitivity parameter η increments value for high-nutrient options (e.g., for η = 0.2, value increases
from 1.0 to 1.25). (C) In a simulated reversal-learning task with high- and low-nutrient rewards (α = 0.2, β = 5,RH = 1.25RL,N = 100 trials), a nutrient-sensitive
model learns faster to choose the high-nutrient option when it is associated with higher reward probability (P(H) = 0.6); following probability reversal (P(H) =
0.4), the nutrient-sensitive model switches more slowly to choosing low-nutrient reward than the standard model. (Inset) This learning pattern results in
similar total reward outcomes (R) as the standard model but achieves higher nutrient intake (N). (D) Implications for economic choice theory. (Top) Indif-
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neurons. (F) Neurons sensitive to dietary fat may receive separate viscosity and friction inputs. (G) Parallel circuits implementing decision-making based on
sugar and fat content. (H) Decision circuit for nutrient prioritization. (I) Energy-tracking neurons integrate information across macronutrients.
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(43). As a consequence, nutrient balances deviated from dietary
reference points—the animals obtained higher sugar and fat con-
tent than recommended by dietary guidelines (29). This pattern of
eating behavior resembles human overeating in the presence of
high-fat and high-sugar foods (54). By combining our paradigm
with neurophysiological recordings, future studies could help iden-
tify neuronal activities that underlie choice patterns leading to
suboptimal nutrient balances.
Previous studies in humans documented hedonic liking for

sugar, fat, and their interactions (55) but did not study preferences
in the context of formal repeated-choice paradigms as we did here.
Importantly, in our experimental paradigm, the monkeys made
food choices in the absence of nutrient challenges or deficit states,
as the animals received a standard daily diet that was nutritionally
balanced (SI Appendix). Accordingly, the fat and sugar preferences
reported here may differ from those of wild macaques and re-
semble more closely eating phenotypes observed in human free-
choice scenarios. Under conditions of scarcity, macaques would
likely adjust their choice strategy to counter deficit states. Thus,
we expect nutrient–value functions to be state dependent.
Our behavioral and modeling results suggested candidate neuronal

mechanisms for nutrient-sensitive decision-making that can be tested
with single-neuron recordings (Fig. 6 E–I). An influential attractor
neural network model implements decision-making as competi-
tion between choice-coding neurons, biased by value inputs (56).
Our findings imply that value-coding neurons integrate fat, sugar,
texture, and possibly other food components (e.g., protein, flavor,
and temperature) to a subjective value signal (Fig. 6E). Our finding
that texture properties mediated the effect of fat on choices
(Fig. 3E) could suggest that fat-sensing neurons themselves re-
ceive separate inputs from viscosity and sliding friction neurons
(Fig. 6F). Indeed, a recent study (35) reported such neurons in the
orbitofrontal cortex (area 12), amygdala, and anterior insula; the
study measured sliding friction with a steel ball rotating on a sil-
icone disk. Our data and previous observations indicate that ani-
mals prioritize specific nutrients, for example in nutrient-deficit
states (11). Thus, it could be computationally efficient to directly
compare options in terms of specific nutrients (Fig. 6G). Further,
offer-dependent nutrient balances (Fig. 5), preliminary evidence
of nutrient history effects on choices (SI Appendix, Fig. S4), and
ecological observations of nutrient-balancing (43) imply that neural
circuits also implement between-nutrient competition (Fig. 6H) to
fine-tune behavior to changing internal states. Finally, although
monkeys did not strictly maximize energy (Fig. 4), we hypothesize
that some neurons translate nutrients onto a common energy scale.
Such energy-tracking neurons (Fig. 6I) could prevent overeating by
negative postingestive feedback (47). The orbitofrontal cortex and
amygdala participate in both decision-making and food evaluation
(13, 15, 25, 35) and thus constitute ideal targets for testing these
hypotheses experimentally.
Taken together, our data indicate that nutrients and sensory

food qualities constitute biological sources of economic value
that shape monkeys’ preferences. Food choices for high-fat and
high-sugar rewards in our monkeys deviated from dietary ref-
erence points, resembling human-like suboptimal eating. Thus,
our experimental nutrient-choice paradigm could serve as a tool to
study behavioral and neuronal mechanisms underlying primate
suboptimal food intake, to complement genetic (57) and neural-circuit

approaches (47, 58) in other species. The similarity of the macaque
brain’s sensory and reward systems to those of humans, their
sophisticated human-like food choices, and their suitability for
single-neuron recordings make macaques a promising model
for studying food-reward mechanisms to better understand
human eating behavior and obesity.

Methods
Animals. Three adult male rhesus macaques (M. mulatta) participated in
the present experiments: monkey Ya (weight during the experiments: 14
to 19 kg, age: 4 to 6 y), monkey V (weight: 9 to 11 kg, age 8 to 10 y), and
monkey Ym (10 to 13 kg, age 4 to 6 y). The animals had free access to their
standard diet before and after the experiments and received their main
liquid intake in the laboratory (SI Appendix). The animals were on a
standard diet for laboratory macaques. All animal procedures conformed
to US NIH Guidelines and were approved by the Home Office of the
United Kingdom.

Nutrient Rewards.We used commercial skimmed milk and whole milk (British
skimmed milk and British whole milk, Sainsbury’s Supermarkets Ltd.) as
baseline low-fat and high-fat liquids and flavored the liquids with fruit juice
to increase palatability (SI Appendix, Table S1).

Rheology and Tribology. Rheology was performed using a Rheometric Sci-
entific ARES controlled strain rheometer (TA Instruments). We measured the
CSF at the Department of Engineering, University of Cambridge (SI Appen-
dix). To reflect realistic lubrication conditions in the oral cavity, we devised a
custom-designed tribometer using pig tongues as biological contacting
surfaces (Fig. 3 A, Right).

Data Analysis and Statistical Methods. Unless otherwise specified, all data
were analyzed separately for each animal and different juice flavors
(peach and blackcurrant) using custom code and in-built functions in
MATLAB R2017b. We adopted mixed-effects multinomial logistic regression
analysis (fitglme function, MATLAB) to model the animals’ trial-by-trial
choices.

Geometric Framework for Nutrition. We used the right-angled mixer triangle
developed by Raubenheimer which implements a proportion-based variant
of the Geometric Framework for Nutrition (44, 49) in which the available food
compositions, reference nutritional targets, and the actual nutrient intake
balance could be analyzed in a common framework (Fig. 5A). The compo-
sitions of food rewards were plotted in a mixer triangle (49) based on the
percentage contribution of fat and sugar to total energy content.

Data Availability. Behavioral data have been deposited in the GitHub repository
(https://github.com/ckoceanaut/pnas2021_MonkeyNutrientChoices).
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