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Abstract: Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly 
reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA 
microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. 
In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s 
expression. Then, based on the dynamic system model, we develop the Stress Regulator Identifi cation Algorithm (SRIA) to 
identify stress-response TFs for six kinds of stresses. We identifi ed some general stress-response TFs that respond to various 
stresses and some specifi c stress-response TFs that respond to one specifi c stress. The biological signifi cance of our fi ndings 
is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expres-
sion patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response 
mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different 
stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.
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Introduction
Single-celled organisms such as yeasts constantly face variable or even harsh external environments 
that threaten their survival or, at least, prevent them from performing optimally. Environmental changes 
can be of a physical or chemical nature such as temperature, oxidation, osmolarity, acidity and nutrient 
availability (Hohmann and Mager, 2003). The response mechanisms to stress are highly complex. One 
aspect of this cellular adaptation is the reorganization of gene expression. The gene expression program 
required for maintenance of the optimal cell physiology in one environment may be far from optimal 
in another environment. Thus, when the environmental condition changes abruptly, the cell must rapidly 
adjust its gene expression program to adapt to the new conditions (Gasch et al. 2000).

Large-scale reprogramming of gene expression can be revealed from genome-wide DNA microarrays, 
which measure the relative transcription levels of every gene in the yeast genome at any given moment, 
providing a snapshot of the genomic expression program (Gasch and Werner-Washburne, 2002). Exploring 
the dynamic nature of the yeast genome through time-course experiments can illuminate yeast stress 
responses. For example, Gasch et al. (2000) and Causton et al. (2001) used genome-wide expression 
analysis to explore how gene expression in yeast is remodeled over time as cells respond to heat shock, 
oxidative shock, osmotic shock, acidic stress, nitrogen depletion, amino acid starvation as well as other 
environmental stresses. They discovered that more than half of the genome is involved in responding to 
at least one of the investigated environmental changes. A set of genes (~10% of yeast genes), termed as 
the environmental stress response (ESR) genes or common environmental response (CER) genes, showed 
a similar drastic response to almost all of these environmental changes. Other gene expression responses 
appeared to be specifi c to particular environmental conditions. However, the regulators of these stress-
response genes are not revealed from their studies. The complete network of stress-response regulators 
and the details of their actions remain to be investigated (Gasch et al. 2000).

Computational and statistical methods have been developed to identify plausible regulators of many 
cellular processes in yeast (Pilpel et al. 2001; Bar-Joseph et al. 2003; Segal et al. 2003; Middendorf 
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et al. 2004; Yu and Li, 2005; Kim et al. 2006; Wu 
et al. 2006; Lin et al. 2007; Rokhlenko et al. 2007; 
Wu et al. 2007a; Wu et al. 2007b). When the time-
course data of a system are available, using dynamic 
system modeling is more appropriate than using 
statistical approach because it can model the 
dynamic behavior of the system (Tegner et al. 2003; 
Chen et al. 2004; Chen et al. 2005; Chang et al. 
2005; Chang et al. 2006). Therefore, in this paper 
we use a dynamic system model of gene regulation 
to describe the mechanism of how TFs may control 
a gene’s expression. Then, based on the dynamic 
system model, we develop the Stress Regulator 
Identifi cation Algorithm (SRIA) to identify stress-
response TFs for six different kinds of stresses. Our 
goal is to reconstruct a network of stress-response 
regulators and study the details of their actions.

Methods

Data sets and data preprocessing
Two kinds of data sets are used. First, for each gene 
in the yeast genome, the TFs that may regulate its 
expression are retrieved from the YEASTRACT 
database (Teixeira et al. 2006b). The regulatory 
associations between the target gene and the TFs are 
included if they are supported by published data 
showing at least one of the following experimental 
evidences: i) Change in the expression of the target 
gene due to a deletion (or mutation) in the gene 
encoding transcription factor; these evidences may 
come from detailed gene by gene analysis or 
genome-wide expression analysis; ii) Binding of the 
transcription factor to the promoter region of the 
target gene, as supported by band-shift, foot-printing 
or Chromatine ImmunoPrecipitation (ChIP) assays. 
However, the TF-gene regulatory association data 
are noisy. The genes whose expressions are affected 
by the mutation of a TF may not be the direct targets 
of that TF. Moreover, the genes that are bound by a 
TF identifi ed by ChIP-chip experiments may not be 
regulated by that TF since TF binding does not nec-
essarily mean regulation. Therefore, other indepen-
dent data source such as gene expression or proteomic 
data should be used to fi lter out the noise inherent in 
the TF-gene regulatory association data.

In this study, we incorporate the gene expression 
data into our analysis. The genome-wide gene 
expression time profiles under various stress 
conditions such as heat shock, oxidative shock, 
osmotic shock, acidic stress, nitrogen depletion, 

and amino acid starvation are from Gasch et al. 
(2000) and Causton et al. (2001). Under each stress 
condition, samples for all genes in the yeast 
genome are collected at multiple time points. In 
order to reconstruct the missing values and avoid 
overfi tting, the cubic spline method (Faires and 
Burden, 1998) is applied to interpolate some extra 
data points. (The missing values of the microarray 
data are those data points whose values are ques-
tionable due to the experimental defects. Therefore, 
these data points are not reported in the microarray 
data and regarded as the missing values.) In order 
to fi t the dynamic system model in the linear scale, 
the microarray data are transformed from the log2 
scale to the linear scale.

Dynamic system model of gene 
regulation
We consider the transcriptional regulatory mecha-
nism of a target gene as a system with the regula-
tory profi les of several TFs as the inputs and the 
gene expression profi le of the target gene as the 
output. Owing to random noise and fl uctuations at 
the molecular level, the transcriptional regulation 
of a target gene is described by the following sto-
chastic dynamic equation
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where y[t] represents the target gene’s expression 
profi le at time point t, N denotes the number of TFs 
that may regulate the target gene’s expression, bi 
indicates the regulatory ability of TFi, xi[t] 
represents the regulatory profi le of TFi at time 
point t, k represents the basal level induced by RNA 
polymerase II, λ indicates the degrading effect of 
the present state value y[t] on the next state value 
y[t+1] and ε[t] denotes a stochastic noise due to 
the modeling error and measuring error of the target 
gene’s expression profi le. ε[t] is assumed to be a 
Gaussian noise with mean zero and unknown 
standard deviation σ. The biological meaning of 
Equation (1) is that y[t+1] (the target gene’s 
expression value at the next state) is determined 
by Σi

N
i ib x t k= ⋅ +1 [ ]  (the production effect of the N 

TFs at the present state and RNA polymerase II) 
and −λ · y[t] (the degradation effect of the target 
gene at the present state).
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It has been shown that TF binding usually 
affects gene expression in a nonlinear fashion: 
below some level it has no effect, while above a 
certain level the effect may become saturated. This 
type of binding behavior can be modeled using a 
sigmoid function (Chen et al. 2004; Chen et al. 
2005; Chang et al. 2005; Chang et al. 2006; Wu 
et al. 2006; Wu et al. 2007a). Therefore, we defi ne 
xi[t] (the regulatory profi le of TFi at time point t) 
as a sigmoid function of zi[t] (the gene expression 
profi le of TFi at time point t):

 x t f z t
r z t Ai i

i i
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where r denotes the transition rate of the sigmoid 
function and Ai denotes the mean of the gene 
expression profi le of TFi.

Estimating the parameters 
of the dynamic system model
Using the TF-gene regulatory association data 
from the YEASTRACT database and gene expres-
sion data from Gasch et al. (2000) and Caustion 
et al. (2001), we can estimate the parameters of 
the dynamic system model in Equation (1). We 
rewrite Equation (1) to the following regression 
form:
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where φ[t] = [x1[t] … xN[t] 1 − y[t]] denotes the 
regression vector and θ = [b1 … bN k λ]T is the 
parameter vector.  N is the number of the TFs that 
may regulate the target gene’s expression and can 
be inferred from the TF-gene regulatory associa-
tion data.

From the gene expression data, it is easy to get 
the values of {xi[tv], y[tv]} for i ∈ {1, 2, … , N}, 
v ∈ {1, 2, … , M}, where M is the number of the 
time points of a target gene’s expression profi le. 
Equation (3) at different time points can be put 
together as follows
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For simplicity, we can further define the 
notations Y, Φ and e to represent Equation (4) as 
follows

 Y e= ⋅ +Φ θ  (5)

The parameter vector θ can be estimated by the 
maximum likelihood (ML) method as follows 
(Johansson, 1993)

 1ˆ ( )T TYθ −= Φ Φ Φ  (6)

Stress Regulator Identifi cation 
Algorithm (SRIA)
After constructing the dynamic system model of gene 
regulation as in Equation (1) and estimate the param-
eter vector as in Equation (6), we are now ready to 
identify the stress-response TFs for six kinds of 
stresses. We develop Stress Regulator Identifi cation 
Algorithm (SRIA) to do this task. SRIA can be 
divided into the following three steps:

Step 1: Identifi cation of stress-response genes
The fi rst step is to fi nd out all the genes in the 

yeast genome that respond to a specifi c stress 
(e.g. heat shock, oxidative shock, osmotic shock, 
acidic stress, nitrogen depletion and amino acid 
starvation). A gene is said to respond to a specifi c 
stress if more than two time points of its gene 
expression profi le measured under that specifi c 
stress are induced or repressed by more than three 
folds compared to that of the unstressed condition 
(see Supplementary Table 1 for details).

Step 2: Identifi cation of stress-response TFs
For each stress-response gene identifi ed in Step 1, 

we retrieve all TFs that may regulate its expression 
from the TF-gene regulatory association data. Knowing 
this information enables us to construct the dynamic 
system model of the transcriptional regulation of the 
stress-response gene as in Equation (1). Then we apply 
the ML method to estimate the parameter vector 
θ = [b1 ... bN  k  λ]T of the model and get the ML estimate 
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ˆ ˆ ˆˆ ˆ[ ]T
Nb b kθ λ= �  as in Equation (6). Since bi stands 

for the regulatory ability of TFi, a small absolute value 
of bi means that TFi only has a negligible effect on 
the stress-response gene’s expression. Therefore, this 
TF-gene regulatory association may be a false positive 
and should be eliminated from our analysis. On the 
other hand, a large absolute value of bi means that TFi 
has a large regulatory effect on the stress-response 
gene’s expression. We regard TFi to be a stress-
response TF if its regulatory ability bi is statistically 
signifi cantly different from zero (i.e. bi � 0). The 
test statistic ˆ /( )i iit b s u= , a t-distribution with degree 
of freedom (M − 1) − (N + 2) is used to assign a p-value 
for rejecting the null hypothesis H0: bi = 0, where uii 
is the i th diagonal element of the matrix (ΦTΦ)−1 
and ˆ ˆ( ) ( ) /(( 1) ( 2))Ts Y Y M Nθ θ= −Φ⋅ −Φ ⋅ − − +  is an 
unbiased estimator of σ (the standard deviation of 
the stochastic noise ε[t]) (Mendenhall and Sincich, 
1995). The p-value computed by the t-distribution 
is then adjusted by Bonferroni correction to represent 
the true α level in the multiple hypothesis testing 
(Mendenhall and Sincich, 1995). Then, TFi is said 
to be involved in response to a specifi c stress if the 
adjusted p-value padjusted � 0.01 (see Supplementary 
Table 1 for details).

Step 3:
The stress-response TFs identifi ed in Step 2 are 

ranked according to the number of times that they are 
identifi ed under different stress-response genes. The 
fi rst TF in the list is the one that is identifi ed with the 
largest number of times. The TFs that are at the top 
5% of the ranked list are classifi ed as the high-
confi dence stress-response TFs. Finally, we output a 

ranked list of the high-confi dence stress-response TFs 
for each of the six different kinds of stresses. The 
fl owchart of SRIA could be seen in Figure 1.

Results

Stress-response TFs
We identifi ed the TFs that respond to heat shock, 
oxidative shock, osmotic shock, acidic stress, 
nitrogen depletion, and amino acid starvation, 
respectively. Table 1 shows the high-confi dence 
stress-response TFs for each of the above six 
stresses. The identifi ed stress-response TFs can be 
divided into two categories. The fi rst category is the 
well-known stress-response TFs with solid literature 
evidence that directly indicates involvement of these 
TFs in response to that specifi c stress. The second 
category is the novel stress-response TFs that have 
only partial or no literature support. (The partial 
literature support means that these TFs are predicted 
by pervious studies as plausible stress-response TFs 
but still need further verifi cation.) We found that 
38% (13/34 counting multiplicity) of the identifi ed 
stress-response TFs belongs to the fi rst category, 
indicating the effectiveness of SRIA. In addition, 
52% (11/21 counting multiplicity) of the second 
category has partial literature support, revealing the 
predictive power of SRIA. Therefore, the novel 
stress-response TFs (Arr1, Ifh1, Rpn4 and Sok2) 
that have no literature evidence yet are worthy of 
experimental verifi cation.

Biological validation of predictions
Now we discuss in detail our predictions that are 
supported by experimental evidence in the literature.

Table 1. The high-confi dence TFs in response to each of the six different stresses. 
The high-confi dence TFs in response to heat shock, oxidative shock, osmotic shock, acidic stress, nitrogen 
depletion and amino acid starvation are shown. The TFs are in red (blue) if there exist solid (partial) experimental 
evidence showing that they are involved in the same stress as we predicted.

Heat Oxidative  Osmotic  Acidic  Nitrogen Amino acid 
shock shock shock stress depletion starvation 
TFs TFs TFs TFs TFs TFs
Arr1 Sfp1 Arr1 Msn2 Sfp1 Arr1
Rpn4 Rpn4 Sfp1 Msn4 Rpn4 Gcn4
Msn2 Arr1 Rpn4 Arr1 Rap1 Rpn4
Msn4 Yap1 Yap1 Rpn4 Arr1 Sfp1
Yap1 Rap1 Msn2 Sok2 Fhl1 Rap1
Cad1 Ifh1 Msn4 Ifh1



57

Reconstructing a network of stress-response regulators 

Gene Regulation and Systems Biology 2008: 2 

Heat shock
The predicted heat shock TFs Msn2, Msn4, Rpn4, 
Yap1 and Cad1 have solid or partial literature 
evidence. First, Msn2 and Msn4 bind DNA at 
stress response element (STRE) and activate 
many STRE-regulated genes in response to many 

stresses such as heat shock, oxidative shock and 
osmotic shock (Cherry et al. 1998). Second, it has 
been demonstrated that the heat shock TF Hsf1 
co-ordinates a feed-forward gene regulatory 
circuit for RPN4 heat induction (Hahn et al. 
2006). Third, Yap1 is known to induce the 

Figure 1. The fl owchart of SRIA.



58

Wu et al

Gene Regulation and Systems Biology 2008: 2 

expression of GSH1 and GSH2 to synthesize 
glutathione in heat shock response (Suqiyama 
et al. 2000). Fourth, overexpression of Cad1 is 
known to increase thermo-tolerance of a cell under 
starvation conditions (Cherry et al. 1998).

Oxidative shock
The predicted oxidative shock TFs Sfp1, Yap1, 
Rpn4 and Rap1 have solid or partial literature 
evidence. First, Sfp1 is known to regulate ribo-
somal protein (RP) gene expression in response to 
various stresses such as oxidative shock and 
osmotic shock (Marion et al. 2004). Second, Yap1 
is known to regulate genes that respond to oxida-
tive shock. For example, Yap1 regulates TRX2, a 
cytoplasmic thioredoxin isoenzyme of the thiore-
doxin system which protects cells against oxidative 
stress (Güldener et al. 2005). Third, RPN4 pro-
moter contains a Yap1 binding site (YRE) which 
is responsible for RPN4 induction in response to 
oxidative stress. (Hahn et al. 2006). Fourth, it is 
known that Rap1 signaling is required for suppres-
sion of Ras-generated reactive oxygen species and 
protection against oxidative stress (Remans et al. 
2004).

Osmotic shock
The predicted osmotic shock TFs Msn2, Msn4, 
Sfp1 and Yap1 have solid or partial literature evi-
dence. First, the msn2-msn4 double deletion 
mutants exhibit higher sensitivity to severe osmotic 
stress, indicating Msn2 and Msn4 are involved in 
response to osmotic stress (Cherry et al. 1998). 
Second, Sfp1 regulates RP gene expression in 
response to various stresses such as oxidative shock 
and osmotic shock (Marion et al. 2004). Third, the 
YAP4 gene, previously shown to play a role in 
response to hyperosmotic stress, is regulated by 
the transactivators Yap1 and Msn2 (Nevitt et al. 
2004).

Acidic stress
The predicted acidic stress TFs Msn2, Msn4 and 
Rpn4 have solid or partial literature evidence. 
First, it is known that RGD1 is activated at low 
pH. The transcription level at low pH was dem-
onstrated to depend on the STRE box located in 
the RGD1 promoter. The general stress-activated 
TFs Msn2 and Msn4 were shown to act mainly on 
the basal RGD1 transcriptional level in normal 

and stress conditions (Gatti et al. 2005). Second, 
under acute herbicide 2,4-dichlorophenoxyacetic 
acid (2,4-D) stress, 14% of the yeast transcripts 
suffered a greater than twofold change. Most of 
the up-regulated genes in response to 2,4-D are 
known targets of Msn2, Msn4 and Rpn4 (Teixeira 
et al. 2006a).

Nitrogen depletion
The predicted nitrogen depletion TFs Sfp1, Ifh1, 
Fhl1, Rpn4 and Rap1 have partial literature evi-
dence. First, ribosomal protein (RP) genes in 
eukaryotes are coordinately regulated in response 
to growth stimuli and environmental stress, 
thereby permitting cells to adjust ribosome num-
ber and overall protein synthetic capacity to 
physiological conditions. Sfp1, Fhl1 and Ifh1 are 
known to regulate RP gene expression in response 
to nutrient depletion (Cherry et al. 1998; Marion 
et al. 2004; Güldener et al. 2005). Second, on solid 
growth media with limiting nitrogen source, dip-
loid budding-yeast cells differentiate from the yeast 
form to a fi lamentous, adhesive and invasive form. 
Both low availability of nitrogen and a solid 
growth substrate are required to induce diploid 
fi lamentous-form growth. It is known that Rpn4 
regulates fi lamentous growth, indicating that Rpn4 
is involved in response to nitrogen depletion (Prinz 
et al. 2004). Third, Rap1 is known to be involved 
in the regulation of nitrogen, sulfur and selenium 
metabolism (Güldener et al. 2005).

Amino acid starvation
The predicted amino acid starvation TFs Gcn4, 
Rap1 and Sfp1 have solid or partial literature 
evidence. First, Gcn4 is a well-known transcrip-
tional activator of amino acid biosynthetic genes 
in response to amino acid starvation (Cherry et al. 
1998). Second, HIS4 encodes an enzyme that 
catalyzes the histidine biosynthesis and Rap1 is 
required for the rapid increase in the HIS4 mRNA 
level following amino acid starvation (Devlin 
et al. 1991). Third, ribosomal protein (RP) genes 
in eukaryotes are coordinately regulated in 
response to growth stimuli and environmental 
stress, thereby permitting cells to adjust ribosome 
number and overall protein synthetic capacity to 
physiological conditions. Sfp1 is known to regu-
late RP gene expression in response to nutrient 
depletion (Cherry et al. 1998; Marion et al. 
2004).
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Discussions and Conclusions
In this study, we use a dynamic system model of 
gene regulation to describe the mechanism of how 
the stress-response TFs may control a stress-
response gene’s expression. Based on the dynamic 
system model, we develop the Stress Regulator 
Identifi cation Algorithm (SRIA) to identify the 
stress-response TFs for each of six kinds of 

stresses. Some general stress-response TFs that 
respond to various stresses and some specific 
stress-response TFs that respond to a specifi c stress 
are identifi ed. For example, we found the well-
known general stress-response TFs Msn2, Msn4, 
Yap1, Rpn4 and Sfp1, consistent with the results 
of Saccharomyces Genome Database (SGD) 
(Cherry et al. 1998). Besides, the well-known heat 

Figure 3. Regulatory cross-talks among different stress responses.
The cellular responses to heat shock, osmotic shock and acidic stress may have regulatory cross-talks. They all trigger TFs Arr1, Msn2, 
Msn4 and Rpn4. Moreover, the cellular responses to oxidative shock, nitrogen depletion and amino acid starvation may have regulatory 
cross-talks. They all trigger TFs Arr1, Rap1, Rpn4 and Sfp1.

Figure 2. The network of stress-response regulators in yeast.
Environmental stresses are represented by octagons, stress-response TFs are represented by ellipses and stress-response genes are 
represented by rectangles. Solid (or dashed) lines indicate the known (or predicted) regulatory relationships among environmental stresses, 
stress-response TFs and stress-response genes. Heat shock responses are in red, acidic stress responses are in green, osmotic shock 
responses are in blue, oxidative shock responses are in orange, nitrogen depletion responses are in brown and amino acid starvation 
responses are in purple.
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shock TF Cad1, nitrogen depletion TF Fhl1 and 
amino acid starvation TF Gcn4 are identifi ed. The 
ability to identify these well-known stress-response 
TFs validates the effectiveness of SRIA.

SRIA identifi ed 12 distinct TFs (Arr1, Cad1, Fhl1, 
Gcn4, Ifh1, Msn2, Msn4, Rap1, Rpn4, Sfp1, Sok2 
and Yap1) to be in response to at least one of the six 
stresses under study (see Figure 2). This indicates that 
a small number of TFs may be suffi cient to control a 
wide variety of expression patterns in yeast under 

different stresses. Two implications can be inferred 
from this observation. First, the response mechanisms 
to different stresses may have a bow-tie structure 
(Csete and Doyle, 2004). As shown in Figure 2, the 
core stress-response TFs make up the ‘knots’ of a 
bow tie, facilitating the fan in of a large variety of 
environmental stresses through signal transduction 
pathways and fan out of an even larger variety of 
stress-response proteins through activating stress-
response target genes. Actually, approximately two-

Figure 4. Statistics of the performance of SRIA using different cutoff thresholds.
The true positive and false negative rates of SRIA using different cutoff thresholds are shown. When the cutoff threshold equals 5%, SRIA 
has the best performance in terms of the tradeoff between maximizing the true positive rate and minimizing the false negative rate to fi nd 
out the known amino acid starvation TFs. (The true positives are those known amino acid starvation TFs that are found by SRIA and the 
false negatives are those known amino acid starvation TFs that are not found by SRIA).
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thirds of the yeast genome (about 3600 genes) is 
involved in responding to the changes in environment 
(Causton et al. 2001). Second, there may exist regu-
latory cross-talks among different stress responses 
(see Figure 3). We found that heat shock, osmotic 
shock and acidic stress all can trigger TFs Arr1, Msn2, 
Msn4 and Rpn4, indicating that these three stresses 
may share a similar stress response mechanism. In 
addition, we found that oxidative shock, nitrogen 
depletion and amino acid starvation all can trigger 
TFs Arr1, Rap1, Rpn4 and Sfp1, indicating cross-
talks among the cellular responses to these three 
stresses. The fact that different stress response 
mechanisms share some, but not all, of their regula-
tors suggests a higher level of modularity of the yeast 
stress response network (Segal et al. 2003).

In Step 3 of SRIA, only those stress-response 
TFs that are at the top 5% of the ranked list are 
classifi ed as the high-confi dence stress-response 
TFs and reported as the fi nal result. The reason for 
choosing only the top 5% of the ranked list is that 
when the cutoff threshold equals 5%, SRIA has the 
best performance in terms of the tradeoff between 
maximizing the true positive rate and minimizing 
the false negative rate to fi nd out the known amino 
acid starvation TFs (see Figure 4 for details).

The response mechanisms to stress are highly 
complex. They require a complex network of sens-
ing and signal transduction leading to the adapta-
tion of cell growth and proliferation along with the 
adjustments of the gene expression program, 
metabolic activities and other features of the cell 
(Hohmann and Mager, 2003). This study focused 
on the regulation of gene expression and proposed 
a network of stress-response regulators and their 
details of actions. Thus, it provides a starting point 
for understanding the adaptation mechanisms that 
yeast uses to survive some of the environmental 
stress conditions, experienced in the wild. We 
believe that as more gene expression data are 
accumulated, in combination with data from other 
whole-organism approaches, novel computational 
algorithms such as SRIA have the potential to 
construct a dynamic picture of the integrated cel-
lular response of yeast cells to environmental 
changes.
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