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Endometrial cancer (EC) is a prevalent uterine cancer that remains a major contributor to
cancer-associated morbidity and mortality. EC diagnosed at advanced stages shows a
poor therapeutic response. The clinically utilized EC diagnostic approaches are costly,
time-consuming, and are not readily available to all patients. The rapid growth in
computational biology has enticed substantial research attention from both data
scientists and oncologists, leading to the development of rapid and cost-effective
computer-aided cancer surveillance systems. Machine learning (ML), a subcategory of
artificial intelligence, provides opportunities for drug discovery, early cancer diagnosis,
effective treatment, and choice of treatment modalities. The application of ML approaches
in EC diagnosis, therapies, and prognosis may be particularly relevant. Considering the
significance of customized treatment and the growing trend of using ML approaches in
cancer prediction and monitoring, a critical survey of ML utility in EC may provide impetus
research in EC and assist oncologists, molecular biologists, biomedical engineers, and
bioinformaticians to further collaborative research in EC. In this review, an overview of EC
along with risk factors and diagnostic methods is discussed, followed by a comprehensive
analysis of the potential ML modalities for prevention, screening, detection, and prognosis
of EC patients.

Keywords: machine learning, endometrial cancer, artificial intelligence, deep learning, histopathology, prediction
model, algorithm
INTRODUCTION

Rising endometrial cancer (EC) incidence and disease mortality represent a serious concern for
women, particularly in countries with rapid socioeconomic transitions where the incidence rate of
this cancer is the highest (1–3). The International Federation of Gynecology and Obstetrics (FIGO)
staging method is used to determine the surgico-pathological staging of EC (4). The majority of EC
patients are diagnosed at an early stage (80% in stage I), with a 5-year survival rate exceeding 95%,
the highest of all gynecological cancers (5). Individuals with early detection or who have EC with a
reduced risk show a favorable prognosis. Individuals detected with higher stage EC who have
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developed recurrence exhibit a worse 5-year survival ranging
between 47% and 58% for stage III EC patients and 15% and 17%
for stage IV EC patients; and possess a limited number of
accessible prognostic or therapeutic alternatives (6, 7).
Expensive screening, and a high rate of misdiagnosis majorly
contribute to high disease mortality (8–10). Although
endometrial biopsy with dilation and curettage is the standard
diagnostic approach for EC, there exist no clinically validated EC
screening approaches (11). Progestin treatment is appropriate for
women experiencing atypical endometrial hyperplasia (AEH), a
precancerous type of endometrial lesion, or stage 1A EC lacking
muscle penetration (12). Most women diagnosed with EC exhibit
a good prognosis after surgery alone; however, poorer outcomes
are associated with high-grade, recurrent, and metastatic EC
(13). Therefore, routine screening, early detection, and precise
prediction of recurrence or survival after oncotherapeutic
regimens may improve the survival of EC patients, rather than
a simple presentation of symptomology. In this review, machine
learning (ML)–based strategies and techniques that could
improve the prediction and prognostication of EC are discussed.

ML approaches (algorithms) have evolved in oncology to
raise the reliability of predication of cancer susceptibility,
recurrence, and survival (14, 15). ML is a subfield of artificial
intelligence (AI) that combines a range of statistical,
probabilistic, and optimization techniques to enable
computers to “learn” from previous examples and detect
complicated patterns in vast, noisy, or complex datasets (16,
17). AI allows computers to execute “cognitive” tasks for
humans, such as language comprehension, reasoning, and
problem solving. The use of an appropriate AI system enables
computers to discover patterns in available datasets and derive
inferences using the data without requiring explicit commands
(18). Currently, AI has mostly been utilized for image
identification tasks in healthcare (19). Several articles have
reported the high accuracy of AI in diagnosing conditions
such as skin cancer, and diabetic retinopathy (20–23). ML
algorithms have been effectively employed in the treatment of
cancer, such as breast cancer (24), oesophageal cancer (25),
head and neck cancer (26), osteosarcoma (27), prostate cancer
(28), and thoracic cancer (29). ML offers the opportunity to
“systematically evaluate every variable, present, and future, to
locate groupings of cancer cases with similar outcomes” as
cancer prediction and prognostication systems become more
complicated with rising variables. Implementation of ML
approaches for EC prediction and prognostication should be
of utility as patients with diverse outcomes may be
subcategorized into specific clinical stages.
CLINICO-PATHOLOGICAL FEATURES
OF EC

EC has typically been classified into two types: type I and type II
(30). These two classifications differ in terms of epidemiology,
histology, prognosis, and treatment (30, 31). Type I EC is the
Frontiers in Oncology | www.frontiersin.org 2
most common form and accounts for most diagnosed cases
(80%), has an overall 5-year survival rate of 81.3%, and usually
has less than 20% chance of recurrence (31, 32). Type I EC
offers a good prognosis in the majority of patients because they
are low grade and limited to the uterus at the point of diagnosis
(33). Type I EC is predominantly associated with obesity-
related complications and with excessive endometrial cell
proliferation (34). Type I EC is also observed to be
susceptible to excessive exposure to estrogen, via both
endogenous and exogenous routes and mainly affects younger
women (premenopausal or perimenopausal) (33). As a result,
hyperestrogenism, hyperlipidemia, diabetes, and anovulatory
uterine bleeding are common in individuals with type I EC.
Hence, pathological conditions that are associated with
metabolic deregulation have been recognized as an
autonomous risk component for the early onset of the EC
(35). Endometrial intraepithelial neoplasia (often termed
complex AEH) is a type I EC precursor lesion that is
frequently associated with a thicker endometrium and shares
the same estrogen exposure risk factors as EC (36, 37).
Hyperplasia contributes to a 1%–3% risk of the development
of cancer. Low-grade endometrioid adenocarcinomas
[International Federation of Gynecology and Obstetrics
(FIGO) grades 1 and 2] are the most common type I cancer
in women (38). Grade 1 cancers are well differentiated,
resemble normal tissue, and often show favorable prognosis
(39). Grade 2 malignancies contain a solid component that
ranges from 6% to 50% and are classified as differentiated.
Grade 1–2 ECs are also classified as type I; grade 3 tumors that
contain a solid component ranging >50% are high grade and
poorly differentiated, and they do not appear as normal
endometrial tissue, are aggressive, and associated with poor
prognosis. Grade 3 EC is classified as type II EC, often affects
old age women (postmenopausal), and is not associated with
endocrine disorders (40). Type II cancers are high-grade, non-
endometrioid histology and are mostly composed of serous
carcinomas and clear cell carcinomas (41). Type II ECs are
frequently diagnosed at a late stage, associated with
intermediate-to-poor prognosis, and a high rate of recurrence
with a decreased 5-year overall survival rate (55%) which
contributes disproportionally to disease mortality (31).
Although type II ECs contribute to only 20% of all ECs, they
are associated with ~40% of all EC patients with poor overall
survival (42). Around 20% of endometrioid cancers are
subcategorized as high grade (FIGO grade 3) and type II EC
(31). Dedifferentiated, undifferentiated, mixed cel l ,
neuroendocrine, and carcinosarcomas (also known as
malignant mixed mullerian tumors) are similar to serous and
clear cell carcinoma histology. Type II EC is more prevalent in
elderly women and is especially frequently observed in African-
American women with thin and atrophic endometrium
(13, 21).

Increased risk of developing type I EC, is related to
unopposed exposure of the endometrium to estrogen (E2) (43).
Hormone replacement therapy represents an example of
exogenous estrogen exposure (44). Premature menarche, late
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menopause, tamoxifen treatment, nulliparity, infertility or
inability to ovulate, and a polycystic ovarian disease can all
increase uterine estrogenic exposure (45). Family history, age
(over 50), hypertension, diabetes mellitus, obesity, and thyroid
disease are all independent risk factors through which the risk of
EC increases (33, 42, 46, 47). Being obese is the most significant
risk factor for hyperplasia progression to malignant EC (48).
Obesity affects more than 70% of people with initial stage EC
(49). Obesity is also hypothesized to increase the risk of EC by
increasing the peripheral conversion of androgens to estrone in
adipose cells (39). Obese premenopausal women are also
highly susceptible to prolonged anovulation, which is an
additional risk factor for EC (48). Genetic conditions like
Cowden syndrome, Lynch syndrome, and polymerase
proofreading-associated polyposis are associated with an
increased risk of developing EC among women (50, 51). Lynch
syndrome is a cancer risk disease characterized by a monoallelic
germline mutation in a mismatch repair (MMR) gene,
particularly MLH1, MSH2/6, or PMS2, or by a germline
deletion inside epithelial cell adhesion molecule (EpCAM) that
contributes to epigenetic silencing of the neighboring MSH2
gene (52). Carriers of these mutations are more likely to develop
ECs (53).

Early detection of EC can improve the chances of a good
prognosis. Abnormal uterine bleeding and postmenopausal
vaginal bleeding (PMB) are categorized as the most prevalent
symptom of EC. Despite the fact that PMB is present in 90% of
women with EC (regardless of tumor stage), it is not a reliable
indicator of the disease. Only 9% of PMB patients are diagnosed
with EC (54). Internal pelvic examination with a Pap
(Papanicolaou) smear test is generally regarded as the initial
investigation when symptoms, signs, and/or family history imply
the existence of gynecologic pathology (55). However, the Pap
smear is not a useful predictor of EC and is predominantly
utilized for cervical cancer screening and detection (56).
Transvaginal ultrasonography (TVUS) is the most helpful tool
to use in gynecologic practice to monitor the female reproductive
organs as it can help to determine the thickness and features of
the endometrial lining, as well as the size of the uterus, the
adnexa, and the presence of excess pelvic fluid (57). The TVUS
probe (which acts similarly to an ultrasound transducer) is
inserted into the vagina for the transvaginal scan (TVS).
Images from the TVS are then utilized to determine if there is
a mass (tumor) in the uterus or if the endometrium is thicker
than normal, which could indicate EC. It is also used to
determine if cancer has spread to the uterine muscular layer
(myometrium) (58). As a triage tool, TVS-based endometrial
thickness screening lacks sufficient specificity because it cannot
distinguish benign lesions, such as polyps, from their malignant
counterparts exposing a large proportion of women to further
testing (59–61). The endometrial histological information
provided by endometrial biopsy is a gold standard for
diagnostic evaluation and sufficient for preoperative assessment
(62, 63). In combination with EC biopsies, dilation and curettage
(D&C) are often recommended to confirm the EC diagnosis;
however, the D&C method is painful, expensive, requires general
Frontiers in Oncology | www.frontiersin.org 3
anesthesia and has a high rate of misdiagnosis in up to 31% of
women and demands multiple repeats for confirmation (8–10,
64). Another technique used to investigate EC is hysteroscopy,
which allows for direct viewing of the endometrial cavity, which
is often used to examine abnormal uterine bleeding (42).
Hysteroscopy can be combined with a focused biopsy or
curettage. In the detection of EC, hysteroscopy yields higher
accuracy than does blind D&C and had a sensitivity of 99.2% and
a specificity of 86.4% (65). Thus, except for histology of
endometrial biopsies, there is no clinically accepted method for
screening, detection, prediction, and diagnosis of EC.

To determine local extension and any metastatic disease,
imaging studies such as magnetic resonance imaging (MRI),
computerized tomography (CT), or positron emission testing/
CT may be used. However, imaging studies are limited in the
detection of lymph node dissemination, which is observed in at
least 90% of the cases using microscopic-based approaches (66).
However, one of the more interesting and difficult challenges for
clinicians is accurately predicting the outcome of an illness. As a
result, research is increasingly employing ML-based approaches
that are capable of discovering disease-associated patterns and
links in the large datasets and may accurately predict potential
disease risks and outcomes for individual patients.
MACHINE LEARNING: METHODS AND
ALGORITHMS

In 1959, Arthur Samuel first coined the expression “machine
learning”. ML determines a machine’s capability to understand
and simulate upcoming scenarios and potential effects predicated
upon massive datasets. Hence, the science of having a machine
function learning from the data, recognizing patterns, and giving the
outputs with minimal human input is ML. It has brought to society
autodriven vehicles, functional comprehension of voice, robust
online search, and a dramatically enhanced understanding of the
human genome. ML is a bustling field of medicine with tools being
used to integrate medical challenges with computer science and
statistics. ML may lead to more detailed diagnostic algorithms in
medicine and personalized patient care. ML is a data mining
software for creating analytical models that is fully automated and
is a subset of AI-based on the notion that machines could
extrapolate data, interpret trends, and generate results with little
human input. Data samples contain the basic constituents that are
required to develop a strategy for the application of the ML
algorithm. Sample representation contains multiple features and
each function consists of numerous classification values.
Understanding the particular form of data that is used in advance
facilitates the proper collection of methods and algorithms that
could perhaps be employed for the evaluation. Compared with
conventional biostatistical approaches, the strengths of ML
comprise versatility and scalability, which make it possible for
multiple functions such as stratifying threats, diagnosing and
classifying, and predicting survival. A further value of ML
algorithms is to integrate different forms of data (e.g., population
July 2022 | Volume 12 | Article 852746
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data, experimental outcomes, and data from imaging) to identify
patterns that could effectively classify the data into respective
categories. Amid such benefits, the use of ML in health care poses
specific difficulties that include preprocessing of data, experimental
design, and algorithm refinement related to the specific clinical issue
(67). A comprehensive overview of AI and its subfields [ML and
deep learning (DL)] is summarized in Figure 1.

ML plays an instrumental role to speed digital transformation
and is ushering in an age of automation. ML has become so
prevalent that it has now become one of the preferred methods
for researchers to handle a wide range of biological problems.
The emergence of computer-aided systems that have been
instructed to perform complex tasks in medical imaging,
bioinformatics, and medical robotics has stemmed from the
accessibility of advancing computational power, strongly
enhanced pattern recognition algorithms, and enhanced image
processing (IP) software operating at incredibly fast acceleration.
A “cognitive” computer having exposure to “big data” may scan
billions of bits of unstructured data, retrieve user data, and detect
complicated patterns with growing confidence. Several ML
algorithms are mathematical models that transfer a collection
of observable variables through a data point or sample, referred
to as “features” or “predictors”, into a set of outcome variables,
referred to as “labels” or “targets” (68, 69). Widely used ML
algorithms with their advantage and limitations are shown in
Table 1. The algorithms are trained to be competent to anticipate
labels by analyzing specific information in a phase termed
“training”. Presently, three prominent methods are used to
Frontiers in Oncology | www.frontiersin.org 4
train ML algorithms: supervised, unsupervised, and
reinforcement learning (Figure 2).
IMBALANCED DATA IN ML

ML algorithms are powered by the volume of data in datasets. A
balanced dataset is one in which the distribution of labels is
approximately equal. Labels, in this case, indicate the class
related to each data point. The class label is projected by
evaluating the input data or predictor in a classification issue
when the target or output variable is a categorical variable. A class
imbalance is common in most classification issues. In certain cases
although, when the dominant class is much bigger as compared
to the minority class, the disparity is quite pronounced. They
occur when one of the target class labels has a significantly lower
number of observations than the other class labels. An imbalanced
class dataset is a type of dataset that is particularly common in real
classification scenarios (76). Any conventional strategy to solve
this type of machine learning challenge frequently produces
ineffective results. In unusual situations like fraud detection or
disease prediction, it is vital to correctly determine the minority
classes. As a result, the model should not be biased toward
recognizing just the majority and therefore must assign the
minority class the same relevance or value as the majority. Most
machine learning algorithms, on the other hand, struggle with
imbalanced datasets (77). When dealing with imbalanced datasets,
there is no one-stop solution to increase the predictive accuracy of
FIGURE 1 | An overview of the machine learning (ML) integration with artificial intelligence (AI) and deep learning (DL). A computer science branch that uses
machines and programs to mimic human intelligence is known as AI, whereas DL is a subgroup of AI that employs models from statistics and mathematics.
ML covers a variety of algorithms and statistical methods, including logistic regression, random forest, and DL-based approaches. The ML algorithm is
continually integrated with a new dataset to test the validity and utility of algorithms.
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a model. It may be required to use several processes to determine
the best sampling methodology for the dataset. The most
successful strategies will differ depending on the peculiarities of
the imbalanced data set (). Resampling strategies, ensemble
learning techniques (78–80), use of right evaluation metrics,
boosting, cost-sensitive learning (81), one-class learning (82),
and active learning have all been considered as solutions to the
class imbalance problem. In resampling strategies, the most
commonly employed methodologies to assess the class
imbalanced issues are by using either random oversampling or
random undersampling.
ML APPLICATION IN EC PREDICTION,
DIAGNOSIS, AND PROGNOSIS

The advanced stage of diagnosis and limited therapy options
seriously hinders the prognosis of EC patients. Several
Frontiers in Oncology | www.frontiersin.org 5
investigations have suggested that screening, early detection,
monitoring, and prediction of EC could significantly improve
the prognosis of patients. Advances in ML techniques offer
unique and promising perspectives for the detection and
prediction of several cancers such as breast, colorectal, and
prostate cancer. Lately, ML has had a significant impact on the
development of potential computational tools for stratifying,
scoring, and prognosticating cancer patients to improve patient
survival (12). Recent studies have reported that ML algorithms
have been utilized to identify lymph node metastases, scoring
KI67 positivity in breast cancer, scoring tumor-infiltrating
lymphocytes in melanoma, and Gleason grading in prostate
cancer (83). ML has also successfully attempted to predict
tumor recurrence with high accuracy using pathological images
(84). Furthermore, Pariss et al. used a novel ML-based algorithm
to demonstrate an improved prognostic prediction for patients
with EC (85). Thus, ML-based approaches can be employed to
maximize the sensitivity and specificity of EC diagnosis
and prognosis.
TABLE 1 | List of algorithms used in ML with the advantages and limitations.

ML Algorithms Advantages Limitations

Decision Tree
(70)

- Training method that is simple to comprehend and efficient

- Training is unaffected by the sequence of training occurrences.

- Pruning reduces the complexity of the classifier and improves
predictive accuracy by the reduction of overfitting

- Classifications must be mutually exclusive

- The final decision tree is determined by the order in which the algorithm
parameters are selected

- Inaccuracies in the training set might lead to excessively complicated decision
trees

- When attribute’s values are missing, it is uncertain which branch to choose
when that attribute is checked.

Naïve Bayes (71) - Statistical modeling–based basis

-Training method that is simple to comprehend and efficient

- Training is unaffected by the sequence of training occurrences

- Useful in a variety of accuracy areas.

- Presupposes that those characteristics are statistically independent

- Expects that numeric characteristics have a normal distribution

- Classifications must be mutually exclusive

- Redundant characteristics classification error

- Attribute and class frequencies have an impact
k-Nearest
neighbor (72)

- Cases are quickly classified.

- Beneficial in non-linear classification situations

- Resilient in the face of irrelevant or new features

- Capable of withstanding noisy instances or instances with missing
attribute values

- May be used for regression as well as categorization

- Implies that instances with identical characteristics will be classified similarly

- Believes that all characteristics are equally important

- When the number of characteristics grows, it becomes too computationally
complex

Neural Network
(73)

- It has the potential to be utilized for classification or regression.

- Capable of representing Boolean functions (AND, OR, NOT)

- Tolerable to loud input

- More than one output can be used to classify instances

- The algorithm’s structure is tough to grasp

- Overfitting can occur when there are too many characteristics

- Experimentation is the only way to discover the best network structure

Support Vector
Machine (74)

- Nonlinear class boundaries are modeled

- It is unlikely that overfitting will occur

- Decreased computational complexity to a quadratic optimization
issue

- It is simple to adjust the complexity of the decision rule and the
frequency of mistake

- Compared to Bayes and decision machine trees, training takes longer

- Finding optimum settings is difficult when training data are not linearly
separable

- The algorithm’s structure is difficult to understand

Genetic
Algorithm (75)

- Simple algorithm that is simple to implement

- Can be utilized for feature categorization and selection

- Utilized mostly in optimization

- Always comes up with a “decent” answer (not always the best
solution)

- It is difficult to compute or create a scoring function

- It is not the more productive approach for locating some optima since it
prefers to discover local optima instead of global selection

- Complications involved in the representation of training/output data
July 2022 | Volume 12 | Article 852746
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ML Approaches in Image and
Pattern Recognition
Pattern recognition is the process of automated distinguishing,
recognizing, and segmenting patterns and regularities in data
using ML algorithms. It categorizes data using statistics,
mathematical models, or knowledge derived from patterns and
their representation. In supervised pattern recognition, the data
are trained using specific labels. A label is assigned to each input
value that is utilized to generate a pattern-based output. On the
other hand, in unsupervised pattern recognition, various
computer algorithms like clustering or principal components
analysis are used to detect unknown patterns in the absence of
labeled data. IP is a type of computer technology that allows us to
process, analyze, and extract data from pictures. Some studies
applying machine learning patterns and image recognition
algorithms in EC have been summarized below.

There has been substantial progress in the application of
pattern recognition and IP in the detection, classification, and
identification of EC. Attempts have primarily been made in
medical imaging to incorporate AI in preoperative diagnostic
tools such as endoscopy, CT, MRI, ultrasound imaging, and
pathological imaging. MRI is an essential medical imaging tool
Frontiers in Oncology | www.frontiersin.org 6
assisting in the identification and preoperative assessment of EC
patients, and there have been some reports on its use in
conjunction with DL approaches (86–88)]. Hodneland et al.
demonstrated a fully automated approach for tumor
segmentation in EC using a 3D convolutional neural network
(CNN) named UNet3D (89) applied to a cohort of 139 EC
patients with preoperative pelvic MR images (86). The whole
value of tumor texture features and tumor volume estimations
along with the tumor segmentation accuracy was obtained.
The study showed that the available ML algorithms may offer
accurate tumor segmentation at the level of a human expert in
EC. The model generates tumor volume, tumor borders, and
volumetric tumor maps. Hence, the self-generated approach for
primary EC tumor segmentation seems to exhibit the prospect to
seek near-real-time whole-volume radiomic tumor profiling,
including tumor volume and texture properties, which could
be useful for risk stratification and developing more personalized
treatment strategies. Deep muscle invasion is an important
determinant of uterine cancer prognosis. A study by Dong
et al. created a DL model to predict deep muscle invasion
based on 4896 MR images from 72 EC patients and compared
it to radiologist’s readings and achieved (90) an accuracy rate of
FIGURE 2 | Overview of ML (supervised, unsupervised and reinforcement learning). The overview of ML depicts the analysis and testing of statistical models and
algorithms that computational approaches used to perform a specific task without being explicitly programmed. The figure represents subdisciplines of AI (ML and
DL) and their subtypes including supervised, unsupervised, and reinforced algorithms employed in fields such as pattern recognition, object detection, text
interpretation, and genomics. The algorithms of ML learn, improve, predict, and classify the data.
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75%; nevertheless, the difference was not statistically significant.
In a similar study, Chen et al. performed an analysis on 530 MR
images and generated 84%, 66.7%, and 87.5% accuracy,
sensitivity, and specificity, respectively (91). Lymph node
metastasis (LNM) is one of the strong predictive factors for EC
(88)]. Xu et al. developed a prediction model for LNM of normal
size using MR images and CA125 values from 200 specimens of
EC patients. The result showed approximately 85% accuracy
(92). Recently, endometrial cytology has been reported as a viable
diagnostic tool for detecting EC with good sensitivity and
specificity (93, 94)]. A study was performed by Markis et al. in
which they aimed to develop an automatic diagnostic system to
analyze liquid endometrial cytology images of 416 patients using
DL and found 90% accuracy for this model (95). Collectively,
these studies suggest that ML has made remarkable progress in
EC care.
ML Model for Classifying Endometrial
Lesions
Hysteroscopy for endometrial lesions is one of the gold standard
procedures in an examination of the endometrium. Hysteroscopy is
used to differentiate uterine body tumors, such as endometrial
polyps and EC, which however depends on the hysteroscopic
expertise. It has certain limitations such as it is dependent upon
the comprehensive knowledge and understanding of the target
pathology, lesion size, penetration depth of the lesion, skills, and
expertise of the physician, availability of equipment, and assessment
of patient comorbidities (65). ML-aided approaches to examine EC
not only increase accuracy but also provide a minimally invasive
and less expensive tool to correctly diagnose EC. A study conducted
by Zhang et al. developed a CNN-based computer-aided diagnosis
system using the VGGNet-16 model for diagnostic hysteroscopy
image classification (96). Using 1,851 hysteroscopic images of
uterine patients as input, Zhang et al. also investigated the
VGGNet-16 CNN model efficiency for the classification of
endometrial lesions. The result showed 80.8% overall accuracy
suggesting that the CNN model could be used as a tool for
EC diagnosis.
ML Model for Classifying DNA Mismatch
Repair–Deficient ECs
Approximately 3% of ECs are caused by germline mutations in
the MMR genes such as MLH1/2, MSH6, and PMS2 and are
termed MMR-deficient (MMR-D) tumors (97, 98). Recently, a
study by Veeraraghvan et al. used contrast-enhanced CT to
identify DNA MMR-D and/or tumor mutational burden-high
(TMB-H) subtypes in ECs (99). This study built two ML models
using generalized linear regression (GLMNet) and recursive
feature elimination random forest (RF) classifiers to effectively
differentiate between low copy number or high copy number
MMR-D in ECs and also increasing rate of TMB-H in ECs. The
authors analyzed data from a cohort of 422 patients and
prefiltering was performed using GLMNet. Their findings
indicated that radiomic models using ML algorithms can be
Frontiers in Oncology | www.frontiersin.org 7
utilized as a reproducible complementary or companion
diagnostics for clinical trial enrollment and standard-of-
care treatment.
ML ALGORITHMS IN EC PROGNOSIS

Lately, ML algorithms have been utilized in cancer care with an
aim to better understand cancer prognostication. The ability of
ML-based algorithms to detect, predict, and identify cancer
using complex datasets indicates their importance. Over the
past decade, several ML algorithms have been widely applied to
EC prediction and prognostication. In a study, Praiss et al. (85)
adapted an unsupervised ML algorithm named Ensemble
Algorithm for Clustering Cancer Data (EACCD) and used it
to classify patients based on TNM [tumor (T), nodes (N),
metastases (M)] staging, grade, and age. EACCD is a
combination of clustering method that derives dissimilarity
among two combinations by continuously applying criteria-
based clustering, followed by combining the learned
dissimilarity estimate with a hierarchical clustering approach
to find ultimate clusters of combinations. This innovative ML
method improved the prognostic prediction for EC (85, 100). In
another study, Chen and colleagues developed a tool
ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumors) that uses gene expression data to predict
tumor content and the degree of infiltrating stromal/immune
cells from tumor tissues (101). ESTIMATE is a reliable
algorithm that is widely accepted and has been used to
determine the immune and stromal scores in various cancers
such as breast cancer (102), glioblastoma (103), prostate cancer,
colon cancer (104), and cutaneous melanoma (105).
ESTIMATE total scores were found to be substantially closely
associated with tumor purity in clinical tumor samples and
tumor cell line samples, and they offered a simple and effective
method for determining the number of tumor cells in a sample.
ESTIMATE could further be improvised by the inclusion of
endothelial cell signatures and tumor type–specific normal
epithelial cells.

Most women with early stages of EC show a good prognosis.
However, among them, 15% of patients with stage I and II EC
develop recurrence (106). A study done by Akazawa et al.
utilized EC patients and applied five ML algorithms: RF
(107), logistic regression (LR) (108), decision tree (DT) (109),
support vector machine (SVM) (110), and boosted tree (111),
for the prediction of recurrence based on multiple clinical
parameters such as age, body mass index, stage, histological
type, grade, surgical content, and adjuvant chemotherapy. To
verify the effectiveness of these classifications, accuracy and
area under the curve (AUC) were analyzed. The maximum
accuracy was reported by the SVM followed by LR and the least
by boosted trees. The best AUC was observed in LR and the
least in RF. Hence, they reported LR as the best predictive
model for the study (108). They demonstrated the feasibility of
AI prediction in patients with EC through the current
investigation and concluded that, in the early stage of EC, the
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application of an ML algorithm made it possible to predict
recurrence (111, 112). This finding can help to improve the
efficiency and accuracy to predict recurrence and
treatment response.

Lymph node involvement (LNI) is a significant prognostic
indicator for several cancers including EC. However, at
present, there is no validated method to predict LNI
accurately in EC. Recently, a study by Günakan et al.
investigated the use of the Naïve Bayes (NB) algorithm
(113) for LNI prediction in EC patients. This study used
various histopathological factors such as final histology,
presence of lymphovascular space invasion (LVSI), grade,
tumor diameter, depth of myometrial invasion, cervical
glandular stromal invasion, tubal or ovarian involvement,
and pelvic LNI. The study reported that the algorithm
predicted the LNI using histopathological factors with high
accuracy and concluded that ML could occupy a position in
decision-making for managing EC. Subsequent studies using
sentinel lymph nodes (SLNs), biochemical data, or imaging
combined with ML algori thms might ass is t in EC
management (114). Another study by Reijnen et al. aimed at
developing and validating externally a preoperative Bayesian
network (BN) to predict LNM and disease-specific survival
(DSS) in EC patients (115). The study included 763 patients,
who had been treated surgically for EC. Using score-based
ML, an externally validated ENDORISK- BN (116) was
developed for EC patients involving the various molecular,
histological, and clinical biomarkers. Both outcomes showed
high discriminative performance and good calibration. With a
marginal rate of false negative 1.6%, ENDORISK was able to
identify more than 55% of the patients at 5% risk for LNM.
This approach guides both the patient and the clinician
regarding personalized risk assessments evaluating the needs
of patients and also the scope of the surgical solution. The
work also demonstrated how, by adding easily available and
multimodal biomarkers, BN may be utilized to personalize
therapeutic decision-making in oncology (115, 117).

Endometrioid endometrial adenocarcinoma (EEA) is the
most common type of EC among all types. A poor prognosis
for disease dissemination has been associated with a high
tumor grade, late surgical stage, and LVSI (118). All of these
characteristics suggest that traditional clinical features are
insufficient to accurately predict EEA prognosis. Therefore,
developing a predictive prognostic model for EEA would be of
great clinical value. A study by Yin et al. developed a
prognostic model for EEA that combines gene expression
and traditional features using RF. Three models were
derived using (a) 11 genes alone, (b) stage and grade, and
(c) both 11 genes and stage and grade. The study reported that
the RF model derived from the “11 genes and grade”
performed better than RF models derived from the 11 genes
or grade alone, indicating that the RF model derived from the
“genes and clinical features” had a stronger predictive ability
for the prognosis of EEA. Thus, a combined RF model and
clinical criteria may serve better for the stratification of
patients in the clinic (119–122).
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ML Models for EC Screening, Risk
Prediction, and Classification
Hart et al. used ML algorithms to categorize patients as low,
medium, or high risk (123). They evaluated the model’s
performance on the three-tier risk classification to that of
physicians’ judgment and found encouraging results. These
models offer a non-invasive and a cost-effective method of
identifying high-risk subpopulations which might gain from
early EC screening ahead of disease development. They
discovered a unique and successful technique for premature
cancer diagnosis and preventative measures for individual
patients by performing a statistical biopsy of personal health
data. Predicated on publicly available personal health data, seven
alternative models, namely LR, neural network (NN), SVM, DT,
RF, linear discriminant analysis, and NB (124) were developed to
estimate the likelihood of an individual woman having EC in
5 years. The RF model outperformed the other six models
regarding AUC with the NN coming in second. Both models
were employed in dividing the population into three risk groups
viz. low-, medium-, and high-risk groups. It does not aid in
choosing the most effective preventative approaches (e.g., diet
and exercise, progestin or antiestrogen therapy, and insulin-
lowering therapy). Nonetheless, the ML approach holds great
promise for assisting in the early detection of EC, as it produces
high-accuracy predictions based primarily on personal health
information before disease onset without the need for any
invasive or expensive procedures such as endometrial biopsy or
TVUS (123). Establishing personalized cancer preventive
measures for each patient might benefit from a risk prediction
model which classifies the population between low-, medium-,
and high-risk categories (125). A model like this can assist
doctors to identify high-risk groups for whom they can
recommend measures to reduce the risk of EC, including
dietary and activity modifications, progestin or antiestrogen
medication, insulin-lowering therapy, and scheduled
endometrial biopsies.

Prediction of EC Risk
According to a current analysis, establishing personalized
cancer preventive measures for each patient might benefit
from a risk prediction model which classifies the population
between low-, medium-, and high-risk categories (125). A
model like this can assist doctors to identify high-risk groups
for whom they can recommend measures to reduce the risk of
EC, including dietary and activity modifications, progestin or
antiestrogen medication, insulin-lowering therapy, and
scheduled endometrial biopsies.
EC Risk Factors: A Statistical
Meta-Analysis and the Use of Artificial
Neural Network to Develop a Risk
Prediction Model
Using a statistical meta-analysis technique, Hutt et al. aimed
at establishing the rank order of risk factors for EC and
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generating a collective risk and per centum risk for each
component, followed by creating a NN computer model that
could predict whether a patient’s overall cancer risk would
increase or decrease. The objective was to determine whether a
patient should be tested, to predict diagnosis, and to advise
preventative actions to patients. To quantify relative risk, a
meta-analysis of available data was performed, followed by the
design and implementation of a risk prediction computer
model based on a NN algorithm. Data for the meta-analysis
of EC patients with the risk factors were taken from National
Cancer Institute (NCI). Using a statistical meta-analysis
technique, they were able to identify the rank order of risk
variables for EC which was used to generate a pooled risk and
risk percentage for each factor. Furthermore, using a
computer NN model system, they developed a model that
could predict an overall increase or decrease in cancer risk and
cancer diagnosis for specific patients with 98.6% accuracy.
The findings of the study effectively reduce the amount of
unnecessary invasive testing of EC patients. This might be a
valuable tool for physicians to utilize in concert with
additional indicators to determine whether individuals
require enhanced preventative measures before the potential
development of EC (126).
LIMITATIONS OF ML APPROACHES IN EC

The sensitivity and specificity of EC data are frequently
necessary to train ML-based models. Data access should be
carefully controlled to protect privacy without impeding
innovation and technological development to enhance
performance. Some of the major challenges associated with
the implementation of ML in EC datasets are as follows:

i. Retrospective versus prospective studies: Recruitment of the
bulk of patients in the presented studies has been
retrospective using the past labeled data for the training
and testing of the used algorithms. Through prospective
studies only, may one infer the true utility of the built
systems when utilized in the real world. The introduction of
wearable technology is facilitating massive prospective trials
of historical standards; for instance, a study to diagnose
atrial fibrillation in 419,093 consenting Apple watch holders
is currently taking place (127).

ii. Peer-reviewed randomized controlled trials as the gold
standard: To develop trust and acceptance of ML amongst
the medical community, peer-reviewed evidence plays a
pivotal role. In addition to this, there are very few
randomized controlled trials published to date. ML
experiments require high-quality reporting. The
probability of bias and the possible utility of prediction
models can only be accurately measured if all facets of a
diagnostic or prognosis model are fully reported (128).

iii. Metrics often do not reflect clinical applicability: Amid
the widespread usage in ML research, the AUC of a
Frontiers in Oncology | www.frontiersin.org 9
receiver operating characteristic is usually not the
strongest measure for representing clinical validity and
is difficult for many clinicians to comprehend. Clinicians
ought to be trained to determine how the proposed
algorithms can enhance patient treatment in a real-
world setting, but most articles do not attempt to do so;
other methods have been proposed, such as decision
curve review that attempts at measuring the total
advantage by using a formula to direct future behavior
(129–131).

iv. Difficulty in comparing different algorithms: Since each
test’s output is recorded using various tools and methods
on various samples with distinct sample distributions as
well as characteristics, quantitative comparison of
algorithms through studies is difficult. Algorithms must
be compared on a similar self-dependent test set, which is
depictive of the target population util izing the
comparable effectivity measures to produce fair
comparisons. Lacking this, physicians would struggle to
determine which algorithm is most likely beneficial for
the patients’ (127).

v. Dataset shift: The clinical and operational practices evolve,
and the data are generated in a non-stationary
environment amidst the shifting population of patients.
When a novel predictive algorithm is introduced, it may
induce shifts in operation, leading to a different
distribution from the one used to generate the results.
As a result, detection systems drift and update models
about the quality of the results (132).

vi. Algorithmic bias: Clinical assessment should be
performed on a representative sample of the planned
implementation population, and algorithms should be
constructed keeping the global community in mind.
Factors such as age, race, sex, sociodemographic
stratum, and position should be considered when
analyzing output by population subgroups. Researchers
should be guided to make sure that the proper measures
are taken to assess bias while adopting models as there is
a better understanding of these problems, and clinicians
are empowered to engage objectively in system design
and growth. Algorithm bias may be divided into three
inputs: (1) bias of the model (models chosen to best
reflect the major, not exclusively underrepresented
groups) , (2) variance of the model and model
ambiguity (owing to a lack of data from minorities),
and (3) noise in the results (the impact of a collection
of unknown parameters on model predictions, which can
be avoided by selecting subpopulations in which to test
supplementary variables) (127).

vii. Challenges in generalization to new populations and
settings: External validation, which involves evaluating
an AI system with accurately scaled datasets obtained
from organizations except for those that supplied the
statistical model training, is required for the accurate
eva lua t ion o f r ea l -wor ld c l in i ca l ou tpu t and
generalizability. This will guarantee that any important
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changes in target patient demographics and conditions of
illness in real-world clinical settings are appropriately
reflected in the system where it will be used. This
technique is currently uncommon in the literature and
is a major source of concern. A current systematic
assessment of research that assessed AI algorithms for
medical imaging diagnostic analysis discovered that only
6% of 516 relevant scientific publications completed
external validation (133, 134).

viii. Logistical issues in implementing AI systems: The reality
that almost all medical data are not widely accessible for
ML is causing several of the existing difficulties in applying
AI to clinical research. Data are often segmented in a
variety of medical imaging archival programs, diagnostic
systems, EHRs, automated monitoring software, and
insurance databases, making it impossible to integrate
(135, 136).

ix. Human obstacles to AI adoption in healthcare: A good
understanding of human and computer interactions
should be a focus as there are significant human
obstacles to adoption. It will be critical to retain an
emphasis on clinical applicability and medical outcomes
to make sure that this technology reaches and benefits the
individual (127).

Also, other key points to be addressed are that the input data
should be of good quality, with few artifacts or noise levels.
While ML models might handle noisy input to a certain
measure, incorrect labels may significantly affect an ML
model ’s performance. Similar to different statistical
approaches, many ML models require a training set with no
missing characteristics, so the training sets must be as thorough
as feasible. While data augmentation approaches, ranging from
random imputations to ever further complex ML-based
algorithms, could be implemented to substitute the missing
data, they typically do not produce the identical results as
utilizing a complete dataset for training. Furthermore, bigger
datasets are typically desired since they allow the ML model to
understand the real variance in the data with a lower chance of
small outliers negatively affecting the model.
FUTURE PERSPECTIVE

An electronic health record (EHR) includes data comprising
the physician’s notes and other information documenting a
patient’s clinical history (137). The use of clinical data in
research is challenging due to several reasons: in that, raw
clinical data are often variable and are not well annotated, the
clinical data are accumulated in an unlinked manner making it
complex for research application, and the multimodal (i.e.,
radiology images, physician notes, pathology images, and
laboratory results) nature of the data makes it hard to be
automatically analyzed by ML algorithms without prior data
curation by human intervention (138). Therefore, introducing a
novel data integration and decision support system intended to
harness the potential of EHRs for EC management might be an
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attractive addition to the computer-guided EC research (139)
(Figure 3). An information technology infrastructure should be
established to ease the creation and testing of statistical learning
models for EC. This development l inked mult iple
organizational EHR database systems and continually gathers
data in a safe, comprehensive, and extendable manner.
MEDomics profiles of EC patients, which are at the heart of
the conceptual methodology, are synthesized data structures
that encompass a specific EC patient’s full clinical service
chronology. The longitudinal EC patient’s profiles are then
utilized for a variety of AI application designs, to communicate
meaningful interventions back into the health system. EC
patient’s cohorts were identified and were used to examine
institution-wide mortality outcomes among EC patients along
with examining the efficiency of targeted therapy and
overall survival.

Cancer genotype determination has garnered increased
attention to take advantage of biomarker-based targeted
therapies (140). Molecular diagnostics have shown promising
results in determining genetic biomarkers that are determined
by molecular assays but molecular assays are time-consuming
and are not available to all patients (140). Developing a link
between genotype and phenotype seems a promising approach.
Recent studies have shown that AI-based histologic diagnosis
links histology, molecular biomarkers, and prognosis in cancer
(141, 142). In a recent development in EC diagnosis, a
multiresolution deep CNN named “Panoptes” was utilized
where pathological images were used to predict the gene
mutations and histological and molecular subtypes in EC
(Figure 4) (143). The model was able to read one slide in
4 min and could predict 18 common gene mutations without
sequencing analysis, providing a cost-effective cancer detection
method. It is anticipated that the multiplex diagnosis and
prognosis of different cancer types could be developed where
a model trained for one cancer type might apply to other
relevant cancers.

Minimal invasive sampling procedures aid molecular studies to
help in detection and prevention of EC. More frequent tests or
more different tests would almost likely assist early detection
approaches (among the high risk or symptomatic); however, the
potential value of screening among the asymptomatic must also be
evaluated. Molecular testing may aid in refining present diagnostic
algorithms among symptomatic women by reducing the
effectiveness and rejection frequency of histological diagnosis
that now restricts the effectiveness of endometrial aspirate–based
diagnosis (144). Various screening techniques are being developed
to aid the early detection of EC; one such developed test is the
PapSEEK test which recognized the majority of women having EC
and one-third of women having ovarian cancer in the NCI-funded
study that employed the Pap test (standard screening test) among
women who had previously been confirmed with cancer (145).
SLN operations are becoming increasingly common in the
management of EC, and the performance of SLN biopsy and the
positive effect of early-stage EC were evaluated in a clinical trial
showing that the procedure was feasible and safe. SLN mapping is
built upon the idea of LNM as a consequence of a systematic
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process. The lymph empties in a precise manner away from the
tumor; hence, when the SLN, or initial node, is negative for
metastasis, the nodes following the SLN would likewise be
negative. While the disease needs to be properly staged to
ensure an accurate prognosis and a selection of suitable
treatment strategies, such techniques would assist patients
to escape the adverse consequences involved in a total
lymphadenectomy. Surgical expertise, commitment to an SLN
methodology, and the utilization of pathological “ultra-staging”
are all important variables in SLNmapping effectiveness (146, 147)
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Although ML techniques can learn from both small and large
datasets, the size and homogeneity of the datasets used for ML or
DL models are equally important for the accuracy of the models.
Most of the AI models are trained on small training datasets
resulting in a compromised accuracy of the model. Generating
larger datasets from real-world samples is a daunting task.
Although challenging, the lab-on-a-chip and organ-on-a-chip
technologies can be explored to simulate the tumor
microenvironment and generate clinically relevant larger
datasets required to develop powerful algorithms and models.
A

B C

FIGURE 3 | The MEDomics approach for EC prediction and prognostication. An AI framework integrating EHRs with continuous learning infrastructure called
“MEDomics” could use multimodal clinical data comprising thousands of cancer patients and millions of data points. The data are automatically extracted and
integrated with analytical workflows. In addition, integration of natural language processing models is utilized for extraction of medical notes and classifying
patients into different risk groups. The system has the potential to develop hypotheses based on the patients’ data rather than laboratory data alone and can
help to choose disease therapy and monitor disease prognosis. (A) Illustration of a patient’s electronic health data records over a normal cancer care timeline.
The MEDomics patterns are then used to construct AI and medical informatics software utilizing an “in silico randomized clinical trial” technique to discover,
retrieve, anticipate, model, and evaluate important clinical endpoints. Management dashboards and other types of communication between health practitioners
and data scientists are eventually used to transmit actionable solutions back into the health system. (B) Flow of medical data for the construction of AI and the
building of MEDomics profiles. The EHRs and the Clarity relational database keep track of medical actions in real time. Clarity generates custom reports, which
are then transmitted to the MEDomics server for deidentification, data structuring, and extraction/calculation of features. Data are eventually collected and
refreshed every day on the MEDomics database installed behind the institutional firewall which is protected for access via a double identification. (C) MEDomics
Lab as a system for medical research. Health records from institutional systems may be fed into a structured dataset, which is then fed into the MEDomics Lab
system. The MEDomics Lab engine combines and processes these data, which is then employed in five separate computing modules: input, extraction,
discovery, learning, and application. As a result, statistical models for precision oncology are developed, which may then be returned to hospital databases to
aid clinical decision-making. QA, quality assurance; BMI, body mass index; HPV, human papillomavirus; PACS, picture archiving and communication system;
OIS, oncology infrastructure system; SQL, Structured Query Language.
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Since clinical data (the major source of cancer research) sharing is
a pressing challenge due to ethical and legal issues, efforts can be
made to develop a secured data sharing system. For instance, a
learning system can be developed where the raw data remains with
the source organization or institution, and a model is shared with
the clinic to preprocess the raw data, and then the processed/
curated data are to be shared with the research center (transfer
learning making a web of information sharing in a protected way).
In this regard, robust AI systems with smart strategies are needed.
It is envisaged that, in near future, AI-based continuous learning
could develop a smart decision-making system where both the
physician and patient could be benefited.
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FIGURE 4 | Working of PANOPTES, a multiresolution deep convolutional neural network (CNN). In this trained model generated through the CNN algorithm, pathological
images were used to predict the gene mutations and histological and molecular subtypes of EC. PANOPTES ML models using multiresolution architecture can classify
histological subtypes of EC, molecular subtypes, and critical mutations (loss or gain of functions) with decent performance based on H&E (hematoxylin and eosin), IHC
(immunohistochemistry), and IF (immunofluorescence) images. Also, some data can be accessed from the input CEL files. Predicated on the input, CNN models identify
subtypes and mutations in EC. Multiresolution CNN models outperform single-resolution CNN models on the visual patterns. CNN models would incorporate human
interpretable tumor characteristics according to feature extraction. Tumor grade identifies the molecular subtype and classifies into high-risk or low-risk cohorts from
endometrioid histology samples to capture characteristics of varied sizes on the H&E, IHC, and IF slides, which is similar to a human operator pathological evaluation. Unlike
traditional CNN architectures, Panoptes’ input is a group of three tiles from the same region on the image slide rather than one tile. CEL file: differential expression profile
generated by Affymetrix DNA microarray-based software analysis.
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