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Abstract

Harm avoidance (HA) is a personality dimension involving the tendency to respond intensely to signals of aversive stimuli.
Many previous neuroimaging studies have associated HA scores with the structural and functional organization of the
amygdala, but none of these studies have evaluated the correlation between HA score and amygdala resting-state
functional connectivity (rsFC). Moreover, the amygdala is not a homogeneous structure, and it has been divided into several
structurally and functionally distinct subregions. Investigating the associations between HA score and properties of
subregions of the amygdala could greatly improve our understanding of HA. In the present study, using a large sample of
291 healthy young adults, we aimed to uncover correlations between HA scores and the rsFCs of each amygdala subregion
and to uncover possible sex-based differences in these correlations. We found that subregions of the amygdala showed
different rsFC patterns, which contributed differently to individual HA scores. More specifically, HA scores were correlated
with rsFCs between the laterobasal amygdala subregion and temporal and occipital cortices related to emotional
information input, between the centromedial subregion and the frontal cortices associated with emotional output control,
and between the superficial subregion and the frontal and temporal areas involved in both functions. Moreover, significant
gender-based differences were uncovered in these correlations. Our findings provide a more detailed model of association
between HA scores and amygdala rsFC, extend our understanding of the connectivity of subregions of the amygdala, and
confirm sex-based differences in HA associations.
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Introduction

Harm avoidance (HA) is a personality dimension derived from

the Tridimensional Personality Questionnaire (TPQ) and the

Temperament and Character Inventory (TCI) and is considered to

be a heritable tendency to respond intensely to signals of aversive

stimuli, which causes the inhibition of behaviors leading to

punishment, novelty or frustration [1,2]. Individuals with high HA

scores are characterized as worrisome, cautious, apprehensive,

pessimistic, shy and easily fatigued [1,2], and they often show high

risks for depression- [3–5] and anxiety-related disorders [6–9].

Many researchers have investigated the potential neural substrates

of HA and have proposed the amygdala as a likely candidate.

The amygdala has been implicated in a wide range of functions,

including social behavior, emotional and reward learning, and in

particular, aversive emotional processing [10–12]. An association

between the architecture of the amygdala and individual HA

scores has long been appreciated. Structurally, HA score is

positively correlated with left-amygdala volume in healthy females

[13]; however, neuroticism scores are negatively correlated with

right-amygdala gray-matter concentration [14]. It should be noted

that the HA and neuroticism are not entirely congruent because

the former reflects a tendency to respond intensely to aversive

stimuli [1,2] while the latter reflects a tendency to experience

negative emotions [15], although both of them are correlated with

each other [16] and are associated with anxiety- and depression-

related disorders [3–9,17]. Functionally, HA score is negatively

correlated with left-amygdala activation in healthy females viewing

negatively valenced baby faces [18], but individuals having high

HA scores demonstrate greater amygdala activation when

maintaining a specific attention set [19]. The amygdala is also

an important node in the corticolimbic circuit, and functional

coupling within this circuit is associated with individual HA scores

[20]. However, no published studies have yet evaluated the

correlation between HA scores and amygdala resting-state

functional connectivity (rsFC). Additionally, the amygdala might

play an important role in mediating the association between high

HA scores and depression/anxiety disorders, as alterations in

amygdala structure and function have been frequently reported in

these disorders [21–30].
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The amygdala is not a homogenous structure but instead

consists of several structurally and functionally heterogeneous

nuclei [10,31–34]. For example, one cytoarchitectonic study has

divided the amygdala into three subregions: the laterobasal (LB),

centromedial (CM) and superficial (SF) regions; this study also

established a probabilistic map of these subregions of the amygdala

[32]. Based on this model, a task-based functional-MRI study

found distinct signal changes in the different amygdala subregions

in response to auditory emotional stimuli [33]; furthermore, a

resting-state functional-MRI study has demonstrated the distinct

rsFC patterns of each of the amygdala subregions [34]. These

studies have contributed to our understanding of the functions of

these distinct subregions. However, it still remains unclear which

amygdala subregion rsFCs are associated with individual HA

scores. Thus, we hoped to shed some light on this question by

analyzing the correlations between HA scores and the distinct

amygdala subregion rsFCs in a large sample of 291 healthy young

adults. We also wished to determine any possible gender-based

differences in these correlations, which has been frequently

reported in HA scores with respect to structural and functional

characteristics of the HA-related brain regions [1,2,13,35–41].

Materials and Methods

Participants
A total of 291 healthy young adults (153 females and 138 males;

mean age 6 SD = 22.762.4 years; range = 18–29 years) were

selected from 324 subjects who participated in an imaging/genetic

study. The other 33 subjects were excluded from the analyses due

to excessive head motion during the fMRI scans. All of the 291

subjects were right-handed [42] native Chinese speakers without

any current or past histories of neurologic or psychiatric illnesses;

no lesions were observed using conventional brain MRI. The

protocol used in this study was approved by the Medical Research

Ethics Committee of Tianjin Medical University, and written

informed consent was obtained from all participants prior to the

experiment.

Behavioral assessments
HA score was assessed using the Chinese version of the TPQ

which has been validated by prior studies [43,44]. This

temperament dimension is characterized by behavioral inhibitions

such as pessimistic worrying in anticipation of future problems,

passive avoidance behaviors such as fear of uncertainty and

shyness of strangers, and rapid fatigability [2]. We also measured

and controlled for subclinical depression as assayed using the Beck

Depression Inventory (BDI) [45] to exclude the effects of

depression on associations between HA scores and amygdala

subregion rsFC.

MRI data acquisition
MR images were acquired using a Signa HDx 3.0 Tesla MR

scanner (General Electric, Milwaukee, WI, USA). Tight but

comfortable foam padding was used to minimize head motion,

and ear plugs were used to reduce scanner noise. Resting-state

fMRI data were obtained using Single-Shot Echo-Planar Imaging

(SS-EPI) with the following parameters: repetition time (TR)/echo

time (TE) = 2000/30 ms; field of view

(FOV) = 240 mm6240 mm; matrix = 64664; flip angle

(FA) = 90u; slice thickness = 4 mm, no gap; 40 transversal slices;

and 180 volumes. During the fMRI scans, all subjects were

instructed to keep their eyes closed, to relax and to move as little as

possible, to think of nothing in particular and not to fall asleep.

Sagittal 3D T1-weighted images were acquired by a brain volume

(BRAVO) sequence (TR/TE = 8.1/3.1 ms, inversion

time = 450 ms, FA = 13u, FOV = 256 mm6256 mm, ma-

trix = 2566256, slice thickness = 1 mm, no gap, and 176 sagittal

slices).

MRI data preprocessing
Functional MRI data were analyzed using the statistical

parametric-mapping software package SPM8 (http://www.fil.

ion.ucl.ac.uk/spm) and the Resting-state fMRI Data Analysis

Toolkit REST (v1.6 by Song et al., http://www.restfmri.net)

implemented in Matlab R2009 (The Math Works Inc., http://

www.mathworks.com). The first 10 volumes of data from each

subject were discarded for signal equilibrium and to correct for

adaptation of the participants to scanning noise. The remaining

170 volumes were first corrected for any time delays between the

acquisition of different slices. Next, head-motion parameters were

estimated, and each volume was realigned to the mean map of all

the volumes to correct for geometric displacements. Thirty-three

of the 324 potential subjects were excluded from further analysis

because they had a maximum displacement in any of the

orthogonal directions (x, y, z) of more than 2 mm, or a maximum

rotation (x, y, z) of more than 2.0u. Then, the data were spatially

normalized to the standard EPI template and resampled at

26262 mm voxels. The normalized data were smoothed with a

6 mm full width at half maximum (FWHM) algorithm. After that,

linear drift was removed and a temporal filter (0.01–0.08 Hz) was

performed to reduce the effect of low-frequency drift and high-

frequency noise. Finally, a multiple-regression method was

performed to remove possible sources of artifacts, including six

estimated motion parameters as well as the average blood oxygen

level-dependent (BOLD) signals in the whole brain, ventricular

and white matter regions.

Seed definition
The amygdala subregions were extracted using Anatomy v1.7

[46,47], which provides a maximum probabilistic map (MPM) of

each amygdala subregion. The MPM is a summary map of the

different regions of the amygdala that aims to attribute each voxel

to the most likely subregion with no less than 40% likelihood of

cytoarchitectonic probability [46]. The MPM has been confirmed

as the best method to defining the amygdala subregions [47] and

has been used in several previous studies [28,48]. Consequently,

three non-overlapping MPMs of the amygdala subregions were

defined: (1) the LB includes the lateral, basolateral, basomedial,

and paralaminar nuclei of the amygdala; (2) the CM consists of the

central and medial nuclei; and (3) the SF includes the anterior

amygdaloid area, the amygdalopyriform transition area, the

amygdaloid-hippocampal area, and the ventral and posterior

cortical nuclei (Figure 1).

Analysis of rsFC
For each participant, the correlation coefficients between the

mean time series of each seed and each voxel of the whole brain

were computed and converted to z-values using Fisher’s r-to-z

transformation to improve the normality. The individual z-scaled

rsFC maps were entered into a random-effect one-sample t-test in

a voxel-wise manner to determine the brain regions that showed

significantly positive or negative correlations to the seed regions.

The significant rsFC maps were corrected for multiple compar-

isons using the Family Wise Error (FWE) method (p,0.05). To

exclude insignificant correlations between HA scores and each

amygdala subregion rsFC, we restricted the correlation analyses to

a mask, which only included brain areas showing significant rsFC

with each amygdala subregion.

HA Correlates with rsFC of Amygdala Subregions
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The relationships between HA scores and amygdala subregion

rsFCs were analyzed using a multiple regression model within the

significant mask of each amygdala subregion. The age and BDI of

the subjects were taken as covariates of no interest to eliminate

their potential influences on the results. A correction for multiple

comparisons was performed using a Monte Carlo simulation. A

threshold of p,0.01 for each voxel was used with a cluster size

.106 voxels (AlphaSim corrected: 5000 simulations;

FWHM = 6 mm; cluster connection radius = 3.3 mm, with gray

matter mask; http://afni.nimh.nih.gov/). Finally, the mean z-

scaled rsFC values of each significant cluster was extracted and a

partial correlation analysis controlling for age and BDI was

performed to test for a relationships between HA scores and the z-

scaled rsFC of each amygdala subregion in male and female

subjects (Bonferroni corrected p,0.05).

Results

Demographic and behavioral data
The demographic and behavioral data of the subjects are shown

in Table 1. A total of 291 young adults (153 females and 138

males) were included in the present study. There were significant

differences (p,0.05, uncorrected) in age, HA scores and BDI

scores between the male and female subjects.

The patterns of rsFCs of the amygdala subregions
The rsFC patterns of the amygdala subregions are shown in

Figure 2. The LB subregion showed positive rsFC bilaterally with

the precentral and postcentral gyri, the superior temporal gyri, the

insula, and the right supplementary motor area. On the other

hand, the LB subregion showed negative rsFC bilaterally with the

precuneus lobes, the superior medial frontal gyri, the middle and

inferior temporal gyri, the cuneus lobes, the calcarine cortices, and

the right angular gyrus. Additionally, the left LB subregion showed

negative rsFC with the bilateral superior and middle frontal gyri.

The CM subregion showed positive rsFC bilaterally with the

precentral and postcentral gyri, the superior temporal gyri, the

insula and supplementary motor areas, and the right supramar-

ginal gyrus. Moreover, the right CM subregion showed positive

Figure 1. The location of each amygdala subregion (blue = LB;
red = CM; and green = SF). A and B show the amygdala subregions of
coronal slices y = 26 and y = 21 in Montreal Neurological Institute
(MNI) standard space, respectively. C and D show the amygdala
subregions of sagittal slices at x = 225 and x = 27 in MNI standard
space, respectively. Abbreviations: CM, centromedial subregion; L, left;
LB, laterobasal subregion; R, right; and SF, superficial subregion.
doi:10.1371/journal.pone.0035925.g001

Table 1. Demographic and behavioral data of the subjects.

Items Total subjects Males Females Gender differences

No. of subjects 291 138 153

Age (years) 22.762.4 (18–29) 22.162.5 (18–29) 23.262.2 (18–29) p,0.05

HA score 14.766.5 (1–32) 13.666.3 (1–31) 15.866.4 (1–32) p,0.05

BDI score 7.967.0 (0–52) 9.268.0 (0–52) 6.765.8 (0–30) p,0.05

Abbreviations: BDI, Beck depression inventory; and HA, harm avoidance.
Data are expressed as the mean 6 the standard deviation.
doi:10.1371/journal.pone.0035925.t001

Figure 2. The patterns of rsFC of each amygdala subregion.
Warm colors denote positive rsFC values while cold colors denote
negative rsFC values. Abbreviations: CM, centromedial subregion; rsFC,
resting-state functional connectivity; L, left; LB, laterobasal subregion; R,
right; and SF, superficial subregion.
doi:10.1371/journal.pone.0035925.g002

HA Correlates with rsFC of Amygdala Subregions
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rsFC with the right middle frontal gyrus and the mid-cingulate

cortex. On the other hand, the CM subregion showed negative

rsFC bilaterally with the superior and middle frontal gyri, the

superior medial frontal gyri, the precuneus lobes, the middle and

inferior temporal gyri, and the right angular gyrus.

The SF subregion showed positive rsFC bilaterally with the

precentral and postcentral gyri, the superior temporal gyri, the

insula, the supplementary motor areas, the supramarginal gyri, the

putamens and the mid-cingulate cortices. Furthermore, the right

SF subregion showed positive rsFC with the right middle frontal

gyrus. On the other hand, the SF subregion showed negative rsFC

bilaterally with the superior and middle frontal gyri, the superior

medial frontal gyri, the middle and inferior temporal gyri, the right

inferior temporal and angular gyri. Additionally, the right SF

subregion showed negative rsFC with the right inferior tempral

gyrus and the left calcarine cortex.

Correlations between HA score and rsFCs of the LB
The brain areas in which rsFC with the LB was correlated with

HA score are shown in Table 2 and Figure 3. None of the positive

LB rsFC values were correlated with HA score; however, several of

the negative LB rsFC values were correlated with HA score.

Specifically, HA scores were positively correlated with rsFCs

between the bilateral LB subregions and the left temporoparietal

junction (TPJ) (BA39), as well as between the left LB and the left

occipital lobe (BA18). However, HA scores were negatively

correlated with rsFC between the right LB and the bilateral

inferior temporal gyri (ITG) (BA20).

Correlations between HA score and rsFCs of the CM
Brain areas in which rsFC with the CM was correlated with HA

score are shown in Table 3, Figure 4 and Figure 5. In the areas

with positive CM rsFCs, the HA scores were positively correlated

with rsFC between the right CM and the right premotor cortex

(BA6). In the areas with negative CM rsFCs, the HA scores were

negatively correlated with rsFCs between the left CM and the

bilateral ventromedial prefrontal cortices (vmPFC) (BA10) as well

as between the right CM and the right frontal pole (BA10).

However, none of the CM rsFC values were positively correlated

with HA score.

Correlations between HA score and rsFCs of the SF
Brain areas in which rsFC with the SF was correlated with HA

score are shown in Table 4, Figure 4 and Figure 6. In the areas

with positive SF rsFC, the HA scores were negatively correlated

with rsFC between the right SF and the right ventral striatum. In

the areas with negative SF rsFC, the HA scores were negatively

correlated with rsFC between the left SF and the bilateral vmPFC

as well as between the right SF and the left ITG and the left

vmPFC. In contrast, the HA scores were positively correlated with

rsFC between the right SF and the left TPJ.

Gender-based differences in correlations between HA
score and amygdala subregion rsFCs

In the present study, we investigated gender-based differences in

the correlations between HA score and amygdala subregion rsFCs

as a number of previous studies have reported gender-based

differences in HA and HA-related neural substrates [1,2,35,36].

Therefore, we performed a partial-correlation analysis (controlling

for age and BDI scores) between HA score and the rsFCs of the

amygdala subregions in male and female subjects (Table 5). As

shown in Table 5, we found the following: (1) correlations between

HA score and LB rsFCs were stronger in females; (2) correlations

between HA score and CM rsFCs were stronger in males; and (3)

no sex-based differences in correlations between HA score and SF

rsFCs. A Bonferroni-corrected threshold of p,0.05 corresponded

Figure 3. Brain areas in which negative rsFC with the LB is
correlated with HA score. Red colors denote positive correlations
while blue colors denote negative correlations. Abbreviations: rsFC,
resting-state functional connectivity; ITG, inferior temporal gyrus; L, left;
LB, laterobasal subregion; OL, occipital lobe; R, right; and TPJ,
temporoparietal junction.
doi:10.1371/journal.pone.0035925.g003

Table 2. Brain areas in which rsFC with the LB is correlated
with HA score.

rsFC BA
Cluster
size x y z z values

Patterns Name

P None

N L.LB and L.TPJ 39 555 236 256 26 4.11

N L.LB and L. OL 18 206 214 274 14 3.41

N R.LB and L. TPJ 39 479 256 254 16 3.96

N R.LB and L. ITG 20 258 254 240 228 24.55

N R.LB and R. ITG 20 373 52 234 226 24.11

Abbreviations: BA, Brodmann Area; rsFC, resting-state functional connectivity;
ITG, inferior temporal gyrus; L, left; LB, laterobasal subregion; N, negative; OL,
occipital lobe; P, positive; R, right; and TPJ, temporoparietal junction.
doi:10.1371/journal.pone.0035925.t002

HA Correlates with rsFC of Amygdala Subregions
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to an uncorrected threshold of p,0.0036 (0.05/14). In male

subjects, individual HA score could be predicted by rsFC values

between the right LB and the right ITG, between the right CM

and the right frontal pole, and between the right CM and the right

premotor cortex. In contrast, in female subjects, individual HA

scores could be predicted by rsFC values between the left LB and

the left TPJ and occipital lobe, between the right LB and the left

ITG, between the left CM and the left vmPFC, and between the

right SF and the right ventral striatum.

Discussion

In the present study, we investigated the contributions of

amygdala subregion rsFCs to individual HA scores in a large

sample of 291 healthy young adults. We found that individual HA

scores could be predicted by the rsFCs between the LB and

temporal and occipital areas, between the CM and the frontal

areas, and between the SF and the frontal and temporal areas,

which confirms the association between HA scores and several

specific amygdala subregion rsFCs. We also found gender-based

differences in these correlations, which is also consistent with

previous reports.

Possible functional implications of correlations between
HA score and rsFC

One should be cautious when interpreting negative rsFC values

derived from resting-state fMRI studies, as it remains an unsettled

debate whether negative rsFC is an artifact of global signal

regression [49,50] or if it in fact reflects dynamic anti-correlated

functional networks [51]. Functional connectivity has the ability to

determine how much of the activity or activation variance in one

region is explained by another region, while the polarity of the

connectivity may be relevant but of secondary importance [20]. A

positive polarity is suggestive of a facilitatory influence while a

negative polarity may indicate a regulatory influence [20]. The

positive correlation between HA score and positive rsFC suggests

that individuals with high HA scores have increased facilitatory

influence between two brain regions, and vice versa for negative

correlations. In contrast, a negative correlation between HA score

and negative rsFC suggests that individuals with high HA scores

have increased regulatory influence between the two brain regions,

and vice versa for positive correlations. The following discussions

will be based on these hypotheses.

Correlations between HA score and LB rsFCs
The LB is the largest of the three amygdala subregions and is

the main nucleus that receives sensory inputs from the visual,

auditory, somatosensory, and olfactory systems [10,31,52]. The

LB is thought to play a pivotal role in assigning emotional value to

sensory stimuli [31] and promoting associative-learning processes

such as fear conditioning through afferents from the cortical and

subcortical regions [12,53]. Activation of the amygdala in response

to auditory emotional stimuli was mainly located in the LB

subregion [33], which also supports the role of this subregion in

receiving inputs from sensory systems.

We found that HA scores were positively correlated with a

negative rsFC between the left LB and the left visual cortex, which

suggests that individuals with high HA scores have decreased

regulatory influence between the brain areas related to emotional

Figure 4. Brain areas in which positive rsFC with the amygdala
subregion is correlated with HA score. Among the positive rsFCs
with the amygdala subregion, only two were correlated with HA scores.
Specifically, HA scores were positively correlated (red colors) with rsFC
between the right CM and the right PMC, but were negatively
correlated (blue colors) with rsFC between the right SF and the right VS.
Abbreviations: CM, centromedial subregion; rsFC, resting-state func-
tional connectivity; L, left; LB, laterobasal subregion; PMC, premotor
cortex; R, right; SF, superficial subregion; and VS, ventral striatum.
doi:10.1371/journal.pone.0035925.g004

Figure 5. Brain areas in which negative rsFC with the CM is
correlated with HA score. Red colors denote positive correlations
while blue colors denote negative correlations. Abbreviations: CM,
centromedial subregion; rsFC, resting-state functional connectivity; FP,
frontal pole; L, left; R, right; and vmPFC, ventromedial prefrontal cortex.
doi:10.1371/journal.pone.0035925.g005

Table 3. Brain areas in which rsFC with the CM is correlated
with HA score.

rsFC BA
Cluster
size x y z z values

Pattern Name

P R.CM and R. PMC 6 417 24 6 56 3.96

N L.CM and L.vmPFC 10 182 214 60 0 23.88

N L.CM and R.vmPFC 10 259 16 60 0 24.27

N R.CM and R.FP 10 108 22 64 8 23.38

Abbreviations: BA, Brodmann Area; CM, centromedial subregion; rsFC, resting-
state functional connectivity; FP, frontal pole; L, left; N, negative; P, positive;
PMC, premotor cortex; R, right; and vmPFC, ventromedial prefrontal cortex.
doi:10.1371/journal.pone.0035925.t003

HA Correlates with rsFC of Amygdala Subregions
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evaluation (LB) and perception (visual cortex). Associations

between HA scores and the visual cortex have also been reported

in a previous resting-state perfusion study [54] and a VBM study

[55]. The TPJ can integrate multisensory information to encode

the subjective feelings of the self [56] and is vital for interpreting

the thoughts, feelings, and mental state of others [57,58]. The

positive correlation between HA score and a negative rsFC

between the LB and TPJ also suggests a reduced regulatory

influence between these two brain areas, which are key structures

in the processing of social cognition [11,59,60]. Although the ITG

has been reported to be part of the ventral visual pathway and is

involved in the processing of language and memory [61–64], the

relationship of the ITG with emotion has also been appreciated

both in healthy subjects [65] as well as in patients with depression

[66,67] or anxiety disorders [68,69]. These findings suggest that

both the LB and ITG are implicated in emotional processing, and

indeed their functional organizations have been previously

correlated with HA scores [70]. The negative correlation between

HA score and negative rsFC between the LB and ITG regions

suggests that individuals with high HA scores have increased

regulatory influence between these two regions, which could cause

a predisposition towards mood disorders.

Correlations between HA score and CM rsFCs
The CM subregion receives inputs from other subregions of the

amygdala, the thalamus, the brain stem and several cortical areas,

and it then sends efferents to various subcortical structures in order

to control the affective-related behavioral responses [53,71]. The

CM is believed to be an important ‘‘output’’ amygdala subregion

and an interface of the amygdala with the motor system, which is

closely related to the expression of innate emotional responses and

associated physiological responses [53,71]. Since the premotor

cortex is associated with planning motor actions [72], our finding

that a positive correlation exists between HA score and a positive

rsFC between the CM and the premotor cortex suggests that CM

activity in individuals with high HA scores has an increased

influence on the motor cortex, which might explain the increased

behavioral responses to aversive stimuli in these subjects.

Figure 6. Brain areas in which negative rsFC with the SF is
correlated with HA score. Red colors denote positive correlations
while blue colors denote negative correlations. Abbreviations: B,
bilateral; rsFC, resting-state functional connectivity; ITG, inferior
temporal gyrus; L, left; R, right; SF, superficial subregion; TPJ,
temporoparietal junction; and vmPFC, ventromedial prefrontal cortex.
doi:10.1371/journal.pone.0035925.g006

Table 4. Brain areas in which rsFC with the SF is correlated
with HA score.

rsFC BA
Cluster
size x y z z values

Pattern Name

P R.SF and R.VS 25 118 22 6 212 23.52

N L.SF and B. vmPFC 10 218 210 66 28 23.79

N R.SF and L.TPJ 39 428 242 266 20 3.61

N R.SF and L.ITG 20 173 248 240 216 23.37

N R.SF and L.vmPFC 10 109 214 66 28 23.82

Abbreviations: BA, Brodmann Area; B, bilateral; rsFC, resting-state functional
connectivity; ITG, inferior temporal gyrus; L, left; R, right; SF, superficial
subregion; TPJ, temporoparietal junction; vmPFC, ventromedial prefrontal
cortex; and VS, ventral striatum.
doi:10.1371/journal.pone.0035925.t004

Table 5. Gender-based differences in correlations between
HA score and amygdala subregion rsFC.

rsFC

Male subjects
(n = 138)

Female subjects
(n = 153)

PCC p PCC p

Positive rsFCs

R.CM and R. PMC 0.378 ,0.001* 0.085 0.302

R.SF and R.VS 20.233 0.006 20.245 0.002*

Negative rsFCs

L.LB and L.TPJ 0.143 0.097 0.269 0.001*

L.LB and L. OL 0.176 0.041 0.267 0.001*

R.LB and L. TPJ 0.108 0.212 0.230 0.005

R.LB and L. ITG 20.176 0.041 20.244 0.003*

R.LB and R. ITG 20.255 0.003* 20.203 0.012

L.CM and L.vmPFC 20.193 0.024 20.240 0.003*

L.CM and R.vmPFC 20.224 0.009 20.211 0.009

R.CM and R.FP 20.362 ,0.001* 20.012 0.886

L.SF and B. vmPFC 20.244 0.004 20.162 0.047

R.SF and L.TPJ 0.175 0.041 0.197 0.015

R.SF and L.ITG 20.168 0.049 20.208 0.010

R.SF and L.vmPFC 20.209 0.015 20.230 0.005

Abbreviations: B, bilateral; CM, centromedial subregion; rsFC, resting-state
functional connectivity; FP, frontal pole; ITG, inferior temporal gyrus; L, left; LB,
laterobasal subregion; OL, occipital lobe; PMC, premotor cortex; PCC, Partial
Correlation Coefficient; R, right; SF, superficial subregion; TPJ, temporoparietal
junction; vmPFC, ventromedial prefrontal cortex; and VS, ventral striatum.
Asterisks (*) denote a significant correlation between HA score and amygdala
subregion rsFC after Bonferroni correction for multiple comparisons.
doi:10.1371/journal.pone.0035925.t005
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A large number of studies have demonstrated a prominent role

for the vmPFC in emotional regulation and social-cognitive

functions [73,74]. The CM subregion of the amygdala can receive

modulatory signals from the vmPFC through the anterior

cingulate cortex [10,20,73,75], which can then affect the

emotional responses and associated physiological responses

mediated by this subregion of the amygdala. The association

between HA score and the vmPFC has also been reported by two

positron-emission tomography studies [41,76]. We found that HA

scores were negatively correlated with a negative rsFC between the

CM subregion and the vmPFC, which is consistent with a previous

study reporting that HA scores can be predicted by the task-state

functional coupling between the amygdala and the vmPFC [20].

Correlations between HA score and SF rsFCs
The SF consists of the anterior amygdala area, the amygdalo-

pyriform transition area, the amygdaloid-hippocampal area and

the ventral and posterior cortical nuclei, and it is one of the less-

studied amygdala subregions. In lower nonprimate animals, the SF

has been functionally linked with intraspecies communication via

olfactory stimuli [77]. However, in human brain, by combining

fMRI techniques with the cytoarchitectonic-probabilistic maps of

the human amygdala subregions, several studies have shown that

the SF subregion is involved in social-emotional information

processing, in particular with facial expressions [48,78]. Similarly

to that seen with the CM, the functional organization of the SF

may partially account for our finding that a correlation exists

between HA scores and the rsFC between the SF and the vmPFC.

Similarly to that seen with the LB, we also found correlations

between the SF and the rsFCs of the SF with the TPJ and ITG,

suggesting these two subregions (i.e., the SF and LB) may share

some common functional organizations; this is consistent with the

comparative architectonic-based classification created by separat-

ing the cortical amygdaloid nucleus (the SF component) from the

CM group and assigning it to the LB group and with the

observation of similar evolution trajectories for these two

subregions in an ascending primate scale [79]. In addition, we

found that HA scores were correlated with rsFC between the right

SF subregion and the right ventral striatum, which are

anatomically connected areas. Indeed, the ventral striatum may

be implemented in tasks involving emotion and motivation

through connections with the amygdala [80]. The negative

correlation between HA score and rsFC between these two areas

suggests that decreases in this rsFC may predispose individuals for

high HA scores. The association between HA score and the

ventral striatum has also been observed in a previous fMRI study

[81].

Sex-based differences in correlations between HA score
and amygdala subregion rsFC

Sex-based differences have been found in HA scores

[1,2,35,36], amygdala activation during emotional tasks [82–87],

glucose metabolism in the amygdala during rest [88], amygdala

rsFCs [89], correlations between HA scores and amygdala volume

[13], metabolism during rest [41], and task-state functional

coupling between the amygdala and prefrontal cortex [20]. In

the present study, we found that females showed stronger

correlations between HA score and LB rsFC, while males had

stronger correlations between HA score and CM rsFC. These

findings suggest that HA score is associated with rsFCs of the

amygdala subregions implicated in emotional input and evaluation

in females but that it is associated with rsFCs of the amygdala

subregions related to emotional output and regulation in males.

Although the mechanisms underlying these sex-based differences

in the associations between HA scores and amygdala rsFCs remain

unclear, they might be partly explained by differences in genetic

variants [20], hormone levels [90,91], or the different responsive

modes to emotional stimuli between males and females [83,86,92].

Limitations
Several limitations of the present study should be considered

when interpreting our results. Firstly, the resolution of a 64664

matrix is quite low for small structures, such as the amygdala

subregions. The selection of the fMRI parameters such as the

imaging matrix is a trade-off process. On the basis of the imaging

technique we are available; a higher matrix such as 1286128 can

inevitably improve the image resolution and show more details of

structures of interest, such as the amygdala subregions. However,

in the single-shot EPI sequence, the increase of the matrix will lead

to severe image distortion, especially in structures (such as the

amygdala) near the skull base. Therefore, we selected an imaging

resolution of a 64664 matrix to study the amygdala subregions as

has been adopted in most of the previous studies on the amygdala

subregions [28,33,34,48]. Secondly, despite partial correlation

controlling for age and BDI can reduce the influences of these two

variables on our correlation analyses between amygdala rsFCs and

HA scores, we cannot absolutely exclude the effects of the

significant group differences in age, BDI, and HA on our partial

correlation analyses. Finally, the standard smoothing procedures

may result in the contamination of one amygdala subregion by the

neighboring subregions and other nearby brain structures. To

clarify the issue, we calculated the rsFCs using unsmoothed fMRI

data (see Supporting Information S1) and found that most of our

current findings were replicated in the new analysis with

unsmoothed fMRI data (see Supporting Information S2, Figures

S1, S2, S3, and S4). This analysis confirms the reliability of our

results using smoothed fMRI data.

Conclusion
In summary, we recruited a large sample of healthy young

adults to investigate the differential contributions of amygdala

subregion rsFCs to individual HA scores. We found that individual

HA scores could be predicted by the rsFC between each of the

amygdala subregions to a number of specific connected brain

regions. These findings not only extend the number of confirmed

associations between HA score and structural and functional

properties of amygdala rsFC, but they also extend these

associations to a subregion-specific level. We also found sex-based

differences in these correlations, which extends our knowledge of

sex-based differences in the correlations between HA score and

amygdala properties to a subregion-specific level.

Supporting Information

Figure S1 Brain areas in which negative rsFC with the LB is

correlated with HA score. Red colors denote positive correlations

while blue colors denote negative correlations. Abbreviations:

rsFC, resting-state functional connectivity; ITG, inferior temporal

gyrus; L, left; LB, laterobasal subregion; OL, occipital lobe; R,

right; and TPJ, temporoparietal junction.

(DOC)

Figure S2 Brain areas in which positive rsFC with the amygdala

subregion is correlated with HA score. Among the positive rsFCs

with the amygdala subregion, only two were correlated with HA

scores. Specifically, HA scores were positively correlated (red

colors) with rsFC between the right CM and the right PMC, but

were negatively correlated (blue colors) with rsFC between the

right SF and the right VS. Abbreviations: CM, centromedial
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subregion; rsFC, resting-state functional connectivity; L, left; LB,

laterobasal subregion; PMC, premotor cortex; R, right; SF,

superficial subregion; and VS, ventral striatum.

(DOC)

Figure S3 Brain areas in which negative rsFC with the CM is

correlated with HA score. Blue colors denote negative correlations.

Abbreviations: CM, centromedial subregion; rsFC, resting-state

functional connectivity; L, left; R, right; and vmPFC, ventromedial

prefrontal cortex.

(DOC)

Figure S4 Brain areas in which negative rsFC with the SF is

correlated with HA score. Blue colors denote negative correlations.

Abbreviations: B, bilateral; rsFC, resting-state functional connec-

tivity; ITG, inferior temporal gyrus; L, left; R, right; SF, superficial

subregion; and vmPFC, ventromedial prefrontal cortex.

(DOC)

Supporting Information S1 Correlation analyses between HA

score and rsFCs of the amygdala subregions using unsmoothed

fMRI data: Background and methods.

(DOC)

Supporting Information S2 Correlation analyses between HA

score and rsFCs of the amygdala subregions using unsmoothed

fMRI data: Results.

(DOC)
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