
RESEARCH ARTICLE Open Access

Olanzapine induced DNA methylation changes
support the dopamine hypothesis of psychosis
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Abstract

Background: The dopamine (DA) hypothesis of schizophrenia proposes the mental illness is caused by excessive
transmission of dopamine in selected brain regions. Multiple lines of evidence, including blockage of dopamine
receptors by antipsychotic drugs that are used to treat schizophrenia, support the hypothesis. However, the
dopamine D2 receptor (DRD2) blockade cannot explain some important aspects of the therapeutic effect of
antipsychotic drugs. In this study, we hypothesized that antipsychotic drugs could affect the transcription of genes
in the DA pathway by altering their epigenetic profile.

Methods: To test this hypothesis, we examined the effect of olanzapine, a commonly used atypical antipsychotic
drug, on the DNA methylation status of genes from DA neurotransmission in the brain and liver of rats. Genomic
DNA isolated from hippocampus, cerebellum, and liver of olanzapine treated (n = 2) and control (n = 2) rats were
analyzed using rat specific methylation arrays.

Results: Our results show that olanzapine causes methylation changes in genes encoding for DA receptors
(dopamine D1 receptor, dopamine D2 receptor and dopamine D5 receptor), a DA transporter (solute carrier family 18
member 2), a DA synthesis (differential display clone 8), and a DA metabolism (catechol-O-methyltransferase). We
assessed a total of 40 genes in the DA pathway and found 19 to be differentially methylated between olanzapine
treated and control rats. Most (17/19) genes showed an increase in methylation, in their promoter regions with in
silico analysis strongly indicating a functional potential to suppress transcription in the brain.

Conclusion: Our results suggest that chronic olanzapine may reduce DA activity by altering gene methylation. It
may also explain the delayed therapeutic effect of antipsychotics, which occurs despite rapid dopamine blockade.
Furthermore, given the common nature of epigenetic variation, this lends insight into the differential therapeutic
response of psychotic patients who display adequate blockage of dopamine receptors.
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Background
The cause of schizophrenia remains unclear, though
much evidence suggests that it may be produced by an
excess transmission of dopamine (DA) in selected
brain regions [1]. The DA hypothesis is supported by a
number of observations. First, there is evidence that
psychosis is associated with a hyper-dopaminergic
state [2,3]. Second, all antipsychotic drugs block dopa-
mine receptors, particularly D2 receptors [4]. Third,

patients with schizophrenia have elevated D2 receptors
producing a behavioral hypersensitivity to dopamine
[4,5]. Furthermore, despite the difficulties of replicat-
ing genome wide association studies and candidate
gene studies in schizophrenia, a number of genes in
the dopamine pathway, including dopamine D1 recep-
tor (DRD1), dopamine D2 receptor (DRD2), dopamine
D5 receptor (DRD5), differential display clone 8 (DDC),
catechol-O-methyltransferase (COMT) and solute car-
rier family 18 member 2 (SLC18A2), which is also a
vesicular monoamine transporter, have been identified
as associated with schizophrenia [6]. These genes have
diverse functions, which include dopamine synthesis
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and release, receptor occupancy, sensitivity of the dopa-
mine receptors, and hyper-response of the receptor-
signalling cascade [1]. Because all antipsychotic drugs
block the D2 receptor, it is widely believed that the D2
blockade is central to the therapeutic efficacy of anti-
psychotic drugs. However, several empirical observations
seem to be at odds with this assumption. First, while D2
blockade occurs within several hours, it takes days and
sometimes weeks for patients to respond to treatment
with antipsychotics [7]. Second, many patients show
limited or no therapeutic response despite marked
blockade of the D2 receptor [8]. Finally, some patients
fail to respond to standard doses of a specific anti-
psychotic drug, which occurs despite adequate D2
blockade, while interestingly the patient will respond
to an equivalent (in terms of D2 blockade) of a second
drug [9,10]. These clinical observations are comple-
mented by imaging studies, which show that anti-
psychotic D2 blockade can only contribute a small
percentage of the variation in antipsychotic effective-
ness [11]. Epigenetic mechanisms, particularly DNA
methylation, which is responsive to environmental fac-
tors [12,13], have the potential to alter the levels of
brain molecules and may contribute to psychotic
symptoms and cognitive deficits in schizophrenia [14].
Indeed, recent reports have identified methylation dif-
ferences in some genes implicated in schizophrenia, as
reviewed by Dempster et al. [15]. We propose that anti-
psychotic drugs affect the transcription of genes in the
DA pathway by altering their epigenetic profile. We
further hypothesize that this alteration contributes to
the therapeutic effect of antipsychotic drugs. In order
to test this hypothesis, we have designed this study to
assess the effect of a therapeutic dose of an anti-
psychotic drug (olanzapine) on DNA methylation in
two neural (hippocampus, cerebellum) and one non-
neural (liver) control tissue in vivo.

Methods
The study used a rat model and genome-wide DNA
methylation following Methylated DNA Immunopre-
cipitation (MeDIP). Adult male Sprague–Dawley rats
of 12 weeks of age (250 - 300 g) were purchased from
Charles River, PQ, Canada. Upon arrival, rats were
separated into individual cages and housed in con-
trolled humidity and temperature on a 12-hour light/
dark cycle (lights on at 7:00 a.m.). The Institutional
Animal Care Committee of the University of Western
Ontario had approved all animal-related procedures used
in this study following the Canadian and National Insti-
tute of Health Guides on animal experimentation. Ani-
mals were weighed and divided into two treatment groups
with comparable means of weight. Their stress-induced
locomotor activity (following a 5 min tail pinch) was

recorded for 30 min using an automated open-field ac-
tivity chamber (San Diego Instruments, San Diego,
CA, USA). A computer that detects the disruption of
photocell beams recorded the number of beam breaks
per five minutes for half an hour as each animal moves,
and the average beam breaks/5 min bins was reported.
The rats then received injections of olanzapine (Zyprexa,
Lilly, IN, USA; 2.5 mg/kg, i.m.; n = 8) or vehicle (phosphate
buffered saline (PBS); n = 8) between 1:30 pm and 3:00 pm
daily for 19 days. On day 20, eighteen hours after the
last olanzapine/vehicle injection, rats were subjected to
stress-induced locomotor activity to assess the therapeutic
efficacy of chronic olanzapine. Twenty-four hours after
they were decapitated without anaesthesia, micro-punches
of brain areas or liver samples were collected and flash
frozen.
Genomic DNA isolated from hippocampus, cerebel-

lum and liver from olanzapine treated (n = 2) and con-
trol (n = 2) rats were analyzed using rat methylation
arrays. The genomic DNA was isolated from olanzapine
treated and saline control samples of hippocampus,
cerebellum, and liver to analyze DNA methylation
using rat methylation arrays. Genomic DNA was iso-
lated from the interphase layer of TRIzol using sodium
citrate, followed by ethanol precipitation and purifica-
tion using the QIAamp® DNA Micro Kit (QIAGEN,
Valencia, CA). DNA was then quantified using a Nano-
Drop ND-1000 spectrophotometer (Thermo Fisher
Scientific Inc., Wilmington, DE) and all samples had
OD260/OD280 nm ratios of 1.8–2.0 and OD260/OD230

nm ratios of 2.0–2.4. The methylated DNA immuno-
precipitation (MeDIP), sample labeling, hybridization,
and processing were performed at Arraystar Inc.
(Rockville, Maryland, USA). Data analysis involved the
comparison of differentially enriched regions between
drug exposed (E) and control (C) rats, the log2-ratio
values were averaged and then used to calculate the M’
value [M’ =Average (log2 MeDIPE/InputE) - Average(log2
MeDIPC/InputC)] for each probe. NimbleScan sliding-
window peak-finding algorithm was run on this data to
find the differential enrichment peaks (DEP). Using an R
script program, a hierarchical clustering analysis was
completed. The probe data matrix was obtained by
using PeakScores from differentially methylated re-
gions selected by DEP analysis. This analysis used a
“PeakScore” ≥2 to define the DEPs, which is equivalent
to the average p-value ≤0.01, for all probes within the
peak. This analysis deals with a total of 40 candidate
genes of the dopaminergic pathway. “Gene List Venn
Diagram” was used to assess the distribution of genes
affected across tissue types [16]. Transcription factor
binding sites of DRD5 that showed increased methyla-
tion in hippocampus, cerebellum and liver were identi-
fied using CTCFBSDB 2.0 [17].
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Results
Stress-induced locomotor activity was significantly de-
creased (p = 0.001) in olanzapine treated rats 21 days
post-stress (32.6 ± 4.4 beam breaks/5 min bins) as com-
pared to that of matched-control (85.6 ± 7.3 beam breaks/
5 min bins) (Table 1). Further, Table 2 shows 19 of the 40
genes that were differentially methylated (p < 0.01) as a
result of olanzapine treatment in the three tissues (hip-
pocampus, cerebellum and liver) studied. The major fea-
tures of these results are four fold. First, the methylation
changes are specific to the promoter regions of the genes.
Second, most changes represent an increase in methylation
as a result of olanzapine treatment. Third, the methylation
changes are tissue (hippocampus, cerebellum, and liver)
specific. Fourth and finally, most changes are specific to
the hippocampus (Figure 1). For example, 15 of the 19
genes that showed significant increase in methylation are
specific to hippocampus of olanzapine treated as compared
to the matched control rats (Table 2). Also, 3 out of 40
genes showed significant increase (DRD5, SLC18A2 and
DDC8) and one (ATP2A2) showed significant decrease in
methylation in the cerebellum of olanzapine treated rats
(Table 2). Furthermore, 5 of the 40 genes were diffe-
rentially methylated in olanzapine treated liver as com-
pared to the matched-controls (Table 2). These included
the DA receptor genes (DRD1, DRD2 and DRD5),
PPP3CA and CAMKK2. Also, one gene, COMT, showed
decreased methylation in olanzapine treated liver samples.
Overall, a number of genes related to DA functioning are
differentially methylated as a consequence of olanzapine
treatment in vivo. They are tissue (hippocampus) specific
with only 2 of the 19 genes affected in hippocampus and
liver (PPP3CA and CAMKK2); with one (DRD5) affected
in all three tissues in the same direction (Figure 1).
Furthermore, DARPP32, ADCY3 (AC3), DA receptor genes
and a DA transporter gene (SLC18A2/VMAT2) were
signified in the DA receptor signalling pathway amongst
genes that showed significant increases in methylation fol-
lowing olanzapine treatment (Figure 2). Also, we assessed
gene-specific sequences that were methylated in the olan-
zapine treated samples. The region of DRD5 that was dif-
ferentially methylated following olanzapine treatment has
the necessary features of a functioning promoter, as illus-
trated by the identified CTCF transcription factor binding
sites (Figure 3).

Discussion
The significant increase in weight gain of olanzapine
treated animals in the present study and in previously
reported studies [18] has suggested that the paradigm
adapted was capable of causing the metabolic disturbances
observed in patients taking chronic olanzapine [19].
Furthermore, the significantly reduced locomotor activity
of olanzapine treated rats indicated the therapeutic
efficacy of the drug administered, which was comparable
to the dosage applied in previous studies [20]. This
argument was further supported by the observed changes
in methylation of DA pathway genes.
Of special interest to this report are the genes involved

in dopamine synthesis, transport, receptor, metabolism,
interaction, and function [6]. The rationale for this focus
stemmed from the fact that although antipsychotics inter-
act with some dopamine receptors (D2), the actual mech-
anism of clinical effect behind antipsychotic efficacy in the
treatment of psychosis is not fully understood. What is
missing from the dopamine hypothesis of psychosis is the
understanding of the underlying molecular mechanism(s)
that may begin to reveal the full spectrum of the antipsy-
chotics effects. Specifically, the results of the present study
suggest an involvement of DNA methylation in genes of
the dopamine pathway as an essential epigenetic mechan-
ism in treating psychosis [21]. Our results showed that
olanzapine causes an increase in DNA methylation in a
significant (~40%) number of genes with an important
role in dopamine neurotransmission. These include genes
involved in the dopamine synthesis, transport, receptor,
and metabolism (Figure 2). Further, the majority of DA
pathway genes affected by olanzapine treatment were
found to be hippocampus-specific, which is viewed as one
of the primary sites for schizophrenia symptoms [21-23].
Also, a number of genes identified in the current study
have been previously implicated in schizophrenia [24-27].
This increase in methylation in the DA pathway candidate
genes is expected to interfere with transcription and sup-
press the functional gene product [28]. We also assessed if
the methylated regions of individual genes have the poten-
tial to interfere with transcription. The results argue that
gene-specific differentially methylated regions (DMRs)
have necessary features of active promoters. All the affected
DA pathway genes were differentially methylated in their
promoter regions and therefore could result in altered gene

Table 1 Locomotor activity (average number of beam breaks/5 minutes ± stderr) of olanzapine treated rats and their
matched-controls during day 0 and 21 as measured baseline (before stress) and post-stress (n = 8 per each group)

Day 0 baseline Day 0 post-stress Day 21 baseline Day 21 post-stress

Control 22.0 ± 2.64 101.9 ± 4.00 17.1 ± 2.47 85.6 ± 7.28

Olanzapine 22.0 ± 2.65 94.7 ± 6.54 16.9 ± 2.67 32.6 ± 4.42

p-values 1 0.452 0.973 0.001

T-test was used to compute the significance of differences between olanzapine treated and control groups.
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expression [29]. For example, the promoter region of the
DRD5 gene is differentially methylated in all three tissues.
This gene has been implicated in cognitive functions that
include working memory [30]. Furthermore, DRD1 and
DRD5 have been reported to have distinct regulatory roles
on synaptic plasticity, spontaneous motor activity, memory
and the information being processed by the hippocampus
[31,32]. Here we show that DRD5, which encodes the D5
subtype DA receptor, and has been previously described as

a susceptibility gene for schizophrenia [33,34], may result
in diminished D5 subtype by increase in methylation fol-
lowing olanzapine treatment. This is expected in all three
tissues studied. It is also known that DRD5 interacts with
DRD2 in the process of augmenting or suppressing cellular
functions [35]. Further, the DRD5 gene region differentially
methylated in response to olanzapine is compatible with
methylation specific interference of transcription, as we
have identified in silico predicted CTCF transcription

Table 2 Candidate genes of the dopamine pathway, showing significantly increased methylation (p < 0.01) following
olanzapine treatment in hippocampus, cerebellum and liver, in a rat model in vivo

Gene name Accession Chr. Strand TSS TTS EH-CH EC-CC EL-CL

Drd5 NM_012768 chr14 - 77769487 77768059 1 1 1

Camkk2 NM_031338 chr12 + 34772493 34938479 1 1

Calm3 NM_012518 chr1 - 77252717 77245608 1

Kcnj2 NM_017296 chr10 + 100574984 100576268 1

Kcnj4 NM_053870 chr7 - 117603827 117601722 1

Cacna1c NM_012517 chr4 - 155517389 154895690 1

Ppp3ca NM_017041 chr2 + 234130175 234409232 1 1

Adcy3 NM_130779 chr6 + 27118324 27202275 1

Plcd1 NM_017035 chr8 - 124052193 124023089 1

Ppp2r2d NM_144746 chr1 + 198640770 198674758 1

Ppp1r1b NM_138521 chr10 + 87121888 87131587 1

Nos1 NM_052799 chr12 - 39869484 39811720 1

Itpr1 NM_001007235 chr4 + 143705359 144030051 1

Ppp1r14b NM_172045 chr1 + 209648656 209650767 1

Crem NM_001110860 chr17 + 62770632 62837670 1

Slc18a2 NM_013031 chr1 + 265789916 265824551 1

Ddc8 NM_001017481 chr10 - 108349394 108336343 1

Drd2 NM_012547 chr8 + 52641159 52707749 1

Drd1a NM_012546 chr17 + 16655925 16658161 1

Chr chromosome, TSS transcription start site, TTS transcription termination site, EH-CH, EC-CC, EL-CL the number of differentially enriched peaks that
showed increased in methylation in Olanzapine treated experimental (E) rats as compared to matched-controls (C) in hippocampus (H), cerebellum (C)
and liver (L), respectively.

Adcy3
Cacna1c
Calm3
Crem
Itpr1
Kcnj2
Kcnj4
Nos1
Plcd1
Ppp1r14b
Ppp1r1b
Ppp2r2d

Genes showing increased 
methylation in hippocampus only

Ddc8
Slc18a2

Genes showing increased methylation 
in cerebellum only

Drd1a
Drd2

Genes showing increased methylation in
liver only

Drd5

Genes showing increased methylation in 
hippocampus, cerebellum and liver

Gene showing increased methylation in 
hippocampus and liver

Camkk2
Ppp3ca

Figure 1 Genes showing increased methylation in hippocampus, cerebellum and liver, following Olanzapine treatment. DRD5 was the
only candidate gene that was found to be affected by Olanzapine treatment in both brain regions and the liver.
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factor binding sites (Figure 3) that warrant further con-
firmation. Similarly, the expression of DRD2 could be reg-
ulated through methylation or demethylation of cytosines
at the “putative” promoter region of DRD2 [36-38]. Thus,
the results included in this report offer a unifying mechan-
ism of DNA methylation, which may represent the molecu-
lar basis for response to olanzapine, in a manner where the
drug affects transcription of candidate genes from the
dopamine pathway in addition to its effect on D2 blockade.
This suggests that alterations to DNA methylation, in par-
ticular, and epigenetic changes, in general, may be used to

develop novel strategies for the treatment of psychosis.
We acknowledge the added value of confirming the
methylation changes in the promoter regions of DA genes
using an additional technique possibly involving a larger
number of rats in our future study. Further, we intend to
explore the expression of mRNA and proteins of relevant
genes that are affected by DNA methylation so as to
investigate the efficacy of olanzapine in treating psychosis
via altering methylation status. Various confounding
factors such as gene-diet/drug interactions could affect
methylation changes [12,39,40]. Therefore, in the present

Presynaptic terminal Postsynaptic terminal

Receptor binding
DRD1L

DRD2L

DRD3
DRD4
DRD5HCL

Norepinephrine

Tyrosine Dopamine

Synthesis
TH
DDCC

Transporter
SLC6A3
SLC6A2

SLC18A1
SLC18A2C

DBH Metabolism
MAOA
MAOB
COMT L

Genes involved in DA pathway with unknown functions
• GRIN3A, PKC (PRKCG), AMP(TMPRSS5), GMP (GMPS), PKG, ATF1, CBP, CAMK4, CALY, PIP2, 

CAMKK2HL, CALM3H, KCNJ2H, KCNJ4H, CACNA1CH, PPP3CAH, ADCY3H, PLCD1H, PPP2R2DH, PPP1R1BH

(DARPP32)H, NOS1H, ITPR1H, PPP1R14BH, CREMH, ATP2A2C

Figure 2 Candidate genes in the dopaminergic pathway (adapted and modified from Yeh et al. Brain and Cognition 2012; 80: 282–
289). Superscripts (H, C and L) represent the genes that showed increased methylation in hippocampus, cerebellum, or liver, respectively. Genes
without a superscript were not affected by olanzapine treatment. Subscript (C) represents the gene that showed reduced methylation
in the cerebellum.

A

B

Figure 3 The genomic location and promoter region of the dopamine D5 receptor gene (DRD5). (A) Chromosomal position of the DRD5
(from http://www.ensembl.org/index.html), which showed significantly increased methylation (p < 0.01) following olanzapine treatment. (B) Sequence of
the promoter region of DRD5, with CTCF transcription factor binding sites highlighted in blue (identified using CTCFBSDB version 2.0 by Bao et al.
Nucleic Acids Research 2008; 36, D83-D87). The frequency of A/C/G/T in the promoter sequence was 0.174/0.308/0.370/0.148, respectively. The CpG
count in the promoter region was 50 out of 250 bp.
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study, proper caution was taken to exclude confounding
factors that could possibly lead to methylation changes.
For example, all experimental animals were kept in a uni-
form environment and were not exposed to other drugs
or environments including diets, which may contribute to
differences in methylation status of the treatment and
control groups. All rats were of the same breed, sex, age
and comparable body weight. They showed similar signifi-
cant effects from olanzapine on weight gain and loco-
motor activity.

Conclusions
The results of the present study suggest that chronic
olanzapine may reduce DA activity in the long-term by
altering gene methylation. Furthermore, olanzapine in-
duced gene methylation may explain the delayed thera-
peutic effect of the drug, which occurs despite the rapid
dopamine blockade and differential therapeutic re-
sponses of psychotic patients showing adequate D2
blockade.
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