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Abstract: Iridoids are glycosides found in plants, having inherent roles in defending them against in-
fection by viruses and microorganisms, and in the rapid repair of damaged areas. The emerging roles
of iridoid glycosides on pharmacological properties have aroused the curiosity of many researchers,
and studies undertaken indicate that iridoid glycosides exert inhibitory effects in numerous cancers.
This review focuses on the roles and the potential mechanism of iridoid glycosides at each stage of
cancer development such as proliferation, epithelial mesenchymal transition (EMT), migration, inva-
sion and angiogenesis. Overall, the reviewed literature indicates that iridoid glycosides inhibit cancer
growth by inducing cell cycle arrest or by regulating apoptosis-related signaling pathways. In addi-
tion, iridoid glycosides suppress the expression and activity of matrix metalloproteinases (MMPs),
resulting in reduced cancer cell migration and invasiveness. The antiangiogenic mechanism of iridoid
glycosides was found to be closely related to the transcriptional regulation of pro-angiogenic factors,
i.e., vascular endothelial growth factors (VEGFs) and cluster of differentiation 31 (CD31). Taken
together, these results indicate the therapeutic potential of iridoid glycosides to alleviate or prevent
rapid cancer progression and metastasis.
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1. Introduction
1.1. Chemical Nature of Iridoid Glycosides

Recent years has seen a global increase in the consumption of plant-derived ingredients
through functional foods, juices or pills, to aid in improving the general health. These
chemical compounds produced from plants are called phytochemicals, and are known
to exert beneficial effects such as antibacterial, anticancer, antioxidant, blood cholesterol
lowering, immune function enhancement, and anti-aging [1–4]. Iridoids are glycosides
found in various plants, and they reportedly bind to glucose [5]. They have the general form
of cyclopentopyran, and a molecular structure related to iridodial (Figure 1A) [6,7]. Iridoids
are structurally classified into iridoid glycosides and non-glycosidic iridoids according to
the presence or absence of intramolecular glycosidic bonds; additionally, iridoid glycosides
can be further subdivided into carbocyclic iridoids and secoiridoids [8]. The cleavage of
the cyclopentane ring leads to secoiridoids, acting as a pharmacologically active ingredient
similar to an iridoid [9]. The basic chemical structure of iridoids in plants (the iridoid ring
scaffold) is biosynthesized in plants by the enzyme iridoid synthase using 8-oxogeranial
as a substrate [8]. This plant-derived enzyme generates the iridoid ring scaffold through
NADPH-dependent reduction and cyclization that occurs through Diels-Alder reaction or
intramolecular Michael addition [8]. Figure 1 shows the chemical structure of iridodial and
iridoid glycosides.
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Figure 1. Chemical structure of iridodial and iridoid glycosides. (A) Iridodial, (B) Amphicoside, (C) Aucubin, (D) Catalpol,
(E) Jatamanvaltrate P, (F) Kutkin, (G) Kutkoside, (H) Oleuropein, (I) Phlomisu, E (J) Picroside I, (K) Valjatrate E, (L) Ver-
minoside and (M) Veronicoside.
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1.2. Biological Activities of Iridoid Glycosides

Iridoid glycosides produced in plants mainly defend against infections by viruses and
microorganisms, and rapidly repair the damaged areas [10]. Additionally, iridoid glyco-
sides are generally regarded as antifeedants against insects because of their deterrent bitter
taste [11]. Surprisingly, iridoid glycosides isolated as active ingredients from traditional
folk medicinal plants exhibit a wide range of pharmacological and physiological outcomes
in the body [12]. Iridoid glycosides derived from various medicinal plants have shown
therapeutic benefits in relation to diseases such as neurological disorders, diabetes mellitus
and cardiovascular disorders, as well as cancers [10,13–15]. Recent studies suggest that
iridoid glycosides may be considered as potential therapeutic targets for arthritis [16,17].
Additionally, one of the iridoid glycosides, aucubin, can protect the liver from poisoning
caused by α-amanitin, and showed a strong preventive effect from CCl4-induced liver
damage [18]. However, despite the iridoid glycosides are demonstrated to exert anticancer
effects in numerous cancer types, the understanding of the role of iridoid glycosides at
each stage of cancer development is still lacking.

The continuous accumulation of genetic mutations in normal cells results in cell
mutations, and the consequent occurrence of cancer. A single cancer cell clone is capable
of proliferating to form a tumor mass. In order to expand the growth area and receive
continuous nutrients, the cancer cell acquires a highly mobile phenotype, forms blood
vessels, and initiates a metastatic cascade [19,20]. Malignant tumor progression depends on
the invasion, metastasis, and the ability to promote the host response to angiogenesis [21].
Understanding the mechanisms by which iridoid glycosides are capable of inhibiting
each process of cancer development will reveal the target molecules of iridoid glycosides,
thereby leading to the appropriate therapeutic use of these compounds.

In this review, we focus on the updated roles of iridoid glycosides at each stage
of cancer development, such as proliferation, epithelial mesenchymal transition (EMT),
migration, invasion and angiogenesis. This review also highlights the therapeutic potentials
of iridoid glycosides for cancer.

2. Effects of Iridoid Glycosides on Cancer Development and Metastasis
2.1. Anti-Proliferative and Apoptotic Effects

In general, cells undergo strictly regulated processes of growth, differentiation, and
programmed cell death (e.g., apoptosis or autophagy), or remain in a state of growth
cessation [22]. However, abnormalities (chromosomal abnormalities, mutations, etc.)
occurring in some genes of a cell result in altered properties of gene products, viz., proteins,
and subsequent abnormalities in cell growth regulation [23]. These genetic mutations
could accumulate for as little as several months or as long as 20–30 years, eventually
mutating into cancer cells and proliferating to form tumors [24,25]. A major feature of
cancer is that a single cells continues to proliferate abnormally and form tumors [20].
The continuous proliferation of cancer cells is the outcome of a deregulated cell cycle
and inhibition of programmed cell death [26]. Abnormalities in signaling pathways that
control cell proliferation and cell survival are essential for tumorigenesis, additionally,
mutations of survival signaling pathways such as insulin-like growth factor (IGF) and
Akt, or overexpression of anti-apoptotic oncoproteins such as the Bcl-2 family genes,
increases cancer cell survival [27,28]. Therefore, manipulating the signal transduction
molecules involved in the proliferation and death of cancer cells can help in the therapeutic
improvement for cancer.

Catalpol is one of the main active ingredients of a traditional Chinese medicinal plant
Rehmannia glutinosa, and exerts a pharmacological effect that mainly inhibits cancer growth
and tumorigenesis [29]. This compound is one of the most studied iridoid glycosides due
to its remarkable pharmacological effects. Gao et al. reported that catalpol significantly
decreases the matrix metalloproteinase (MMP)-2 signaling, and increases the expression
level of microRNA (miR)-200, which regulates proliferation, invasion and metastasis,
thereby decreasing cell proliferation and accelerating apoptosis in the OVCAR-3 human
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ovarian cancer cell line [30]. Another study in breast cancer cell lines reported that catalpol
downregulates MMP-16 expression and upregulates miR-146a expression, resulting in
decreased proliferation of MCF-7 cells [29]. In addition, this compound has demonstrated
anticancer efficacy by inducing apoptosis in the T24 bladder cancer cell line via the phos-
phoinositide 3-kinase (PI3K)/Akt pathway [31]. In two studies using an in vitro colorectal
cancer model, catalpol was found to promote apoptosis and autophagy in colorectal cancer
cells, either via the PI3K-Akt signaling pathway or by directly inhibiting sirtuin 1 (SIRT1)
expression [32,33].

The main active ingredients of olive oil include phenolic constituents. Oleuropein, a
major phenolic compound, is known to exhibit various pharmacological activities [13], and
can be obtained from virgin olive oil before it is chemically removed, since it imparts a
bitter taste to olive oil [34]. To date, several cancer cell lines studied previously revealed
that oleuropein has anti-proliferative activity in blood cancer, lung cancer, cervical cancer,
leukemia, and breast cancer. In the HL60 human promyelocytic cell line, virgin olive
oil phenol at a concentration of 13.5 mg/L is reported to completely block cell prolifer-
ation through accumulation of cells in the G0/G1 phase, and induce apoptosis due to
superoxide generation [35]. Oleuropein-induced anti-proliferative effects have also been
observed in A549 human lung carcinoma cells, as observed by an increase in the number
of cells entering the G1 phase of the cell cycle [36]. HeLa human cervical cancer cells
were arrested at the G2/M phase by oleuropein treatment, and exposure to oleuropein
resulted in increased levels of phosphorylated ATF-2, c-Jun NH2-terminal kinase (JNK),
p53, p21, Bcl-2-associated X protein (Bax) and cytochrome c protein, resulting in apopto-
sis [37]. Interestingly, hydroxytyrosol, one of the ester metabolites of oleuropein, showed
significant inhibition of proliferation via the extracellular signal-regulated kinase (ERK)1/2-
cyclin D1 pathway in MDA-MB-231 human breast adenocarcinoma [38]. The antitumor
properties of hydroxytyrosol were also demonstrated through G2/M cell cycle arrest in
human hepatocellular carcinoma cells, and tumor growth inhibition in a hepatocellular
carcinoma-inoculated orthotopic xenograft model [39]. Although hydroxytyrosol exerted
no statistically significant effect on cell proliferation or apoptosis at the cellular level, it
delayed growth of the HT-29 colorectal tumor xenograft in athymic nude mice [40].

Aucubin is one of the iridoid glycosides commonly found in plants and acts as a
protective compound, as determined by the anti-proliferative effects in two types of cancer
models [41]. Aucubin exhibited anti-leukemic activity in K562 cells, and hydrolyzed au-
cubin also inhibited proliferation of K562 human chronic myeloid leukemia (CML) cells
through cell cycle regulation by inhibiting cells in the sub-G1 phase [42,43]. The hydrolyzed
form inhibits the BCR–ABL phosphorylation and induces apoptosis in CML cells; surpris-
ingly, the authors concluded that hydrolyzed aucubin had a better anti-leukemia effect
than aucubin itself [43]. CML is a myeloproliferative disease mainly caused by BCR–ABL
gene fusion. Suppressing the expression of BCR–ABL protein suggests the possibility that
aucubin may be capable of targeting the underlying cause of CML [43,44]. In addition,
aucubin treatment induced the A549 human non-small cell lung cancer (NSCLC) cell line
to enter the G0/G1 phase, arresting cell cycle progression and inducing apoptosis through
p53 and Fas and Fas ligand (FasL) signaling, thereby suggesting its involvement in the
anti-proliferative activity of lung cancer [45].

Saracoglu et al. evaluated the anticancer effects of various iridoid glycosides iso-
lated from Veronicas (Speedwells) in Hep-2 human epidermoid carcinoma, RD human
rhabdomyosarcoma, L-20B transgenic murine L-cells, and Vero African green monkey
kidney cells [46]. They argued that each iridoid glycoside exhibits cytostatic and apoptotic
activity, depending on the chemical structure and type of cancer cell [46]. Another research
team analyzed the molecular structures of seven iridoid glycosides obtained from the root
of Phlomoides umbrosa Kamelin & Makhm using nuclear magnetic resonance (NMR), and
the effect of these iridoid glycosides was examined on the cell viability of HeLa human
cervical cancer cells, HL-60 human promyelocytic leukemia cells, and MCF-7 breast cancer
cells [47]. Results confirmed that phlomisu E had the strongest cytotoxicity against all three
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cancer cell types, suggesting that there is a structure-activity relationship between iridoid
glycosides and cytotoxicity [47].

The antitumor properties of an iridoid glycoside were also confirmed in animal models
transplanted with breast cancer cells. The mechanism of anti-proliferative effects on MCF-7
and triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-453 and MDA-
MB-468) by Jatamanvaltrate was elucidated at the cellular level by downregulation of cell
cycle-related genes, apoptosis induced by enhancement of cleavage of PARP, and autophagy
induced by increased LC3-II levels [48]. Consistent with these in vitro experimental data,
Jatamanvaltrate further demonstrated antitumor activity due to apoptosis and autophagy
in a subcutaneously inoculated xenograft mouse model of MDA-MB-231 breast cancer
cells [48].

These results indicate that iridoid glycosides may inhibit cancer proliferation by
upregulating the cell cycle arrest genes such as p53 and p21 or by causing accumulation
of cells in the G0/G1 phase. The mechanism by which iridoid glycosides inhibit cancer
cell proliferation also involves downregulation of the PI3K/Akt pathway and the ERK1/2-
cyclin D1 pathway, and the upregulation of Bax and cytochrome c by iridoid glycosides
indicates the possibility of programmed cell death due to apoptosis.

2.2. Inhibitory Effects on Epithelial-Mesenchymal Transition

Cancer cells have unregulated cell proliferation in their early stages, but an evolutionar-
ily conserved developmental program (EMT) is associated with metastasis and peculiarizes
metastatic properties in cancer cells by enhancing the cell mobility, invasiveness and resis-
tance to programmed cell death [49–51]. EMT is known to be the main factor during the
early stage of dissemination in most cancer types [52,53]. Through this morphological or
epigenetic modification process, epithelial cells (which are strongly bound between cells)
are converted to mesenchymal cells (which migrate easily), allowing cancer cells to migrate
and penetrate other tissues [2,54,55]. Reduced expression of cell adhesion molecules such
as epithelial cadherin (E-cadherin) allows cancer cells to act independently of other cells
and tissue components, making it easier for cells to invade and metastasize [20]. When
migrating through the bloodstream or lymphatic vessels to reach other tissues, the cancer
cells undergo mesenchymal-epithelial transition (MET), a reverse process of EMT, wherein
they are converted into epithelial cells that strongly bond with the surrounding cells, creat-
ing a tumor microenvironment favorable for colonization [50,51,56]. Thus, EMT and MET
are reversible processes and can occur repeatedly in any sequence during the progress
of metastasis.

Catalpol exerted an inhibitory effect on EMT in lung cancer, hepatocellular cancer and
osteosarcoma cell lines [57,58]. Transforming growth factor (TGF)-β is known to play a
critical role in overall tumor progression, including EMT, and due to the strong anti-tumoral
effect of TGF-β inhibitor, anticancer drugs containing this inhibitor as the main component
are widely applied clinically [59–61]. Catalpol suppresses TGF-β1-stimulated EMT in
A549 human NSCLC cells through inactivation of the Smad2/3 and nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) signaling pathways [57]. miR-140-5p is
known to regulate the cell proliferation and migration ability in several carcinomas, and
was observed to be reduced after TGF-β1 exposure in Huh7 and HCCLM3 hepatocellular
carcinoma cell lines. However, treatment with catalpol reversed these TGF-β1 effects,
upregulated the epithelial marker E-cadherin, and downregulated the expressions of
mesenchymal markers vimentin and N-cadherin [62–64]. Another study with osteosarcoma
cells revealed the mechanism by which catalpol inhibits cell proliferation and EMT, by
targeting various molecules involved in cancer progression [58]. Catalpol inhibited EMT
progression through downregulation of the rho associated coiled-coil containing protein
kinase 1 (ROCK1) and MMP-2 expression in MG63 and U2OS human osteosarcoma cancer
cell lines, and significantly reduced tumor growth in a dose-dependent manner in a
xenograft model transplanted with MG63 cells [58].
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It was suggested that oleuropein inhibits the EMT process in breast cancer cells
by inducing upregulation of the epithelial marker E-cadherin, and downregulation of
mesenchymal markers MMP-2 and MMP-9. The same study also confirmed that oleuropein
significantly reduces the expression of an EMT-inducer transcription factor zinc finger
E-box binding homeobox 1 (ZEB1) in breast cancer cells [53].

The iridoid glycosides such as catalpol and oleuropein have been shown to induce
changes in these diverse genes related to EMT, which may promote morphological changes
that make cancer cells more migratory. However, since the effect of iridoid glycosides on
EMT has been identified in a small number of iridoid glycosides, it needs to be studied in
more types of glycosides.

2.3. Inhibitory Effects on Cancer Migration and Invasion

Cancer cells that have undergone EMT are accompanied by cytoskeletal changes, and
increased cell individualization and mobility. [65,66]. These cells promote cell elongation
and motility by reorganizing the actin cytoskeleton [67,68]. Lamellipodia present at the
leading edge of the cell and undergo a repetitive contraction-relaxation cycle with the help
of filopodia, allowing the cell to translocate [69,70]. In order for cells to become invasive,
subsequent genetic and morphological modifications are required. Cancer cells promote
degradation of the extracellular matrix (ECM) by expressing genes related to MMPs and
proteolytic activity, and the dynamic actin-rich invadopodia facilitate cell invasion by
degrading the surrounding ECM [71–73]. Through these processes, cancer cells enter
the circulatory system, including the bloodstream or lymphatic vessels, and initiate the
metastatic cascades [21].

In several studies, exposure to catalpol reduced the mobility and migration by reg-
ulating miR expression in hepatocellular carcinoma. Catalpol inhibited the invasion of
hepatocellular carcinoma cells by regulating the miR-22-3p/MTA3 axis; moreover, the
expression of miR-140-5p was also found to be associated with inhibition of the invasion
and migration of hepatocellular carcinoma cells [62,74]. It was further confirmed that
catalpol inhibits the migration of MKN-45 human gastric cancer cells by inhibiting the
expressions of MMP-2, α-smooth muscle actin (α-SMA), and ras homolog gene family
member A (RhoA)-ROCK1 signaling pathways [75]. Furthermore, catalpol showed poten-
tial for anti-invasion by inhibiting the expressions of MMP-2 and MMP-9 in CT26 murine
colorectal carcinoma cells [76].

Other studies have reported the anti-migration activity of oleuropein in different
cancers. In a study on the incidence of skin cancer due to long-term UVB radiation,
oleuropein inhibited the expressions of MMPs (MMP-2, MMP-9, MMP-13) involved in ECM
remodeling and degrading, indicating the inherent potential to inhibit invasiveness [77].
Oleuropein also almost blocked the vertical and radial migration of cells in T-47D human
breast cancer cells and RPMI-7951 human malignant melanoma cells [78].

Picroside I, Kutkoside, and Kutkin isolated from Picrorhiza kurroa, a traditional Chinese
herb, showed anti-invasive activity against MCF-7 breast cancer cells, and this inhibitory
effect was attributed to downregulation of the activity of gelatinases (MMP-2 and MMP-9)
and collagenases (MMP-1 and MMP-13) [79]. Valjatrate E isolated from Valeriana jatamansi
Jones inhibited cancer migration and invasion by inactivating the mitogen-activated protein
kinase (MAPK)/ERK signaling pathway, and decreasing the expression and secretion of
MMPs in human hepatocellular carcinoma HepG2 [80].

These results suggest that iridoid glycosides mainly suppress the expression and ac-
tivity of MMPs, thereby lowering the proteolytic activity for ECM, resulting in significantly
reduced cancer mobility and invasiveness. The blockade of the MAPK/ERK signaling
pathway might increase this migration.

2.4. Anti-Antiangiogenic Effects

Angiogenesis plays an essential role in tumor development and growth, and is re-
quired for invasive tumor growth and metastasis [81]. The purpose and mechanisms of
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angiogenesis in cancer development and metastasis can be explained by two methods. First,
the formation of blood vessels is essential in order for the tumor to continuously receive
nutrients in the host body [81,82]. As the tumor grows, the density of cells at the center
of the tumor increases in proportion to the size of the tumor, but the growth is limited by
receiving nutrients and exchanging gases only through diffusion around the cells without
angiogenesis [83–85]. In other words, avascular tumors may regress due to lack of adequate
blood supply. Secondly, tumors promote angiogenesis to increase the likelihood of metasta-
sis [85]. Angiogenic factors such as vascular endothelial growth factors (VEGFs) produced
in tumor cells stimulate the secretion of enzymes that degrade the basement membrane by
binding to receptors on the surface of surrounding endothelial cells [21,86]. Subsequently,
tiny pores are formed between endothelial cells that form blood vessels, and through these
pores, the endothelial cells grow towards the tumor, eventually forming a new vessel that
connects the tumor and the blood vessels of the host [21]. This mechanism induces the
production of MMPs and facilitates their migration through the ECM [87,88]. Lymphan-
giogenesis by VEGFs (e.g., VEGF-C) is induced by a mechanism similar to angiogenesis,
and the lymphatic system can be a second route for tumor metastasis [89,90]. Therefore,
inhibiting angiogenesis and shrinking the existing tumor blood vessels to delay tumor
development and minimize metastasis, can be a promising anticancer strategy [81,91].

Exposure to catalpol represses tube formation in the human umbilical vein endothelial
cells (HUVECs) cultured in CT26 supernatants, and inhibits aortic ring angiogenesis in rats,
thereby indicating that catalpol exerts anti-angiogenetic properties against colon cancer [76].
In addition, catalpol inhibits the migration and tube formation of HUVECs and suppresses
corneal neovascularization in rats; this mechanism includes regulation in the expressions
of VEGF and an endogenous anti-angiogenic factor, viz., the pigment epithelium-derived
factor (PEDF) [92].

The effects of oleuropein on angiogenesis has been studied in numerous cancer types.
In chronic UVB-induced skin cancer tissues, administration of oleuropein not only sig-
nificantly inhibited the diameter of subcutaneous blood vessels in ultraviolet B (UVB)-
irradiated mice, but also lowered the expressions of VEGF, cluster of differentiation 31
(CD31), and cyclooxygenase-2 (COX-2), which play pivotal roles in angiogenesis [77].
Hydroxytyrosol, a metabolite of oleuropein, also exhibited anti-angiogenic activities in
colorectal cancer and hepatic cancer. Hydroxytyrosol induced functional impairment
of the hypoxia inducible factor-1alpha (HIF-1α)/microsomal prostaglandin-E synthase-
1 (mPGEs-1)/PGE-2/VEGF axis in HT-29 and WiDr human colorectal adenocarcinoma
cells [40]. Additional to the downregulation of VEGF and mPGEs-1 in vivo, the morphology
of blood vessels was also modified with reduced blood perfusion to the tumor, indicat-
ing that hydroxytyrosol downregulates VEGF, MAPK activation and PGE-2 [40]. Taken
together, these results indicate the anti-angiogenic activity of the metabolite in colon cancer.
Hydroxytyrosol also remarkably downregulated the expression of CD31 (a pro-angiogenic
factor) in HepG2- or Huh7-transplanted orthotopic hepatocellular carcinoma [39].

Picroside II, one of the major pharmacological components in Picrorhiza kurroa, is
also reported to suppress tube formation of HUVECs, leading to noticeable inhibition
of angiogenesis in the chorioallantoic membrane of chick embryos [93]. Similarly, β-
hydroxyipolamiide, ipolamiide, and buddlejoside A5 isolated from Stachys ocymastrum and
Premna resinosa were also confirmed to have anti-angiogenic effects, as demonstrated in
zebrafish embryos and chick chorioallantoic membrane assays, supporting the evidence
for the potential of iridoid glycoside to inhibit tumor angiogenesis [94].

Overall, these in vitro and in vivo studies have demonstrated that iridoid glycosides
inhibit angiogenesis by down-regulating the expression of pro-angiogenic factors such
as VEGF and CD31. Thus, iridoid glycosides inhibit tumor angiogenesis, impeding the
continued growth of cancer cells, and may block the pathways that allow metastasis to
distant organs. Table 1 summarizes the inhibitory effects and mechanisms of iridoid
glycosides at each stage of cancer development.
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Table 1. Inhibitory effects and mechanisms of iridoid glycosides at each stage of cancer development.

Stages Iridoid
Glycosides Effective Dosages Key Effects and Inhibitory Mechanisms Types of

Cancer
In Vitro
/In Vivo Ref.

Proliferation

Catalpol

50 and 100 µg/mL • Reduces cell proliferation and accelerates apoptosis by
regulating miR-200 and MMP-2 expressions Ovarian cancer In vitro [30]

50 and 100 µg/mL • Suppresses cell proliferation and facilitates apoptosis
by regulating MMP-16 and miR-146a expressions Breast cancer In vitro [29]

80 and 160 µM • Suppresses cell proliferation and promotes apoptosis
via the PI3K/Akt signaling pathway Bladder cancer In vitro [31]

50 and 100 µg/mL
• Induces apoptosis through upregulation of miR-200,

caspase-3 and -9, and downregulation of PI3K/Akt
signaling

Colorectal
cancer In vitro [33]

30, 40 and 50 µM • Reduces cell proliferation and promotes apoptosis via
the miR-34a/SIRT1 signaling pathway

Colorectal
cancer In vitro [32]

Oleuropein

12.5 and 25 µM
• Suppresses cell proliferation through accumulation of

cells in the G0/G1 phase
• Induces apoptosis by generating superoxide

Blood cancer In vitro [35]

IC50 * = 59.96 µM • Inhibits cell proliferation by increasing the number of
cells entering the G1 phase of the cell cycle Lung cancer In vitro [36]

150 and 200 µM

• Inhibits cell proliferation by arresting the G2/M phase
• Induces apoptosis by increasing pATF-2, JNK, p53,

p21, Bax and cytochrome c expressions, and activating
caspase-3 and -9

Cervical cancer In vitro [37]

Oleuropein
(hydroxytyrosol

**)

100 and 200 µM • Suppresses cell proliferation via the ERK1/2-cyclin D1
signaling pathway Breast cancer In vitro [38]

100, 200, 300 and
400 µM

10 and 20 mg/kg bw
(i.p.)

• Inhibits cell proliferation in vitro and tumor growth
in vivo

Hepatocellular
carcinoma Both [39]

10 mg/kg bw (i.p.) • Delays the growth of HT-29 colorectal tumor xenograft
in athymic nude mice

Colorectal
cancer In vivo [40]

Aucubin

IC50 = 44.7 µM • Inhibits cell proliferation
Chronic

myelogenous
leukemia

In vitro [42]

100, 150 and 200 µM

• Suppresses cell proliferation through accumulation of
cells in the sub-G1 phase, and downregulation of
BCR–ABL and STAT3

• Induces apoptosis by activating caspase-3 and by
suppressing JAK2 and c-Src activation

Chronic
myelogenous

leukemia
In vitro [43]

1, 5, 10 and 20 µM

• Blocks proliferation by upregulating the expressions of
p53 and p21

• Facilitates apoptosis by inducing the activation of the
Fas/FasL signaling

Non-small cell
lung cancer In vitro [45]

Amphicoside
IC50 = 340 µM
(Epidermoid
carcinoma)

• Increases cytotoxic and cytostatic activity
Epidermoid
carcinoma

Rhabdomyosar-
coma

In vitro [46]
Verminoside

IC50 = 128 µM
(Epidermoid
carcinoma)

IC50 = 70 µM
(Rhabdomyosarcoma)

Veronicoside

IC50 = 153.3 µM
(Epidermoid
carcinoma)

IC50 = 355 µM
(Rhabdomyosarcoma)

Phlomisu E

IC50 = 19.3 µM
(Cervical cancer)

IC50 = 8.4 µM
(Leukemia)

IC50 = 15.4 µM (Breast
cancer)

• Increases cytotoxic activity
Cervical cancer

Leukemia
Breast cancer

In vitro [47]

Jatamanvaltrate
P

10, 20, 50 µM
15 mg/kg bw (i.p.)

• Inhibits proliferation by inducing G2/M phase arrest
• Activates autophagy by triggering autophagosome

formation and by increasing LC3-II levels
• Exhibits antitumor effect in xenografts

Breast cancer Both [48]
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Table 1. Cont.

Stages Iridoid
Glycosides Effective Dosages Key Effects and Inhibitory Mechanisms Types of

Cancer
In Vitro
/In Vivo Ref.

EMT
Catalpol

5 and 10 µM
• Inhibits TGF-β1-induced EMT through the

inactivation of Smad2/3 and NF-κB signaling
pathways

Lung cancer In vitro [57]

20, 40 and 80 µM • Inhibits EMT by downregulating RACK1 and MMP-2
expression Osteosarcoma In vitro [58]

50 µM • Inhibits EMT by regulating the expression of
miR-140-5p

Hepatocellular
carcinoma In vitro [62]

Oleuropein 600 µg/mL • Suppresses EMT through downregulation of SIRT1 Breast cancer In vitro [53]

Migration/
Invasion

Catalpol

50 µM • Inhibits invasion by regulating the miR-22-3p/MTA3
axis

Hepatocellular
carcinoma In vitro [74]

50 µM • Inhibits migration and invasion by regulating the
expression of miR-140-5p

Hepatocellular
carcinoma In vitro [62]

20, 40 and 80 µM • Inhibits migration by downregulating the expression
of MMP-2, α-SMA, RhoA-ROCK1 signaling pathways Gastric cancer In vitro [75]

1.25, 2.5 and 5 µM • Suppresses invasion by inhibiting the expressions of
MMP-2 and MMP-9 Colon cancer In vitro [76]

Oleuropein

0.01 and 0.1% • Blocks vertical and radial migration Breast cancer In vitro [78]

25 mg/kg bw (p.o.) • Inhibits migration by downregulating the expressions
of MMP-2, MMP-9, and MMP-13 Skin cancer In vivo [77]

Picroside I 5 µM • Inhibits invasion by downregulating the activity of
gelatinases (MMP-2 and MMP-9) and collagenases
(MMP-1 and MMP-13)

Breast cancer In vitro [79]Kutkoside 5 µM
Kutkin 5 µM

Valjatrate E 3, 6 and 12 µg/mL
• Inhibits migration and invasion by inactivating

MAPK/ERK signaling pathway and by decreasing the
expression and secretion of MMP-2 and MMP-9

Hepatocellular
carcinoma In vitro [80]

Angiogenesis

Catalpol
1.25, 2.5 and 5 µM
7, 14, 28 mg/kg bw

(p.o.)

• Suppresses forming ability of HUVEC
• Exhibits anti-angiogenesis activity against colon cancer Colon cancer Both [76]

Oleuropein 25 mg/kg bw (p.o.)

• Reduces the diameter of subcutaneous blood vessels in
UVB-irradiated mice by downregulating the
expression of MMPs (MMP-2, MMP-9, MMP-13),
VEGF, CD31 and COX-2

Skin cancer In vivo [77]

Oleuropein
(hydroxytyrosol

*)

50 and 100 µM
10 mg/kg bw

• Reduces angiogenesis of endothelial cells via
HIF-1α/mPGEs-1/PGE-2/VEGF axis

• Modifies the morphology of blood vessels and reduces
blood perfusion to tumor by downregulating VEGF,
MAPK and PGE-2 expressions

Colon cancer Both [40]

10 and 20 mg/kg bw
(i.p.)

• Downregulates the expression of CD31 in transplanted
orthotopic hepatocellular carcinoma

Hepatocellular
carcinoma In vivo [39]

* The concentration of 50% cellular cytotoxicity of human tumor cells. ** Ester metabolites of oleuropein.

3. Conclusions and Future Perspectives

This review provides a comprehensive understanding of studies undertaken on the
anticancer effects of different iridoid glycosides present in herbal medicines or functional
foods, and indicates the therapeutic potential for various cancers by understanding the
functional roles and regulatory mechanisms of iridoid glycosides at each stage of cancer
development. Overall, the reviewed literature indicates that iridoid glycosides inhibit can-
cer proliferation by inducing cell cycle arrest or down-regulating the PI3K/Akt pathway
and the ERK1/2-cyclin D1 pathway, leading to programmed cell death or cytotoxicity. In
addition, iridoid glycosides have been shown to induce changes in diverse genes related
to EMT, and they suppress the expression and activity of MMPs, thereby lowering the
proteolytic activity for ECM and resulting in significantly reduced cancer mobility and in-
vasiveness. Moreover, the antiangiogenic mechanism of iridoid glycosides is closely related
to the transcriptional regulation of pro-angiogenic factors such as VEGF and CD31. When
considered together, these results indicate the therapeutic potential of iridoid glycosides to
alleviate or prevent cascades of cancer development and metastasis.
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In addition to iridoid glycosides, iridoid derivatives such as 8-acetylharpagide and
genipin are reported to exhibit anti-proliferative and anti-metastatic effects on cancer [95,96].
In particular, genipin is shown to be a potent inhibitor of the mitochondrial uncoupling
protein 2 (UCP2), and a tumor suppressor in various cancers [95]. Derivatives have a
chemical structure similar to that of the parent structure, but sometimes exhibit more potent
pharmacological and biological activity than the parent compound [43,97–99]. Therefore,
further studies are required to investigate the effects of iridoid derivatives on cancer.

As described in this review, decades of accumulated experimental data connote the
possible therapeutic implications of iridoid glycosides for cancer. However, some questions
remain unanswered:

• How do iridoid glycosides affect the tumor microenvironment?
• Can iridoid glycosides stimulate the immune system to suppress the development of

cancer?
• Can iridoid glycosides inhibit lymphangiogenesis with respect to tumor metastasis?
• Can iridoid glycosides restrict growth and secondary metastasis through tumor dor-

mancy?
• Can iridoid glycosides enhance the curative effect, acting as an adjuvant to existing

anticancer drugs?

With the exception of one clinical approach (catalpol) [100], proof of the therapeutic
effect of most iridoid glycosides is limited to in vitro and in vivo studies. Based on rea-
sonable evidence, research on the possible effective dose for cancer patients will enable
the active use for implementing the chemopreventive and chemotherapeutic effects of
iridoid glycosides.
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