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Of course, cue-outcome associations encoded in OFC are 
important not only for learning but also for guiding behavior. This 
is evident in the critical role OFC plays in experimental settings 
in which normal behavior requires access to specific information 
about the expected outcome, even in the absence of any specific 
requirement for new learning (Mobini et al., 2002; Pickens et al., 
2003a, 2005; Izquierdo et al., 2004b; Winstanley et al., 2004; Ostlund 
and Balleine, 2007; Burke et al., 2008). Particularly relevant in this 
regard is the role of OFC in mediating the normal spontaneous 
decline in Pavlovian conditioned responding caused by reinforcer 
devaluation. Lesions of OFC prevent this normal decline, even 
when it is conducted only at the time of testing, after both the 
cue-outcome association and the taste aversion have been success-
fully acquired. This suggests that OFC plays a critical role in the 
final process whereby outcome expectancies are integrated with 
the new outcome value to guide performance (Schoenbaum and 
Esber, 2010).

In the present study, we used Pavlovian reinforcer devaluation 
to test whether normal aging also affects the use of cue-outcome 
associations to guide behavior. Young and aged rats underwent 
Pavlovian conditioning followed by devaluation of the food rein-
forcer by pairing with illness. Subsequently, responding to the cue 
was assessed in an extinction probe test. While there were minor 
differences in the overall responding (conditioned and baseline) 
in the two groups, both young and aged rats showed compara-
ble declines in conditioned responding after devaluation of the 

Introduction
Adaptive behavior requires the ability to rapidly update patterns 
of responding following shifts in contingencies. Normal aging is 
associated with a decline in this type of cognitive flexibility (Rapp 
and Heindel, 1994; Lamar and Resnick, 2004; Marschner et  al., 
2005; Weiler et al., 2008), and numerous studies in animals have 
demonstrated age-related deficits in flexible decision making proc-
esses thought to depend on prefrontal function (Zyzak et al., 1995; 
Schoenbaum et al., 2002a; Nicolle and Baxter, 2003; Smith et al., 
2004; Joly et al., 2006; Brushfield et al., 2008; LaSarge et al., 2009; 
Mizoguchi et al., 2009, 2010; Simon et al., 2010).

Prominent among these reports are deficits in reversal learn-
ing. Notably, reversal learning deficits are prominently associated 
with orbitofrontal cortex (OFC) dysfunction in humans, non-
human primates, and rats (Rolls et al., 1994; Meunier et al., 1997; 
Schoenbaum et al., 2002b; Chudasama and Robbins, 2003; Fellows 
and Farah, 2003; Izquierdo et al., 2004b; Marschner et al., 2005; Mell 
et al., 2005; Brushfield et al., 2008; Walton et al., 2010). Although the 
precise basis of this learning deficit is unclear, it is likely to reflect 
the OFC’s role in signaling associations between predictive cues and 
expected outcomes (Rolls et al., 1996; O’Doherty et al., 2000, 2002; 
Gottfried et al., 2003; Schoenbaum et al., 2003; Lara et al., 2009). 
Accordingly, aged rats displaying reversal impairments exhibit fewer 
cue-selective neurons in OFC during a cued-odor discrimination 
task, and neurons that were cue-selective are markedly less flexible 
upon reversal (Schoenbaum et al., 2006b).
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predicted outcome. These data suggest that within normal aging, 
the ability to use information about the expected outcome to appro-
priately guide behavior is preserved whereas the use of this infor-
mation to facilitate learning can be impaired. This dissociation has 
significant implications for the underlying circuit abnormalities.

Materials and Methods
Subjects
Male Long-Evans rats in the aged group (n = 17) were acquired 
at approximately 10 months of age (Charles River Laboratories, 
Wilmington, MA, USA) and housed for ∼1  year in preparation 
for the experiment. During this time they were handled weekly. 
Testing began when they were 22–24 months of age. Young con-
trols (n  =  24) were acquired at approximately 3  months of age 
approximately 2 weeks prior to testing (Charles River Laboratories, 
Wilmington, MA, USA). During this time they were handled daily. 
During testing, all rats were individually housed and were given 
ad libitum access to food and water, except during testing. Beginning 
5 days before testing and continuing until testing ended, rats were 
food deprived to 85% of their baseline body weight. For mainte-
nance at 85% during training, a constant food quantity was used for 
each group: roughly 3 pellets (15 g) of chow for young; 4.5–5 pellets 
(22–25 g) for aged. Most importantly, the food restriction between 
aged-matched control groups were not different, and neither were 
their testing body weights. The animals were placed on a 12-h light/
dark cycle and tested only during the light cycle. Rats were tested 
at the University of Maryland, School of Medicine in accordance 
with University of Maryland and NIH guidelines.

Apparatus
Sixteen standard behavior boxes (12′′ × 10′′ × 12′′) in sound atten-
uating cubicles were used for testing (Coulbourn Instruments, 
Allentown, PA, USA). A recessed food cup was placed in the center 
of the right wall approximately 2 cm above the floor. A feeder, 
mounted outside of the behavioral box, contained 45 mg grape 
sucrose pellets (Bio-Serv, Frenchtown, NJ, USA) and was con-
nected to the food cup. The house light was mounted above the 
food cup.

Pavlovian Conditioning
All behavioral training procedures are outlined in Table 1. After 
rats reached 85% of their baseline body weight, they were trained 
to eat from the food cup over 2 days during daily 64 min shaping 
sessions that each included 16 deliveries of three 45  mg pellets 
(Bio-Serv, Frenchtown, NJ, USA). Following food cup shaping, rats 
underwent 10 days of Pavlovian conditioning. Rats received 16 10 s 
presentations of the house light (CS+) followed by delivery of one 
sucrose pellet. Inter-trial intervals varied from 3 to 5 min. The 10-s 
pre-CS period was used to calculate baseline responding.

Reinforcer Devaluation
Following conditioning, rats were matched for performance and 
divided into devalued and non-devalued groups. On days 1 and 
3, non-devalued groups were given 10  min access to a ceramic 
bowl containing 100 sucrose pellets in their home cage. On days 
2 and 4, devalued groups were given 10 min access to a ceramic 
bowl containing 100 sucrose pellets, and immediately following 

this consumption period, they were given an intraperitoneal (i.p.) 
injection of 0.3 M LiCl. Non-devalued rats also received i.p. injec-
tions of 0.3 M LiCl on days 2 and 4 but this was not contiguously 
paired with sucrose pellets.

Probe Test
Following reinforcer devaluation (but prior to the final consump-
tion test), the rats were given a probe test that was exactly the same 
as Pavlovian conditioning outlined above, except that this test was 
run under extinction conditions (i.e., at the end of CS+ presenta-
tion, no pellets were delivered).

Response Measures
We measured percent time spent in the food cup with an infrared 
photo beam positioned at the front of the food cup. For purposes 
of analysis, we examined the last 5 s of the CS+. Previous reports 
have demonstrated that responses are confined to this segment of 
the CS+ (Pickens et al., 2003b).

Data Analysis
Data was collected using Graphic State 2 software from Coulbourn 
Instruments (Allentown, PA, USA). Then, the data was processed 
in Matlab to extract response rates and percent time spent in the 
food cup during CS presentations. Finally, the data was analyzed 
using Statistica, version 9.

Results
Aged (n = 17) and young (n = 24) rats were trained in a Pavlovian 
devaluation task. An experimental timeline is shown in Table 1. 
Training started with 10 days of Pavlovian conditioning. As illus-
trated in Figure 1A, conditioned responding in the last 5 s of the 
CS+ cue increased in both groups across sessions. In addition, aged 
rats showed a general reduction in responding, evident during the 
pre-cue baseline and during the cue. Consistent with this interpre-
tation, a three-factor ANOVA (age × session × cue/pre) revealed 
significant main effects of session (F

9,351
 = 83.62, p < 0.001), age 

(F
1,39

 = 36.89, p < 0.0001) and cue/pre (F
1,39

 = 215.46, p < 0.0001), and 
significant interactions between session and cue/pre (F

9,351
 = 71.74, 

p < 0.0001) and between session and age (F
9,351

 = 2.15, p < 0.05). 
Notably, there was no interaction effect between age, session, and 
cue/pre (F

9,351
 = 1.49, p = 0.15), suggesting that the overall pattern 

of conditioning to the cue (versus pre-cue baseline) did not differ 
between the two groups. Accordingly post hoc testing revealed that 
young rats responded significantly more both during the last 5 s 
of the CS+ and during the 10-s pre-CS baseline period compared 
to aged rats (p < 0.01).

Table 1 | Outline of experimental procedures.

Group	 Light conditioning	 Reinforcer devaluation	 Probe

Young	 HL → pellet	 Devalued: pellets → LiCl	 HL

		  Non-devalued: pellets; LiCl	

Aged	 HL → pellet	 Devalued: pellets → LiCl	 HL

		  Non-devalued: pellets; LiCl	

HL, house light; LiCl, lithium chloride.

Singh et al.	 Normal aging and reinforcer devaluation

Frontiers in Aging Neuroscience	 www.frontiersin.org	 March 2011  | Volume 3  |  Article 4  |  2

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


devaluation had a significant effect on conditioned responding in 
both aged and young rats. A two-factor ANOVA (age × pairing) 
revealed significant main effects of age (F

1,37
 = 8.01, p < 0.01) and 

pairing (F
1,37

  =  11.15, p  <  0.01. Planned comparisons demon-
strated that both aged and young non-devalued rats demonstrated 
more conditioned responding than aged and young devalued rats 
(p < 0.05), and there was no significant interaction between age 
and pairing (F

1,37
 = 0.014, p = 0.91).

Discussion
Here, we tested the hypothesis that aging disrupts the ability to 
update cue-evoked information to guide behavior. We tested this 
hypothesis using a Pavlovian reinforcer devaluation task thought 
to depend on OFC in rats, monkeys, and humans (Gallagher et al., 
1999; Gottfried et al., 2003; Izquierdo et al., 2004a; Machado and 
Bachevalier, 2007). We predicted, based on previous reports of 
OFC dysfunction in aged rats (Schoenbaum et al., 2002a, 2006b; 
Mizoguchi et al., 2010), that aged rats might be incapable of updat-
ing the value of the outcome to guide subsequent behavior.

Both young and aged rats underwent Pavlovian conditioning 
followed by devaluation of the food reinforcer by pairing with ill-
ness. Subsequently, responding to the cue was assessed in an extinc-
tion probe test. Young and aged rats conditioned to the cue and 
developed a conditioned taste aversion. Further, contrary to our 
hypothesis, both young and aged rats spontaneously attenuated 
conditioned responding to the cue as a result of reinforcer devalu-
ation. These data show that normal aging does not affect the ability 
to use expected outcome value to appropriately guide Pavlovian 
responding. This result suggests that deficits in cognitive flexibility 
are dissociable from other known functions of prefrontal – and 
particularly orbitofrontal – cortex.

The current negative results are notable in light of prior 
reports by us and others that some aging disrupts reversal per-
formance likely to depend on OFC (Schoenbaum et al., 2002a; 
Joly et al., 2006; Mizoguchi et al., 2010). In our own hands, these 
reversal deficits were observed in a significant proportion of a 
population of male Long-Evans rats at the same age as those in 
the current study (Schoenbaum et al., 2002a). This reversal deficit 
was orthogonal to declines in hippocampal function, assessed in 
the same rats in a well-established water maze task (Schoenbaum 
et al., 2002a), and later work showed that reversal deficits were 
associated with abnormally sparse and rigid representations of 
the cue-outcome associations in the OFC (Schoenbaum et al., 
2006a). Specifically, reversal-impaired aged rats had fewer cue-
selective neurons in the task, and the remaining cue-selective 
neurons were markedly less flexible than neurons of young rats. 
Furthermore, OFC neurons identified as outcome-expectant 
(defined by differential firing on positive and negative trials 
during the delay after a response but prior to outcome delivery; 
Schoenbaum et al., 1998, 2006b), were significantly less labile 
within the aged-impaired rats. Thus, outcome-expectant neurons 
in aged rats did not become selective for the appropriate odor cue 
after reversal learning. Based on these results, we expected to find 
that aged rats would also be impaired at using these cue-outcome 
associations to appropriately guide behavior in the Pavlovian 
reinforcer devaluation task used in the current study. However 
the results clearly show this is not the case.

Following Pavlovian conditioning, young and aged rats were 
performance matched and divided into devalued and non-devalued 
groups. Rats then underwent reinforcer devaluation, which took 
place in the rats’ home cage. As illustrated in Figure 1B, pairing of 
the food with illness resulted in a decline in food consumption in 
both groups. A three-factor ANOVA (age × trial × pairing) con-
firmed this impression, revealing a significant main effect of trial 
(F2,74

 = 66.36, p < 0.0001), age (F
1,37

 = 6.35, p < 0.05), and pairing 
(F

1,37
 = 131.37, p < 0.0001) and a significant trial by pairing inter-

action (F
2,74

 = 95.17, p <  0.0001). Post hoc testing revealed that, 
on average, aged rats ate fewer pellets than young rats (p < 0.05); 
however, paired rats in each group ate significantly fewer pellets 
than unpaired rats (p < 0.001).

After reinforcer devaluation (and prior to the final consump-
tion test, which occurred after completion of all testing), all rats 
underwent a probe test in which they were exposed to the CS+ again 
under extinction conditions. As illustrated in Figure 1C, reinforcer 
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Figure 1 | Comparison of performance of young and aged rats across 
Pavlovian conditioning (A), reinforcer devaluation (B), and conditioned 
responding after devaluation (C). Data presented are the mean and SE.
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deficits (LaSarge et al., 2007). This is not the case in Long-Evans rats 
in our serial odor discrimination task; in this setting aged Long-
Evans rats show normal discrimination performance combined 
with reversal impairments (Schoenbaum et  al., 2002a), and the 
reversal deficits are associated with changes in encoding in OFC 
and dissociable from hippocampal-dependent deficits in spatial 
learning (Schoenbaum et al., 2002a, 2006a). Further, similar age 
Long-Evans rats also show deficits in delayed-non-matching to 
sample in a task known to be sensitive to OFC damage (Otto and 
Eichenbaum, 1992; Zyzak et al., 1995). Thus Long-Evans would 
seem to be an excellent model for identifying general age-related 
decline in OFC-dependent function.

A fourth possible explanation is that reversal learning and 
devaluation are mediated by dissociable neural networks or even 
distinct regions within OFC, and that networks mediating reversal 
learning are impaired while those mediating devaluation are not. 
This would support accounts in primates suggesting that these 
two functions can be dissociated by lesions within different parts 
of the OFC (Kazama and Bachevalier, 2009). Again we view this 
as unlikely, at least in the rat, since rat OFC has not shown this 
type of heterogeneity at the regional level (i.e., the lesions causing 
devaluation and reversal deficits appear the same) and available 
evidence suggests that the type of encoding that mediates the two 
processes – and therefore the specific neural ensembles – are the 
same (Schoenbaum et al., 2009).

A fifth possible explanation is that the reversal deficit previously 
reported as reflecting dysfunction in OFC actually does not reflect 
localized dysfunction in the OFC itself – or at least reflects the loss 
of function across a much wider circuit than just OFC, a circuit 
which differs from that mediating devaluation effects. We have 
recently proposed that the OFC contributes to reversal learning 
by signaling outcome information acquired during initial learn-
ing to downstream areas to mediate normal error-signaling and 
updating of these associative representations (Schoenbaum et al., 
2009). Accordingly reversal learning in normal rats is facilitated by 
slower recoding of ensembles in OFC (Stalnaker et al., 2006). This 
suggests that OFC facilitates reversal learning by signaling the old 
rather than the new information.

Clearly the network involved in this learning process, which likely 
involves midbrain dopamine error-signaling neurons (Calaminus 
and Hauber, 2008; Takahashi et al., 2009), must be substantially 
different from the one by which information about expected out-
comes is used prospectively to influence ongoing decisions. This 
prospective network presumably depends on direct connections 
with other prefrontal and perhaps subcortical areas. The current 
results suggest that the functions of this prospective network may 
be largely intact even while learning related functions are disrupted.

This dissociation might occur if the network mediating learning 
was especially sensitive to OFC dysfunction and to the robust-
ness of the cue-outcome or other representations encoded there. 
Alternatively, it is possible that the dissociation in the functions 
of these two networks reflects the fact that the primary deficit is 
not in OFC itself but rather lies elsewhere in some part of the 
network that is uniquely required for learning. An obvious can-
didate would be the midbrain dopamine system, which has been 
shown to signal critical error signals required for associative learn-
ing (Hollerman and Schultz, 1998; Waelti et al., 2001; D’Ardenne 

There are a number of possible explanations for this apparent 
dissociation. One possible explanation is simply that our sample 
size and approach was not powerful enough to reveal the deficit 
we expected. In particular, a between subjects design is not optimal 
for revealing an effect on the performance of individual subjects. It 
is possible that a multiple-outcome within-subjects design would 
reveal deficits in some individual rats not evident here. We view 
this as unlikely given the robust overall response, but it cannot be 
excluded. Additionally, we did not characterize these particular 
rats on the reversal learning task used in the prior studies, thus it is 
possible that our population did not include reversal-impaired rats. 
Again we view this as unlikely, given our prior experience with the 
same age Long-Evans rats, which exhibited robust reversal impair-
ments (and aberrant encoding in OFC) in two prior experiments 
with similar or smaller population sizes. However, it is not possible 
to fully rule out this explanation.

A second possible explanation is that the intact performance of 
the aged rats reflects an artifact due to differences in initial weights 
of the age groups. Aged rats were significantly larger at the time 
of testing (aged rats 760.2 g; young rats 270.5 g). Such radical 
differences in weight might have led to much higher motivation 
for the food in the aged rats after food restriction. However both 
groups were maintained at 85% of their free feeding weight, and 
the difference in food required to maintain this weight was neg-
ligible (3 pellets for young versus 4.5–5 pellets for aged). Further 
both groups showed similar (and quite robust) development of 
a conditioned taste aversion across trials. As a result it seems 
unlikely that the aged rats showed normal effects of devalua-
tion on conditioned responding due to a higher motivation for 
the food. Notably the weight difference also yielded a significant 
difference in the volume of LiCl injection between the aged and 
young rats (1.37 ml for young versus 3.85 for aged), although the 
dose was the same for all rats (0.3 M LiCl). High volume could 
have induced acute pain in the aged rats, perhaps allowing neural 
circuits to support devaluation that were not engaged in young 
rats. If these circuits do not include OFC, this would produce the 
current pattern of result. However we did not observe evidence of 
overt pain or discomfort in the reaction of aged rats to the larger 
injections; both groups showed signs consistent with nausea. And 
the volume of LiCl infusion was uncorrelated with measures of 
devaluation in either age group (i.e., change in pellets consumed, 
total number of pellets consumed, or CS-evoked responding dur-
ing probe testing).

A third possible explanation is that the normal response to 
devaluation here is a result of the strain of rat used. Militating 
against this criticism is the robust effects that any significant dam-
age to OFC has on devaluation in this particular devaluation task 
(Gallagher et al., 1999; Pickens et al., 2003b, 2005). Additionally 
although effects of aging sometimes differ from what is observed 
in Long-Evans rats used here, the Long-Evans rats are arguably 
the most likely to show OFC dysfunction based on the literature. 
For example although Fischer 344 rats exhibit odor discrimination 
deficits (LaSarge et al., 2007), it is not clear that the deficits in odor 
discrimination learning necessarily reflect OFC dysfunction, given 
that the deficits involved simultaneously presented odors, which 
may require hippocampal function (Eichenbaum et  al., 1988). 
Accordingly these learning deficits correlated with spatial learning 
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