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ABSTRACT Characterizing genetic interactions is crucial to understanding cellular and organismal
response to gene-level perturbations. Such knowledge can inform the selection of candidate disease
therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-
consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would
substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend
to share common genetic interaction partners, we evaluate a computational approach to predict genetic
interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging
knowledge of functional relationships between genes, we cross-validate predictions on known genetic
interactions and observe high predictive power of multiple classes of genetic interactions in all three
organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be
directly experimentally tested. A web application is provided for users to query genes for predicted novel
genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found
that novel genetic interactions are predictable even when knowledge of currently known interactions
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is minimal.

Determining the genetic interactions in an organism provides a basis
for understanding how the role of a gene is influenced by the action of
any other gene. By definition, two or more genes interact when
combining variants of each gene produces a significantly pronounced
phenotype when compared to the phenotypes of individual variants
(Mani et al. 2008; Baryshnikova et al. 2013). The applications of
exploiting such interactions extend to drug target discovery. Strat-
egies such as targeting genes that interact with cancer-specific mu-
tations have been proposed and reviewed extensively (Ashworth
et al. 2011; Fece de la Cruz et al. 2015) and have led to clinical trials
(Fong et al. 2009). Because experimental determination of genetic
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interactions involves examining all possible pairs from a group of
genes, practical difficulties arise when a comprehensive interaction
map of an entire organism is desired. Multicellular organisms pre-
sent the challenge of various differentiated cell types, each having
potentially differing genetic interactions. Moreover, there are dif-
ferent kinds of genetic interactions, ranging from those based on
growth effects to other phenotypic effects. There exists a need to
either reduce the search space for testing genetic interactions or to
reliably predict them. Here, we evaluate a computational approach
to predict and validate different types genetic interactions across
multiple organisms.

Previous studies to predict genetic interactions leveraged existing
sources of biological information. Integration of biological features
in yeast (i.e., gene coexpression, protein interaction and function)
and their associated network topological properties guided the
training of probabilistic decision trees to predict synthetic sick or
lethal (SSL) interactions (Wong et al. 2004). In a similar vein, an
ensemble classifier was trained on a set of 152 genetic interaction-
independent features to predict SSL in yeast (Pandey et al. 2010).
Compiling multiple biological features has also been extended to
more than one organism. By considering the orthologous gene
pairs among yeast, fly, and worm, features such as functional an-
notation were used to train a logistic regression model to predict a
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genome-wide map of genetic interactions (Zhong and Sternberg 2006).
Alternatively, studies have also explored network-based approaches for
genetic interaction prediction. Novel SSL interactions were predicted by
way of a diffusion kernel on a network of known SSL gene pairs (Qi
et al. 2008). Interrogating functional gene networks that were con-
structed from integration of biological data from literature have proven
useful in predicting modifier genes in yeast and worm (Lee et al. 2010).
Many of these approaches have focused on a single genetic interaction
type in a single organism.

Here, we examine an algorithm to predict multiple types of
genetic interactions across diverse organisms based on the hypoth-
esis that genes strongly participating in shared functions also share
common genetic interaction partners. Our approach relies on a
functional gene network for a given organism and knowledge of
known genetic interactions of a particular type. We tested our
approach on three organisms, human (Homo sapiens), fly (Dro-
sophila melanogaster), and yeast (Saccharomyces cerevisiae), and
found predictability across different types of genetic interactions.
We also investigated how some interactions are enriched in yeast
and human gene modules, specifically protein complexes, and the
degree to which genetic interactions need to be experimentally
determined before enrichment can be found.

MATERIALS AND METHODS

For various classes of genetic interactions in human, fly, and yeast, a
list of genes and each of their known genetic interaction partners
were assembled. A gene and its known interaction partners are
collectively referred to as a “seed set.” Seed sets with only a single
interacting gene pair were filtered out. Receiver operating charac-
teristic (ROC) analysis was performed to quantify whether the
interaction partners of any given gene are clustered in the organ-
ism’s functional gene network. Specifically, for every group of in-
teraction partners of a gene, a score vector consists of entries that
are sums of functional network edge weights between each gene in
the network to the interaction partners. Because there are no self-
edges in the network, leave-one-out cross-validation is carried out
on the known interaction partners. An accompanying label vector
indicates whether each gene in the network is indeed an interac-
tion partner. The two vectors yield an ROC curve and the corre-
sponding area under the curve (AUC). A seed set’s AUC is the
measure of how tightly connected the interaction partners are in
the functional network, and therefore how predictive the seed set is
for novel interactions (Lee et al. 2010). None of the known genetic
interactions used for prediction were contained in the functional
gene network. There were no fly or human genetic interactions
incorporated into their respective functional gene networks. The
yeast functional network did not include any genetic interactions
discovered after 2006; every interacting gene pair before that year
in BioGRID was excluded.

Enrichment of genetic interactions within yeast and human
protein complexes was calculated with a binomial model defined as
PX=k) = (Z)pk(l—p)"_k7 where the background probability,
P> equals the proportion of all possible gene pairs that are genet-
ically interacting. The number of trials, n, is the number of possible
gene pairs in the complex, and k equals the number of interacting
pairs in the protein complex.

Statistical analysis
If k is the number of genetic interactions within a protein complex, then
the corresponding p-value is P(X = k), according to a binomial model
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Figure 1 Genetic interaction prediction. Dashed edges indicate
known genetic interactions. Solid edges connect genes that partic-
ipate in the same biological process, with log likelihood scores (LLS)
as edge weights reflecting the degree of confidence in the genes’
shared functionality. Genes A, C-E are genetic interaction partners
of gene X and members of a functional net cluster; then the remain-
ing cluster member, gene B, is a predicted interaction partner of
gene X as well. Candidate clusters are evaluated by first assigning
scores to each gene in the network by summing the edge weights, as
shown in the first row of the matrix. LLS4 4 denotes the LLS between
genes g and A. The second row is populated with binary labels in-
dicating whether the gene is a known interaction partner of X. In this
fashion, an ROC curve is constructed to yield an AUC.

previously described, with control of FDR at 5% using the Benjamini-
Hochberg procedure (Benjamini and Hochberg 1995). Seed sets
with AUC = 0.9 were considered highly predictive of novel genetic
interactions.
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Figure 2 Predictive functional net clusters yield novel phenotypic enhancing and suppressing human gene pairs. (A) Each horizontal bar
represents the set of known genetic interaction partners of a specific human gene; each of these sets is referred to as a “seed set.” High AUC
scores indicate that the interaction partners participate together in a cluster in HumanNet, the human functional gene network. Therefore, other
members of the cluster are predicted as novel interaction partners. (B) Shown are two examples of well-defined HumanNet clusters that are highly
predictive for phenotypic enhancement (left) and suppression (right), with the known interactions from the seed set denoted by the boxed genes

and dashed edges.

Data availability

All geneticinteractions were downloaded from version 3.4.130 of
BioGRID (Stark et al. 2006). Organism-specific functional gene
networks were downloaded for human (Lee et al. 2011), fly
(Shin et al. 2015), and yeast (Lee et al. 2007). Previous studies
served as sources of protein complexes for yeast and human
(Hart et al. 2007; Ruepp et al. 2010). Python code using the
Matplotlib (Hunter et al. 2007), scikit-learn (Pedregosa et al.
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2011), and mygene (Wu et al. 2012) libraries is available at https://
bitbucket.org/youngjh/genetic_interact. All network visualizations
were produced in Cytoscape (Shannon et al. 2003). A supplementary
web page at http://marcottelab.org/Genetic_Interact allows users to
query a gene of interest. If the gene has known genetic interaction
partners that are predictive, then the functional network cluster is
displayed. Raw data files listing the seed sets with AUC = 0.7 are also
available.
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Figure 3 FlyNet predictability for phenotypic enhancing and suppressing genetic interactions. (A) Each horizontal bar represents a single fly gene
that is known to interact with a number of other genes. (B) Predictive seed gene sets are shown for phenotypic enhancement (left) and suppression

(right).

RESULTS

We sought to determine whether clusters of functionally related genes, for
example, genes A-E in Figure 1, are predictive of genetic interactions. In
this example, genes A and C-E are known to share genetic interactions with
gene X, and our hypothesis would suggest gene B as a novel interaction
partner of X. Our method identifies predictive clusters by leave-one-out
cross-validation and ROC analysis; when applied to the network in Figure
1, each of genes A and C-E are individually withheld as known interaction
partners one at a time, and predicted back with high recall. Subsequently,
gene B is a novel high-confidence predicted interaction partner of X. The
approach described here was evaluated for several classes of phenotypic
and growth-based genetic interactions in human, fly, and yeast.
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The human functional gene network is predictive for
phenotypic genetic interactions

As shown in Figure 2A, our method demonstrated high performance in
predicting phenotypic enhancing and suppressing human gene pairs.
In these interactions, a double mutant has an enhanced or suppressed
phenotype (other than growth) in comparison to either of the single
mutants. The plots for phenotypic enhancement and suppression in
Figure 2A display the performance of seed sets, each of which are
defined as a group of known phenotypic enhancing or suppressing
partners of a particular gene. There are 57 phenotypic enhancement
seed sets, of which 30 have an AUC = 0.9. Similarly, 36 of 66 pheno-
typic suppression seed sets have an AUC = 0.9. The AUC is the area
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Table 1 Predictive power of functional networks across

different genetic interactions

H. sapiens  D. melanogaster S. cerevisiae
Dosage growth Not tested Not tested 176/488
defect
Dosage lethality 2/3 Not tested 116/201
Dosage rescue 5/13 Not tested 203/638
Phenotypic 30/57 322/449 287/1175
enhancement
Phenotypic 36/66 398/518 223/1088
suppression
Synthetic growth 4/37 Not tested 576/2436
defect
Synthetic rescue 2/3 5/6 218/972
Synthetic lethality  Not tested Not tested 221/1469
Negative genetic ~ Not tested Not tested 65/4352
Positive genetic Not tested Not tested 55/2826

For each fraction, the numerator indicates the number of seed sets with AUC =
0.9 and the denominator equals the total number of seed sets tested. Definitions
of each genetic interaction type are listed in Table S1.

under the ROC curve that measures how well the known interaction
partners rank in our leave-one-out cross-validation scheme. Those that
are not predictive are the ones with an AUC = 0.5, indicating that their
predictability is no better than random. For the most part, seed sets are
either at least moderately predictive, or not at all. The sharp drop in
AUC t0 0.5 in Figure 2A does not appear to correspond with genes that
simply have no edges above the background in the functional network.
It does not appear that all random AUCs are the result of a small set
size, as seed set sizes over two also produce random AUCs. As shown in
Supplemental Material, Figure S1, low incident edge weight does not
correlate with low AUC.

Shown in Figure 2B are illustrative seed sets with high predictability
that form well-defined clusters in the human functional gene network,
HumanNet. For clarity, only functional network edges with log likeli-
hood scores (LLS) above 3.0 are shown. Furthermore, HumanNet genes
are shown only if they connect to at least two of the known genetic
interaction partners. The seed set consisting of the SNW domain con-
taining one gene (SNW1) that phenotypically enhances members of the
SMAD family and nuclear receptor coactivators yielded an AUC of
0.91. The prediction is that SNW1I also phenotypically enhances with
other members of the SMAD family along with members of the fork-
head box. In the phenotypic suppression case, we find that known
phenotypic suppressors of caspase 2 are tightly functionally linked with
members of the BCL2-like family, among other genes. With a resulting
AUC of 0.90, these BCL2-like genes are expected to participate in
phenotypic suppression with caspase 2.

Fly phenotypic enhancement and suppression
interactions are predicted from functional net clusters
Similar to the human case, the fly functional network FlyNet is partic-
ularly predictive of phenotypic enhancement and suppression, as shown
in Figure 3. A larger proportion of the seed sets are predictive than in the
human case. For phenotypic enhancement, 322 out of 449 seed sets had
AUC = 0.9 and 398 phenotypic suppression seed sets (out of 518) met
the same threshold. Figure 3B shows a well-defined gene cluster (AUC =
0.94) containing phenotypic enhancement interaction partners of seven
up. From this cluster, genes involved in the sevenless signaling and the
Drosophila epidermal growth factor receptor signal transduction path-
ways achieved high recall, and neighbor genes also involved in the same
signaling pathways are expected to phenotypically enhance seven up.

-=.G3:Genes| Genomes | Genetics

Volume 7 February 2017 |

Yeast Negative Genetic
10 @ ‘ ..... @ - @ oceeeennen . S———

OB o B P R BT

0.4}

Proportion of seed sets meeting AUC cutoff

AUC cutoff

Yeast Positive Genetic
1.0 @ @ o @

08}

0.6}

(1 | SRS, TRERT T R

Proportion of seed sets meeting AUC cutoff

: o
00 L il Il Il .
0.0 0.2 0.4 0.6 0.8 1.0

AUC cutoff

Figure 4 Performance in unbiased yeast screens as a function of AUC
cutoff. For both negative and positive genetic interactions in S. cere-
visiae, the proportion of seed gene sets exceeding a set AUC thresh-
old ranging from 0.1 to 0.9 is shown. Nonrandom performance is
observed and increases as the AUC threshold is relaxed.

Turning to phenotypic suppression, several Enhancer of split genes are
tightly clustered (AUC = 0.98) with known phenotypic suppressors of
hairy that include the achaete-scute complex, thereby implicating them
as additional, novel phenotypic suppressors of hairy.

High-confidence predictability is found in human, fly,
and yeast
The full range of various genetic interaction classes that were analyzed
from BioGRID are listed in Table 1. Genetic interactions were generally
based on phenotypic effects or growth and lethality measurements. Each
entry in Table 1 lists the number of predictive seed sets having AUC =
0.9 of out the total examined. For human, our method performed well
primarily for phenotypic enhancement and suppression, as described
above, but did not offer predictability for the dosage lethality and syn-
thetic growth defect and rescue interactions determined to date. For fly,
most of the known interactions fall into the phenotypic enhancement
and suppression categories, for which high predictability was observed.
In both human and fly, several classes of interactions have not been
extensively determined and thus were untested in our prediction scheme.
Our method also performed well in most of the interaction categories
for S. cerevisiae (Figure S2 and Table 1). Notably, negative and positive
genetic interactions fared poorly as few predictive seed sets were iden-
tified, even though most of the experimentally determined interactions
in yeast fall into these categories.
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Figure 5 Predictability observed in unbiased screens of higher eu-
karyotes. A CRISPR-Cas9 screen against four human cancer cell lines
uncovered cell line-specific essential genes (Wang et al. 2014). (A) The
specific hits for each cell line were used as the seed sets, and we found
moderate predictability in three of the four cell lines, especially for
KBM?7. (B) Shown is the predictive functional net cluster induced by
KBM7-specific hits, which are the boxed genes. Solid edges indicate
connections in the human functional network, HumanNet. For clarity,
only edges above a LLS weight cutoff of 3.0 and genes with more than
one interaction to the hits are shown.

Predictability observed in unbiased screens
of eukaryotes
The negative and positive genetic interaction screens for yeast are nearly
exhaustive and therefore largely unbiased. We investigated the perfor-
mance on the yeast data using different AUC cutoffs and found that
predictability increased as the AUC threshold was relaxed (Figure 4).
This suggests that our method predicts positive and negative interac-
tions even in yeast from unbiased data, albeit to more modest levels.
Given the sparsity of currently known genetic interactions in higher
eukaryotes, we analyzed a genome-scale CRISPR screen against four
human cancer cell lines that uncovered essential genes specific to each
cell line (Wang et al. 2014). The screen was not previously included
among the BioGRID datasets in our study and, unlike other data on
higher eukaryotes, is unbiased in the sense that there was no selection of
candidate genetic interaction partners. Rather, the characteristic muta-
tions of each cell line determined the specific hits. As shown in Figure 5,
our method found moderate predictability from three of the four cell
lines, especially for KBM7, with an AUC of 0.74.

Protein complexes inform trends of genetic

interaction predictability

With genetic interactions predicted across multiple organisms, it was
natural to investigate their evolutionary conservation. In particular, if a
protein complex were enriched in genetic interactions then perhaps a
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homologous protein complex would also exhibit similar enrichment. We
found enrichment of various types of interactions within yeast protein
complexes, but none thus far for human. Therefore, instead the problem
shifted to identifying the degree to which genetic interactions must be
determined in order to find enrichment, and therefore predictability.
Using yeast as a test case, simulations successively withheld increasing
proportions of genetic interactions, with enrichment within yeast pro-
tein complexes computed at each point. The interaction types consid-
ered were negative and positive genetic, and synthetic growth defect and
lethality. We note that according to BioGRID, negative and positive
genetic interactions are reserved for high-throughput assays with growth
scores. As shown in Figure 6, when withholding genes with a genetic
interaction degree (the number of interacting partners of a certain
gene) of >5, corresponding to withholding >90% of synthetic growth
defect and >80% of synthetic lethality pairs, then an immediate drop-
off in enrichment resulted. No such behavior was observed for negative
and positive genetic interactions, for which enrichment linearly de-
creased as a function of the withheld proportion. Similarly, when re-
moving interacting pairs at random, there was a steady decrease in the
number of significantly enriched complexes among all types. Finally,
when withholding pairs under a degree cutoff, there was also no point
beyond which enrichment failed to be found (Figure S3).

DISCUSSION

Our results demonstrate that various classes of genetic interactions in
different organisms can be successfully predicted based on the
hypothesis that functional gene clusters tend to share genetic in-
teraction partners. For S. cerevisiae in particular, predictability was
obtained whether the genetic interaction type was based on growth
effects or nongrowth phenotype-based measurements (i.e., pheno-
typic suppression). Interestingly, our method did not yield predict-
ability for negative and positive genetic interactions, which happen
to be the interaction types for which most of the pairs have been
tested (Costanzo et al. 2010). As BioGRID reserves negative and
positive genetic interactions for high-throughput assays with growth
scores, a threshold is applied to determine the presence of an interac-
tion. The choice of this threshold may affect the predictability of the
algorithm we have evaluated here.

In many of the genetic interaction datasets analyzed in our study, a
subset of the organism’s genome was selected for screening as candidate
genetic interaction partners of a chosen gene. In contrast, the yeast
negative and positive genetic interactions and the human CRISPR data-
set we analyzed are unbiased in that nearly the entire genome was
screened, and therefore no decision was taken to include or exclude
genes as candidate genetic interaction partners. Using the unbiased
data, our method found predictability of genetic interactions, albeit
to a lesser degree than in other datasets. We note that this result does
not confirm or rule out potential bias in analyzing data from other
organisms, given that the genetic interactions are sparser and hence
have the potential for ascertainment bias elevating the prediction
scores. Moreover, our method would likely benefit from increased
coverage of the functional gene networks.

While the range of predictable genetic interaction classes for human and
fly were limited to phenotypic enhancement and suppression, we believe
that this is probably due to the sparsity of known genetic interactions for
these organisms. In this study, the source of known genetic interactions,
BioGRID, had over 150,000 yeast gene pairs but only ~2800 pairs for fly
and ~1500 for human. As shown in Table 1, many types of genetic
interactions could simply not be tested for fly and human.

This sparseness of experimentally determined genetic interactions,
especially in human, led to the lack of enrichment in gene modules such
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Figure 6 Predictability of genetic interactions can be found even when known interactions are sparse. By successively withholding known yeast
genetic interactions according to each gene's interaction degree (e.g., number of interaction partners), enrichment and therefore predictability is
still detectable when information of known interactions is minimal. This effect is especially pronounced for synthetic growth defect and lethality,

provided genes possess sufficiently high interaction degree.

as protein complexes. In our simulations of withholding genetic inter-
acting pairs, we expected that regardless of the interaction type, there
would be a point after which no enrichment would be found. Thus, it was
surprising that negative and positive genetic interactions exhibited a
linear decrease in enrichment, regardless of how the pairs were withheld
(by degree or at random). On the other hand, the enrichment signal in
synthetic growth defect and lethality is sensitive to the interaction degree,
as there was a steep drop-off when most of the interaction pairs were
withheld. In the negative and positive genetic networks, there appears to
sufficient genetic interaction density such that even when high numbers
of interacting pairs are withheld, enrichment under a binomial model
can still be found. By extrapolating to the human case, a modest increase
in the number of screened human gene pairs is likely to dramatically
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increase the ability to predict additional genetic interactions, especially
for synthetic growth defect and lethality, where the genes have multiple
interaction partners.

While we did not investigate which classes or properties of functional
interactions are predictive of genetic interactions, it would be interesting
to further explore such effects. The functional gene network correspond-
ing to a certain organism is an integration of multiple networks from
various biological evidence, such as coexpression or protein—protein
interactions. It may be informative to hold out certain networks for
given evidence classes to determine the resulting effect on the predict-
ability of genetic interactions.

Similar to previous genetic interaction prediction approaches (Qi et al.
2008; Zhong and Sternberg 2006), our algorithm requires knowledge
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of known experimentally determined genetic interactions. While other
studies proceed without such requirements, the assimilation of a host of
biologically annotated features are still necessary for their prediction
method (Pandey et al. 2010; Wong et al. 2004). In contrast to the afore-
mentioned studies, our methodology systematically examined more than
one class of genetic interaction and was successfully applied to multiple
eukaryotic organisms, thereby generalizing results from a previous study
by Lee et al. (2010). We did not explicitly carry out a comparative
evaluation of our method against other approaches, however, and cannot
quantitatively comment on the relative performance of different meth-
ods. Since the detection of tightly connected sets of nodes in a network is
central to our method, further avenues for exploration perhaps include
investigating methods, such as graph clustering (Enright et al. 2002) or
community detection algorithms (Fortunato 2010), though these algo-
rithms lack built-in validation. It would also be interesting to explore
using tissue-specific gene networks instead of a single integrated func-
tional gene network for more targeted predictions (Greene et al. 2015).

As one major goal of any genetic interaction prediction is to at least
narrow down the search space for experimentally testing genetically
interacting pairs, our predictions are specifically testable experimentally,
perhaps through CRISPR-Cas9 for human cells (Wong et al. 2016). We
also contribute to available prediction methodologies for suggesting ge-
netic interactions as candidate therapeutic targets. Ultimately, we demon-
strate the power of leveraging knowledge of known genetic interactions
and integrated biological information in functional gene networks to pre-
dict novel genetic interactions from single-cell to multicellular organisms.
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