Hindawi Publishing Corporation
BioMed Research International

Volume 2014, Article ID 685492, 11 pages
http://dx.doi.org/10.1155/2014/685492

Research Article

Neural Decoding Using a Parallel Sequential Monte Carlo
Method on Point Processes with Ensemble Effect

Kai Xu,"? Yiwen Wang,"”” Fang Wang,"? Yuxi Liao,"” Qiaosheng Zhang,"*

Hongbao Li,"? and Xiaoxiang Zheng1’2’3

! Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
2 Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
? Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China

Correspondence should be addressed to Yiwen Wang; eewangyw@zju.edu.cn

Received 28 February 2014; Accepted 17 April 2014; Published 18 May 2014

Academic Editor: Ting Zhao

Copyright © 2014 Kai Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sequential Monte Carlo estimation on point processes has been successfully applied to predict the movement from neural activity.
However, there exist some issues along with this method such as the simplified tuning model and the high computational complexity,
which may degenerate the decoding performance of motor brain machine interfaces. In this paper, we adopt a general tuning model
which takes recent ensemble activity into account. The goodness-of-fit analysis demonstrates that the proposed model can predict
the neuronal response more accurately than the one only depending on kinematics. A new sequential Monte Carlo algorithm based
on the proposed model is constructed. The algorithm can significantly reduce the root mean square error of decoding results, which
decreases 23.6% in position estimation. In addition, we accelerate the decoding speed by implementing the proposed algorithm in
a massive parallel manner on GPU. The results demonstrate that the spike trains can be decoded as point process in real time even
with 8000 particles or 300 neurons, which is over 10 times faster than the serial implementation. The main contribution of our work
is to enable the sequential Monte Carlo algorithm with point process observation to output the movement estimation much faster

and more accurately.

1. Introduction

Brain machine interfaces (BMlIs) attempt to build direct links
between brains and artificial devices, such as computer cur-
sors and robotic arms [1-5]. They are considered as potential
solutions to help paralyzed patients restore motor control,
especially for those suffering from stroke, spinal cord injury,
or amyotrophic lateral sclerosis [6-8]. In the past decade, the
research on BMIs has made a great progress due to the rapid
growth and development in neuroscience, computer science,
and engineering. Many experimental demonstrations have
shown the ability to estimate continuous movement of the
limbs by exploiting the spatial and temporal structure of the
motor cortical activity [9-11].

To make the direct control of the prosthetic devices
practical for those patients, the estimation of the movement
should be highly accurate and fast enough for real-time

implementation. Several signal processing approaches have
been applied to extract the functional relationship between
the neural activity and the corresponding movement [12-
18]. Recently, sequential Monte Carlo estimation with point
process observation (SMCPP) is proposed to decode the
spike trains, in which the spike trains are regarded as point
processes and the spiking timing information is exploited by
estimating the instantaneous firing rate in a much shorter
interval (~10 msec) [19-21], while this information is dis-
carded by many previous decoding algorithms which directly
predict the movement from binned spike trains [12, 13, 18].
In addition, compared with many state-space model based
algorithms, such as Kalman filter and point process adaptive
filter [15, 16, 22, 23], there is no restriction on the posterior
distribution of the state, which makes the SMCPP more
flexible and suitable for the highly nonlinear systems such
as BMIs. The experiment has demonstrated that the removal

http://dx.doi.org/10.1155/2014/685492

of the Gaussian assumption on state distribution and the
utilization of the neural tuning model to estimate firing rate
could increase the decoding accuracy [20].

Although the SMCPP performs well in previous studies,
several issues can be further improved. The first one is the
tuning model, which reflects the physiological knowledge
of neurons responding to stimuli. Properly building the
tuning model helps the SMCPP estimation since the posterior
state density is updated based on the discrepancy between
the actual neural firings and the instantaneous firing rates
estimated from the model. In previous studies, the tuning
models in SMCPP are usually either a parametric or nonpara-
metric function that assume firing rates of neurons are only
dependent on the kinematics. However, recent studies have
demonstrated that they also depend on extrinsic covariates,
as well as many other factors. Truccolo et al. find that the
spiking of a single neuron could be better predicted by the
spiking history of ensemble [24, 25]. Pillow et al. analyze
the correlated firing in a population of macaque parasol
retinal ganglion cells and find that the spike times can be
more accurately predicted when the spiking of other neurons
is taken into account. Furthermore, the optimal, model-
based decoding can extract 20% more information when the
ensemble activity is included in the tuning function [26].
However, in the above study, the stimulus is binary sequence
and the spikes are recorded from retinal cells. Another way to
build a better tuning model is to explain the unknown factors
using multidimensional hidden states [27, 28]. Although the
results demonstrated that this approach can achieve a better
decoding accuracy, a potential problem is that the hidden
state needs to be estimated by an Expectation Maximization
algorithm at every iteration, which may result into instability
and extra computational complexity. Another issue of the
SMCPP is the high computational complexity because of the
posterior density estimation by large number of particles,
which brings the challenge to the real-time BMI systems.
To increase the decoding speed, the main method before
is to increase the processor clock speed, while it becomes
plateaued in recent years. An alternative way is to add
multiple cores into CPU. However, the number of cores in
most commercially available CPUs is 2 or 4 and some may
be up to 8. Another solution is to implement the decoding
algorithm on dedicated hardware architectures such as FPGA
[29-31]. But the hardware-based solution is often difficult to
develop and maintain and lacks flexibility.

In this paper, we attempt to address the issues of the
SMCPP mentioned above, making the decoding algorithm
more efficient and applicable for the high-performance BMI
systems. Firstly, we propose to extend the state-space model
[20] by incorporating the recent ensemble activity into the
tuning functions of neurons and the state transition model.
The predicting power of tuning models with and without
ensemble activity is evaluated and compared. The continuous
kinematics of a monkey performing a target-pursuit task are
decoding from the neural recordings in the primary motor
cortex using the SMCPP based on such new models. The
statistical performances are evaluated on multiple days. We
do the experiment to see whether the decoding accuracy
of the SMCPP can be improved when the ensemble effect

BioMed Research International

is taken into account. Another contribution of our work is
the speedup of the decoding algorithm for the demands of
real-time implementation. We implement the SMCPP in a
fully parallel way based on CUDA, which is a technology
that can increase the computing performance dramatically
by utilizing the hundreds of cores in graphics processing
unit (GPU). Significant improvement has been obtained by
using the graphics processing unit to perform the feature
extraction in real-time brain computer interface [32]. In our
implementation, the particles are propagated and updated in
parallel. We use the parallel prefix scan algorithm to perform
the weight summation which is often done serially before.
The decoding speed of the proposed algorithm is observed to
examine whether it satisfies the requirement of real-time BMI
systems especially when the number of particles is large. Due
to the great development of the neural recording technology
in thelast decade, hundreds of neurons can be simultaneously
recorded to build a high-dimensional data space [33]. We
apply our proposed algorithm on such a scenario to validate
its real advantages.

This paper is organized as follows. Section 2 intro-
duces data recording and the BMI task. The details of
SMCPP algorithm, the corresponding neural tuning model,
the state transition model, and the parallel implementation
are described in Section 3. In Section 4, we evaluate the
predicting power of different tuning models and compare the
decoding accuracy using sequential Monte Carlo algorithm
with and without including the recent ensemble activity. In
addition, we observe the decoding speed of our proposed
algorithm to see whether it fulfills the requirement of real-
time BMI systems. We discuss the results and conclude in
Section 5.

2. Experiment Setup and Data Recording

The paradigm of the motor brain machine interface was
designed and implemented in the Qiushi Academy for
Advanced Studies at Zhejiang University. An adult male
monkey was trained to perform a two-dimensional target-
reaching task. After a target circle was presented on a
computer screen, the monkey moved the cursor towards the
target by controlling a handheld joystick. When the target
was intersected with the cursor for a certain time, it would
disappear and another target would show in a new position
nearby the current one. The monkey was rewarded when the
task was performed successfully for a while. The correspond-
ing position of the joystick was recorded continuously with
a sampling rate of 20 Hz, the velocity was estimated as the
difference between current and previous positions, and the
acceleration was estimated as the first-order difference from
the velocity.

A Utah array (1.0 mm electrode length, 96 channels with
ICS-96 connector, Blackrock Microsystems) was chronically
implanted in the arm area of primary motor cortex (MI)
contralateral to the hand performing the task. Details about
the surgical procedure could be found in [34, 35]. After
the surgical procedure, a 128 Cerebus Data Acquisition
system (Blackrock Microsystems, USA) was used to record

BioMed Research International

Neuron 1, SNR = 3.62 Neuron 2, SNR = 4.94

Neuron 3, SNR = 7.32 Neuron 4, SNR = 11.92

500 | 4 500

=500 1 =500

Unnormalized amplitude

500 500

=500

10 20 30 40
Sampling points

Sampling points

50 &

3

[=}

Neuron

10 T.',,,'L')i....,.,.,..;;{.‘;‘,’f;;«\'.’;;ﬁ:"\’*' i """'F'""‘.F"
Ay 0 i g
tzl‘wm I, ofT V)

0

Pt B ;.1.... o Ay ol --,m\..,.n- 2
m v wmd 1 omsmn 1 syl e st v i el .

A e V0 P WHANE sl 0

40 fsneiitn h%“ﬁ“‘-’ “‘ﬂ’r‘#ﬂm

b i W e iy o' ol ol b\A,J
".'.'...’,-.-\,m. .l,..,.\..,.. i) .r-......_..’:,. ’;....... ,f:. s

il]

100 12 14 16 18 20 22 24 26

10 20 30 40 10 20 30 40

Sampling points Sampling points

.

y-axis
I
_

28 30 -6 -4 -2 0 2 4 6 8

X-axis

(c)

FIGURE I: (a) The spike waveforms from 4 neurons with different SNRs. (b) The raster graph of the population activities during the task. (c)
The arm trajectory in the 2D plane corresponding to the ensemble activity in (b).

the neuronal action potentials during the experiment. The
sampling rate was 30kHz and the action potentials were
detected by a thresholding method. The waveforms of the
spikes were amplified and band-pass filtered from 250 Hz to
7.5 kHz. Only the neurons whose firing rates were larger than
1Hz and SNR that were larger than 2 were isolated to avoid the
nonrobustness during the computation. Figure 1(a) depicts
the spikes recorded from 4 neurons with different SNRs.

The time of each spike was recorded and the firing rate
was computed as the number of spikes within 10 ms time
windows. We found that over 99% of these counts were either
0 or 1, which made the ensemble activity as multichannel
point process observation. Meanwhile, all the kinematics
recorded were interpolated and synchronized with the spike
trains. Figure 1(b) shows a raster graph of the ensemble
activity during a time interval, and Figure 1(c) plots the
corresponding trajectory of the position in 2D plane.

3. Methods

3.1. Tuning Function with Ensemble Correlation. Given a time
interval (0 T1], a spike train consists of J spikes of a neuron
observed at time 0 < u; < u, < --- < u; < T. Therefore, it
can be regarded as a point process which is composed of a set
of binary events that occur in continuous time, which can be
fully characterized by its conditional intensity function:

P(N(t+A) N@H=1

A(t) = X

@

where N(t) is the number of spikes fired in the time interval
(0 t]. Based on the theory of point process, if A is small
enough, the probability of observing a spike in the interval
between t and £+ A can be well approximated by the following
equation:

P(dN (t)) = exp (AN (t) log (A (1) A) = A () A), (2)
where dN(t) is the activity of the neuron at time ¢. If there is
a spike at time ¢, then dN(t) equals 1, otherwise 0.

The conditional intensity functions of spike trains can be
defined as the neuronal tuning functions which reflect the
tuning property of neurons and characterize the relationship
between the covariates and the neuronal response. The
function should be designed properly because in decoding
stage the posterior state distribution is updated based on
the discrepancy between the firing of neurons and the
instantaneous firing rate A(t) estimated from it. In previ-
ous decoding algorithms, the tuning function was usually
assumed to be only dependent on the current kinematics
x(t). However, the studies in neuroscience demonstrate that
the spiking activity of a single neuron is dependent not only
on external covariates, but also on the spiking history of the
neuron itself and spiking activities of other neurons due to
the coupling between them. We propose to apply a more
general tuning function which extends the traditional ones
and estimate the instantaneous firing rate based on both
the kinematics and recent ensemble activity. Let x, and H,
represent the kinematics and the recent ensemble activity at

time t, respectively. More specifically, H! is defined as the
number of spikes fired during the time interval [t—] t) for the
neuron i, where [is the time length which will be determined
in the following analysis. Then our tuning function can be
formulated as

D C
A() = A (x, H,) = exp (“0 + Yo, + Y fiH) 3

i=1 j=1

where D is the dimension of the kinematic vector, exp(e,) is
the background firing rate, «; is the modulation in firing rate
of the ith component of kinematic vector, C is the number
of neurons in the ensemble, and f; represents the influence
of the jth neuron on the target neuron. The above equation
takes the movement, the spiking history of the target neuron,
and the contributions of other neurons into account and is
referred to as full tuning model in the following. By contrast,
the tuning equation which only depends on the movement
is referred to as mov tuning model. It is similar to (3) but
without the third term in the exponential function.

In the full tuning model, the time length / of the recent
ensemble activity is a parameter that needs to be determined.
If the value of I is too small, then information contained
in the rest of ensemble activity will be wasted. While if the
value is too large, which means too much ensemble activity
is included, it is likely to incorporate irrelevant information
which could bias the estimation of the firing rate. Therefore,
it is necessary to assess the performance of the tuning model
with different length of recent ensemble activity. In addition,
we also need to compare its performance with mov tuning
model to demonstrate the superiority. Due to the point pro-
cess property of a spike train, traditional distance measures
like mean square error could not be applied directly. In this
paper, we adopt the receiver operating characteristic (ROC)
analysis and Kolmogorov-Smirnov (KS) plot to evaluate the
performance of tuning models.

Receiver Operating Characteristic Analysis. Suppose the
parameters of the tuning function have been estimated from
the training data; then, for any neuron, we can compute the
instantaneous firing rate A(t). To get the ROC curve, we make
a threshold and compute the spike prediction 7,(t) as follows:

() =1 ifA(t)>c

A (4)
7.(t)=0 ifA(t)<c.

For each threshold ¢, the ratio of the true positive rate (TPR)
to the false positive rate (FPR) given the recorded spikes
data could be computed, resulting in the ROC curve. The
area under the curve (AUC) corresponds to the probability
that the proposed model will assign a higher probability
to the sample from the spike population compared to the
sample from the no-spike population. Therefore it provides
an assessment of the goodness of fit of the model.

Kolmogorov-Smirnov Plot. Based on the time-rescaling the-
orem, we can transform a point process into a Poisson
process with unit rate which is appropriate for goodness of
fit assessment [36]. Firstly, the tuning function is fitted to

BioMed Research International

the spike train data based on the proposed model. Then the

rescaled times z; could be computed as follows:

Uj

zj=1-exp <Hujﬂ At) dt} , (5)

where j = 1,...,] — 1. If the proposed model is correct,
z; will be random variables sampled uniformly from the
interval [0, 1). The z; values are ordered from smallest to
largest, generating a new sequence z;.. And a uniform density
is defined as b, = (k — 1/2)/n for k = 1,...,n against z;.
Finally, the cumulative distribution function of the uniform
density could be plotted, which is named KS plot. If the model
is correct, points in the KS plot will be on a 45-degree line.
More details can be found in [36].

3.2. Sequential Monte Carlo Estimation and Parallel Imple-
mentation. The state-space model based algorithms are
widely used in brain machine interfaces to infer the latent
state like the kinematics from neural activity. In this work, (3)
and (2) constitute the observation model. In previous studies,
the movement was often assumed to be a random-walk
model, where the current state only depended on the previous
state plus some noise. In this paper, we also incorporate
the ensemble activity into the state vector, resulting in an
augmented state vector s, = [x; H,], and then the new state
equation is defined as

X = Asp_ +w, (6)

where A is the system evolution matrix and w is a zero-
mean Gaussian noise with covariance matrix Q. As a result,
the current state depends not only on the previous state, but
also on the recent ensemble activity. We term the state-space
model that includes the recent ensemble activity as the full
model and whose state and observation models only depend
on movements as mov model.

Once the transition and the observation functions have
been defined as above, the state can be formulated as the
posterior distribution given the observations, which can be
estimated recursively as follows:

p (x| Nygoy) p (AN | x3, Hy)
X I N . = > (7)
P (5 I Nig) P (AN | Nygy)

P (x| Nigoy)

(8)
= JP(xk | k15 Hy) p (41 | Nygoy) dxgeys

where N, = [dN,,dN,,...,dN,] is the population activity
up to time k, p(x; | Nj.._y) is the one-step prediction which
could be calculated according to (8), and the value of p(dN |
Xy, Hy) can be computed based on the observation model.
An issue with the above recursive estimation is that (8) is
difficult to compute because of the integration operation, and
the posterior density is usually multimodes or highly skewed.
Sequential Monte Carlo estimation provides a good solution
to this problem [37]. The basic idea is to represent the poste-
rior density as a set of weighted particles without restricting

BioMed Research International

Iteration

(a) Up-sweep phase

Iteration

d=0

(b) Down-sweep phase

FIGURE 2: An illustration of the parallel prefix scan algorithm. (a) The up-sweep phase. (b) The down-sweep phase.

it to be any particular distribution. Initially, the weighted
particles {x',, wi}" are generated from a prior density, and
all the weights are set to 1/Ns. Then the algorithm runs in
an iterative way. For each iteration, particles xj are generated
from p(x, | x_,,Hy); then the importance weights are
updated according to the equation w;, = wj_,p(dN; |
x,, Hy). After the importance weights are all updated and
normalized, the posterior density of state at time k can be
approximated as

Ns)
Pl | Nig) = Y wik (xk - %, 0), ©))

i=1

where k (x; — x},0) is a Gaussian kernel whose mean is x},
and covariance is 8. One principal purpose of BMI systems
is to control the external device. A common way for the
BMI decoder to output a control command is to average
the posterior density. A phenomenon named degeneracy will
appear after the algorithm runs over a few iterations, leading
to a large amount of computational effort being wasted on
the samples with small importance weights [38]. To overcome
this problem, a resampling stage is introduced at the end of
each iteration. In this paper, we adopt systematic resampling
method and the details can be found in [39].

We adopt the root mean square error (RMSE) between the
actual and the reconstructed trajectories as an assessment of
the decoding algorithm and compare the decoding accuracy
of the SMCPP based on the full model and mov model.

Parallel Implementation. To accelerate the computational
speed, we implement the SMCPP in a massively parallel
manner based on the compute unified device architecture
(CUDA). It is computationally feasible for particles genera-
tion and weights calculation to concurrently execute, since
the operation on each particle is independent of others.
Then the resampling stage becomes a bottleneck because

of its sequential in essence. In systematic resampling, the
cumulation of the weights runs serially since the operation
on current step is dependent on the result computed on last
step. It takes N steps to get the result. We adopt parallel
prefix sum algorithm which could dramatically reduce the
computational complexity of calculating the cumulative sum
[40]. The basic idea is to build a balanced binary tree based
on the input data; then the prefix sum can be computed
by sweeping the tree to and from its root. The algorithm is
demonstrated in Figure 2, where the red blocks represent the

active nodes and x;; = +—i X1 The algorithm consists of two
phases: the up-sweep phase which is depicted in Figure 2(a)
and the down-sweep phase presented in Figure 2(b). During
the up-sweep phase, at each iteration, half of the threads
active at last iteration are still active and compute the partial
sum of internal nodes with a distance of 2¢. The down-sweep
phase followed by the up-sweep phase is like the reverse
of the previous phase. In each iteration, in addition to the
computation of partial sum, each active node passes its values
to its left child. The computational complexity of the parallel
prefix sum algorithm is O(log,N), which is much more
efficient than the serial version above whose computational
complexity is O(N). More details of the algorithm can be
found in [40].

4. Results and Analysis

A total number of 8 datasets recorded on different days
are used in the following analysis. The summary of these
datasets is listed in Table 1. Firstly, we determine the optimal
length of the recent ensemble activity which enables the best
performance of full tuning model. Then the performances
of the mov tuning model and the full tuning model are
compared. Since the importance weights are updated by
the discrepancy between the neural firings and the tuning
model, a well-defined tuning model is necessary to an

TABLE 1: The summary of the 8 datasets used in the analysis.

Datasets 1 2 3 4 5 6 7 8
Number of neurons 40 38 39 58 40 36 27 3l
Signal-to-noise ratio 4.34 4.33 4.17 3.52 3.58 3.89 4.06 4.01
8.15 10.50 9.90 6.66 9.83 6.72 5.81 4.31
400 400 400 400 400 400 400 300

Firing rate (Hz)
Length (sec)

0.69

o
o
N

AUC value
o
o
w

0.63 L——
103050

100 150 200 300 500
Time length (ms)
FIGURE 3: The AUC values of the full tuning model evaluated on all

the neurons recorded. The x-axis represents the time length of recent
ensemble activity included in the full tuning model.

accurate estimation of posterior density. We demonstrate the
superiority of the tuning model considering the ensemble
effect based on the receiver operating characteristic (ROC)
analysis and Kolmogorov-Smirnov (KS) plot. For a high-
performance real-time brain machine interface system, an
accurate and fast prediction of the state is required. So we
evaluate the decoding accuracy of the sequential Monte Carlo
methods based on the mov model and the full model. Then,
the decoding speed of the algorithm is compared between the
parallel implementation running on GPU and the traditional
one running on CPU.

4.1. Tuning Model Analysis. We adopt the AUC values to
assess the predictive performance of full tuning models with
different length of recent ensemble activity. The AUC value,
which is the area under the ROC curve, is dependent on all
possible thresholds of the firing rate and computed by the
true and false positive rates. If the model is perfect, the AUC
value will be 1. Figure 3 shows the relation between the time
length of the ensemble activity and the AUC values which are
averaged among all neurons recorded. We can observe that
the AUC value increases rapidly as the more recent ensemble
activity is included before 100 ms. However, when the time
length exceeds 100 ms, the value decreases. It means that most
information about the current firing probability is contained
in the kinematics and the latest 100 ms ensemble activity. And
incorporating the latest 100 ms ensemble activity with the
kinematics could make the observation model gain the best
performance.

We also make a comparison of the predicting powers
between mov tuning model and the full tuning model.
Figure 4 shows that histograms of AUC values evaluated on

BioMed Research International

all the neurons in the total 8 datasets. The x-axis is the possible
AUC values and y-axis represents the number of neurons with
the corresponding value. The average AUC value for each
model is shown in red color. Compared with the model only
considering kinematics, the one including ensemble effect has
a significantly better predictive performance. Figure 5 shows
the KS plots of 10 typical neurons. The x-axis represents the
quantiles and the y-axis represents the cumulative distribu-
tion function with respect to the uniform distribution when
the conditional intensity function equals the true one. It is
easy to see that the mov tuning model tends to underestimate
the conditional intensity especially at middle quantiles, while
incorporation of the ensemble effect into the tuning model
can greatly improve the explanation of the spike activity. The
black thin lines in the figure represent the 95% confidence
interval. We can observe that, for most neurons, the KS plots
based on our proposed model fall within the 95% confidence
limits. This improvement of the fitness demonstrates that,
in addition to the kinematics, the recent ensemble activity
affects the spiking of the current neuron.

4.2. Decoding Accuracy. Based on the models with and
without the ensemble effect, we decode the neural activity
recorded during the subject performing the movement task
using sequential Monte Carl estimation. Figure 6 shows a
segment of the reconstructed kinematics. The upper and
down panels, respectively, show the predicted kinematics for
normalized position values on x-axis and y-axis. In each
subplot, the red solid line indicates the true signal, the dash
black line indicates the estimation by mov model, and the
solid blue line is the estimation by the full model. It is
obvious that the full model provides the more consistent
reconstruction compared to the previous one.

We apply the two kinds of models on all of the 8 datasets
to decode the kinematics. The first 200s of each dataset is used
as training data, and the rest is for testing. Figure 7 shows
the statistical performance evaluated on the 8 datasets. The
red and blue bars depict the decoding accuracy evaluated
by the models with and without incorporating ensemble
effect, respectively. It is clear that the decoding error is
greatly reduced if the ensemble activity is combined with the
kinematics in the model. Furthermore, among the kinematics
the position gains the highest improvement (about 23.6%),
and the improvement of the acceleration is not so much
obvious (about 5.02%). Here we perform the left-tail paired
Student t-test against the alternative that the decoding error
of our proposed method is smaller. All the tests are performed
on the null hypothesis at « = 0.05 significance level. The P
values are shown in Table 2. Not surprisingly, the SMCPP
method based on the full model provides smaller decoding
error than the one based on mov model statistically (P <
0.05, left tail, paired Student’s t-test). In most brain machine
interface applications, we usually use the position values to
control an external device. Therefore, the incorporation of
ensemble effect in the decoding algorithm is helpful to high-
performance BMI systems.

We vary the time length of the recent ensemble activity
included in the full model and evaluate the corresponding

BioMed Research International 7

100
80
60
40
20

100

0.7 0.8 0.9 1

AUC values
(a)

0.6

0.5

0.6 0.7 0.8

AUC values
(b)

0.9 1

FIGURE 4: The histograms of AUC values of the tuning models evaluated on all the neurons recorded. The x-axis is the possible AUC values
and y-axis is the number of neurons with the corresponding value. The numbers in red color are the averaged AUC values. (a) Mov tuning

model. (b) Full tuning model with the recent 100 ms ensemble activity.

Neuron 12) Neuron 16 . Neuron 18) Neuron 23 . Neuron 30
g % 77 2
0.8 'oos 7 08 ’ 0.8 ‘
0.6 A X: 7 06 7 0 J
0.4 7 o4 S o Y
02 //,ﬂ p - 02 /.// e R 02 .,/./ - P 02 ‘/,"' . .
ol 0 CZ- oZ=" o Lz "
0 0.5 1 0 0.5 1 0 0.5 1 05 1
) Neuron 34 . Neuron 50
0.8 'oo0s ,.f’/,"
0.6 s /4
0.4 7 o4 »
02 o - 02| 7 I
(24— oEZ
0 0.5 1 0 0.5 1

--— Mov tuning model
—— Full tuning model

--- Mov tuning model
—— Full tuning model

--- Mov tuning model
—— Full tuning model

--- Mov tuning model
—— Full tuning model

--— Mov tuning model

—— Full tuning model

FIGURE 5: KS plots of 10 neurons for the mov tuning model and the full tuning model. The x-axis represents the quantiles and the y-axis
represents the cumulative distribution function. The black thin lines in the figure represent the 95% confidence interval. Compared with mov
tuning model, the improvement by full tuning model is considerable.

decoding accuracy. The results are displayed in Figure 8.
The y-axis of two subplots represents the root mean square
errors evaluated on the position and velocity, respectively.
The left subplot demonstrates that incorporating the latest
100 ms ensemble activity could achieve the best decoding
result on position. It is consistent with the result obtained
from Figure 3 that 100 ms is the best time length for the
ensemble activity included in the tuning model. The right
plot demonstrates that if we want the velocity to be accurately
reconstructed, then the latest 50 ms ensemble activity is a
better choice. However, regardless of the position or velocity,
the corresponding decoding accuracy always improves at the
beginning as more ensemble activity included and then drops
when the time length continues to increase.

4.3. Decoding Speed. A high-performance real-time brain
machine interface system requires not only the decoding
result to be accurate but also the decoding speed to be
fast enough. A challenge to the application of sequential

Monte Carlo estimation in such kind of system is the high
computational complexity. To accelerate the decoding speed,
we implement the algorithm in fully parallel based on CUDA
and compare the performance with the one that runs serially.
The serial version of the algorithm runs on the i7 CPU with a
clock rate of 2.4 GHz, and the RAM of the computer is 4 GB.
The GPU used by our parallel algorithm is NVIDIA GT730M,
in which the clock rate is 758 MHz, the number of CUDA
cores is 384, and the global memory is 1 GB. The clock rate
of CPU is much faster than the one of GPU.

The experimental results are plotted in Figure 9.
Figure 9(a) shows the relationship between the number
of particles and the decoding speed of corresponding
algorithms. The blue dash line represents the serial
implementation running on CPU, and the red solid line is our
proposed one running in parallel on GPU. As the number of
particles increases, the computational time needed for each
bin becomes much longer. For our parallel implementation,
the computational time for each bin is less than 8 ms and

(= S

|
)

Normalized
position X

|
S

25 50 75
Time (s)

o

—— True
—— Full model
--- Mov model

(a)

BioMed Research International

Normalized
position Y’
BN O N RN

(=)
[oe]
w
v L
(=}
~
w

Time (s)

—— True
—— Full model
--- Mov model

(b)

FIGURE 6: Reconstructed positions for a target-reaching task estimated by sequential Monte Carlo method. The red lines are actual movement,
the blue lines represent the estimation based on full model, and the black dash lines are predicted based on the mov model.

1.2

0.8

0.6

0.4

Root mean square error

0.2

Pos (X) Pos(Y) Vel(X) Vel(Y) Acc(X) Acc(Y)

FIGURE 7: The statistical performance provided by the sequential
Monte Carlo estimation with different models. Blue bars and red
bars represent the mov model and full model, respectively. It is
obvious that the full model can dramatically reduce the error during
the estimation of movement trajectory.

TABLE 2: P values (left-tail, paired Student’s ¢-test, « = 0.05).

Pos(X) Pos(Y) Vel(X) Vel(Y) Acc(X) Acc(Y)

Full model
versus mov 2.58¢ -5 0.0412 0.0053 0.0049 9.30e —4 0.0372
model

even the number of particles is as large as 8000, while one
for the serial version is as high as 80 ms. In neural decoding
with point process observation, a common choice for the
temporal resolution of spike trains is 10 ms, which means
that our algorithm can work well in real-time brain machine
interface applications even with a large number of particles.
In addition, we evaluate the decoding time with different
number of neurons. Since the number of neurons recorded
is limited, we duplicate the neurons many times to get a large
ensemble size. The results are plotted in Figure 9(b). It shows
that when the number of neurons exceeds 100, for the serial
version of the algorithm, the computational time of each bin
is larger than 10 ms and increases rapidly as more neurons
are used. While our proposed method can decode the neural
activity in 10 ms even the number of neurons is as much as
300, which is feasible nowadays due to the development of
single-unit recording technology.

5. Conclusion and Discussion

In this work, we attempt to improve the decoding perfor-
mance of the SMCPP algorithm by addressing two issues in
previous studies. One is the simplified tuning considering no
neural ensemble effect, which may degenerate the decoding
performance. The other is the high computational complex-
ity, which brings the challenge for real-time implementation.
We propose to include neural ensemble effect into the tuning
function and find that 100 ms is the optimal time length of
the ensemble activity which enables the model to perform
the best, while previous SMCPP methods usually assume the
instantaneous firings only depend on the movement. The
goodness of fit analysis demonstrates that the tuning model
which takes the ensemble effect into account can greatly
increase the predicting power on the neuronal response. It is
more consistent with the neurophysiologic knowledge since
cortical neurons are interconnected in a large network by a
huge number of synaptic inputs which can induce some kind
of coupling [25].

Given the tuning function, the sequential Monte Carlo
estimation can be applied directly on the spike trains to
predict the movement. The posterior density of movement is
represented by a set of weighted samples, and the importance
weights are updated based on current neural firings and the
instantaneous firing rate estimated from the tuning model.
Therefore, the tuning model which is well consistent with
the true one is necessary for a good estimation of states.
In addition, we also incorporate the ensemble activity into
the state transition equation. Based on the state and tuning
models we propose, a SMCPP algorithm is built and applied
to predict the movement from the neural activity recorded
in primary motor cortex. We evaluate the statistical decoding
accuracy on multiple datasets. The results demonstrate that
our proposed model which takes the recent ensemble activity
into account can improve the decoding accuracy, especially
on position, compared to the model which only depends on
the movement. Furthermore, we find that the best accuracy
on position is achieved by including the latest 100 ms ensem-
ble activity.

Though the SMCPP can predict the movement more
accurately by taking the recent ensemble activity into
account, the high computational complexity is still an issue

BioMed Research International

0.74
0.72 +
0.7 +
0.68 -

0.66 |

Root mean square error

0.64

0.62

103050 100 150 200 250 300 500

History time (ms)

(a)

0.92 ¢

091 +

09+

0.89 +

0.88 +

Root mean square error

0.87 +

0.86

103050 100 150 200 250 300 500

History time (ms)

(b)

FIGURE 8: The decoding accuracy evaluated based on the tuning model with different time length of recent ensemble activity. (a) Average
root mean square error of position. (b) Average root mean square error of velocity.

80

60 - e

40 + e

20 o

Computational time per bin (ms)
©

0 2000 4000 6000

Number of particles

8000

-©- Serial
—%— Parallel

()

140 -
0]
/
— 120t J/
)
S 100 t /
0 7
o} /
o 80|
£ d
ER o
2 7
g -
540 | e
a. .
= .
o //
© o220t Lo
0 @9 _—x—/*—//*
0 100 200 300 400
Number of neurons
-©- Serial
—%— Parallel

(®)

FIGURE 9: (a) The computational time of a single bin with different number of particles. (b) The computational time of a single bin with

different number of neurons.

which prevents it from being used in real-time brain machine
interfaces. To accelerate the decoding speed, we implement
the algorithm in fully parallel based on CUDA. The weighted
particles are propagated, updated, and resampled simulta-
neously on hundreds of cores in GPU. The result shows,
for our method, the computational time for each 10 ms data
input is only about 8 ms and even the number of particles is
larger than 8000. We also find that our algorithm can also
tulfill the time resolution of real-time BMI systems and even
over 3 hundred neurons are recorded. Compared with the
serial implementation running on GPU, our parallel method
runs over 10 times fast. Another advantage of our proposed
algorithm is that the GPU is relatively cheap and simple to be
upgraded compared with the CPU.

Our work enables the sequential Monte Carlo algorithm
with point process observation to output the movement
estimation much faster and more accurate, which is helpful

to the high-performance BMI systems. Decoding accuracy
can be improved by taking the recent ensemble activity
into account. Meanwhile the decoding speed is much faster
compared to the traditional ones running on CPU. Although
the results are interesting, the signal processing approaches
for spike trains can be further developed. A feasible way is to
improve the encoding model by considering the sparseness of
the neural connections. The more accurate model can reduce
the bias during the update of the importance weights and is
potential to increase the decoding accuracy.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

10

Acknowledgments

This research was supported by Grants from the National
High Technology Research and Development Program of
China (no. 2012AA011602), the National Basic Research
Program of China (no. 2013CB329506), the National Natural
Science Foundation of China (nos. 61305146, 61031002, and
31371001), Zhejiang Provincial Key Science and Technology
Program for International Cooperation (no. 2012C24025),
and Zhejiang Provincial Natural Science Foundation of China
(no. LY14F030015). The corresponding author Yiwen Wang
thanks Kainuan Yang and Shenglong Xiong for their assis-
tance with animal care and training.

References

[1] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L.
Nicolelis, “Real-time control of a robot arm using simultane-
ously recorded neurons in the motor cortex,” Nature Neuro-
science, vol. 2, no. 7, pp. 664-670, 1999.

[2] P. R. Kennedy, R. A. E. Bakay, M. M. Moore, K. Adams, and
J. Goldwaithe, “Direct control of a computer from the human
central nervous system,” IEEE Transactions on Rehabilitation
Engineering, vol. 8, no. 2, pp. 198-202, 2000.

[3] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows,
and J. P Donoghue, “Instant neural control of a movement
signal,” Nature, vol. 416, no. 6877, pp. 141-142, 2002.

[4] D.M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct cortical
control of 3D neuroprosthetic devices,” Science, vol. 296, no.
5574, pp. 1829-1832, 2002.

[5] L. R. Hochberg, D. Bacher, B. Jarosiewicz et al., “Reach and
grasp by people with tetraplegia usinga neurally controlled
robotic arm,” Nature, vol. 485, no. 7398, pp. 372-375, 2012.

[6] R.B. Stein, P. H. Peckham, and D. B. Popovi, Eds., Neural Pros-
theses: Replacing MotOr Function After Disease Or Disability,
Oxford University Press, 1992.

[7] M. A. Lebedev and M. A. L. Nicolelis, “Brain-machine inter-
faces: past, present and future,” Trends in Neurosciences, vol. 29,
no. 9, pp. 536-546, 2006.

[8] J. P. Donoghue, “Bridging the brain to the world: a perspective
on neural interface systems,” Neuron, vol. 60, no. 3, pp. 511-521,
2008.

[9] J. Wessberg, C. R. Stambaugh, J. D. Kralik et al., “Real-time
prediction of hand trajectory by ensembles of cortical neurons
in primates,” Nature, vol. 408, no. 6810, pp. 361-365, 2000.

[10] J. M. Carmena, M. A. Lebedev, R. E. Crist et al., “Learning to
control a brain-machine interface for reaching and grasping by
primates,” PLoS Biology, vol. 1, no. 2, 2003.

M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B.
Schwartz, “Cortical control of a prosthetic arm for self-feeding;”
Nature, vol. 453, no. 7198, pp. 1098-1101, 2008.

[12] J. C. Sanchez, S. P. Kim, D. Erdogmus et al., “Input-output
mapping performance oflinear and nonlinear models for esti-
mating hand trajectories from cortical neuronal firingpatterns,”
in Proceedings of the 12th IEEE Workshop on Neural Networks for
Signal Processing, vol. 2002, pp. 139-148.

[13] S.-P. Kim, J. C. Sanchez, D. Erdogmus et al., “Divide-and-
conquer approach for brain machine interfaces: nonlinear
mixture of competitive linear models,” Neural Networks, vol. 16,
no. 5-6, pp. 865-871, 2003.

11

BioMed Research International

[14] A.E.Brockwell, A. L. Rojas, and R. E. Kass, “Recursive bayesian
decoding of motor cortical signals by particle filtering,” Journal
of Neurophysiology, vol. 91, no. 4, pp. 1899-1907, 2004.

[15] W. Wu, M. J. Black, D. Mumford, Y. Gao, E. Bienenstock,
and J. P. Donoghue, “Modeling and decoding motor cortical
activity using a switching Kalman filter,;” IEEE Transactions on
Biomedical Engineering, vol. 51, no. 6, pp. 933-942, 2004.

[16] W. Wu, Y. Gao, E. Bienenstock, J. P. Donoghue, and M. J. Black,
“Bayesian population decoding of motor cortical activity using
a Kalman filter;” Neural Computation, vol. 18, no. 1, pp. 80-118,
2006.

[17] L. Srinivasan, U. T. Eden, S. K. Mitter, and E. N. Brown,
“General-purpose filter design for neural prosthetic devices,”
Journal of Neurophysiology, vol. 98, no. 4, pp. 2456-2475, 2007.

[18] K. Xu, Y. Wang, S. Zhang et al., “Comparisons between linear
and nonlinear methods for decoding motor cortical activities
of monkey,” in Proceedings of the 33rd Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBS ’I1), pp. 4207-4210, September 2011.

[19] A. Ergun, R. Barbieri, U. T. Eden et al, “Construction of
point process adaptive filter algorithmsfor neural systems
using sequential Monte Carlo methods,” IEEETransactions on
Biomedical Engineering, vol. 54, no. 3, pp. 419-428, 2007.

[20] Y. Wang, A. R. C. Paiva, J. C. Principe, and J. C. Sanchez,
“Sequential Monte Carlo point-process estimation of kinemat-
ics from neural spiking activity for brain-machine interfaces,”
Neural computation, vol. 21, no. 10, pp. 2894-2930, 2009.

[21] Y. Wang and J. C. Principe, “Point process modeling on decod-
ing and encoding for brain machine interfaces,” in Proceedings
of the 7th Asian Control Conference (ASCC °09), pp. 1000-1005,
August 2009.

[22] A. C. Smith and E. N. Brown, “Estimating a state-space model
from point process observations,” Neural Computation, vol. 15,
no. 5, pp. 965-991, 2003.

[23] U.T. Eden, L. M. Frank, R. Barbieri, V. Solo, and E. N. Brown,
“Dynamic analysis of neural encoding by point process adaptive
filtering,” Neural Computation, vol. 16, no. 5, pp. 971-998, 2004.

[24] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue,
and E. N. Brown, “A point process framework for relating
neural spiking activity to spiking history, neural ensemble, and
extrinsic covariate effects,” Journal of Neurophysiology, vol. 93,
no. 2, pp. 1074-1089, 2005.

[25] W. Truccolo, L. R. Hochberg, and J. P. Donoghue, “Collective
dynamics in human and monkey sensorimotor cortex: predict-

ing single neuron spikes,” Nature Neuroscience, vol. 13, no. 1, pp.
105-111, 2010.

[26] J. W. Pillow, J. Shlens, L. Paninski et al., “Spatio-temporal corre-
lations and visual signalling in a complete neuronal population,”
Nature, vol. 454, no. 7207, pp. 995-999, 2008.

[27] W. Wu, J. E. Kulkarni, N. G. Hatsopoulos, and L. Paninski,
“Neural decoding of hand motion using a linear state-space
model with hidden states,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 17, no. 4, pp. 370-378, 2009.

[28] V. Lawhern, W. Wu, N. Hatsopoulos, and L. Paninski, “Popula-

tion decoding of motor cortical activity using a generalized lin-

ear model with hidden states,” Journal of Neuroscience Methods,

vol. 189, no. 2, pp. 267-280, 2010.

E Zhou, J. Liu, Y. Yu et al., “Field-programmable gate array

implementation of a probabilistic neural network for motor

cortical decoding in rats,” Journal of Neuroscience Methods, vol.

185, no. 2, pp. 299-306, 2010.

[29

BioMed Research International

[30] X. Zhu, R. Jiang, Y. Chen, S. Hu, and D. Wang, “FPGA
implementation of Kalman filter for neural ensemble decoding
of rat’s motor cortex,” Neurocomputing, vol. 74, no. 17, pp. 2906-
2913, 2011.

[31] D. Wang, Y. Hao, X. Zhu et al, “FPGA implementation of
hardware processing modules as coprocessors in brain-machine
interfaces,” in Proceedings of the 33rd Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBS ’I11), pp. 4613-4616, September 2011.

[32] J. A. Wilson and J. C. Williams, “Massively parallel signal
processing using the graphics processing unit for real-time
brain-computer interface feature extraction,” Frontiers in Neu-
roengineering, vol. 2, no. 11, 2009.

[33] M. A. L. Nicolelis, D. Dimitrov, J. M. Carmena et al., “Chronic,
multisite, multielectrode recordings in macaque monkeys,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 100, no. 19, pp. 11041-11046, 2003.

[34] Q. S. Zhang, S. M. Zhang, Y. Y. Hao et al, “Development
of an invasive brain-machine interface witha monkey model;”
Chinese Science Bulletin, vol. 57, no. 16, pp. 2036-2045, 2012.

[35] K. Xu, Y. Wang, Y. Wang et al., “Local-learning-based neu-
ron selection for grasping gesture predictionin motor brain
machine interfaces,” Journal of Neural Engineering, vol. 10, no.
2, Article ID 026008, 2013.

[36] E.N.Brown, R. Barbieri, V. Ventura, R. E. Kass, and L. M.. Frank,
“The time-rescaling theorem and its application to neural spike
train data analysis,” Neural Computation, vol. 14, no. 2, pp. 325-
346, 2002.

[37] A.Doucet, Sequential Monte Carlo Methods, John Wiley & Sons,
2001.

[38] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte
carlo sampling methods for Bayesian filtering,” Statistics and
Computing, vol. 10, no. 3, pp- 197-208, 2000.

[39] R. Douc, O. Cappé, and E. Moulines, “Comparison of resam-
pling schemes for particle filtering,” in Proceedings of the 4th
International Symposium on Image and Signal Processing and
Analysis (ISPA 05), pp. 64-69, September 2005.

[40] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum
(scan) with CUDA,” GPU Gems, vol. 3, no. 39, pp. 851-876, 2007.

1

