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Schwann cells genetically modified to express S100A4 increases GAP43
expression in spiral ganglion neurons in vitro
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ABSTRACT
Schwann cells (SCs) have been reported as a possible source of neurotrophic support for spiral
ganglion neurons (SGNs). This study was aimed to investigate whether S100A4 was contributed in
the functional effects of SCs on SGNs. SCs were transfected with S100A4 vector or small interfering
RNA (siRNA) against S100A4, and the transfection efficiency was verified by quantitative PCR (qPCR)
and Western blot. The migration of transfected SCs was determined by Transwell assay, and the
expression levels of vascular endothelial growth factor precursor (VEGF) and matrix
metallopeptidase 9 (MMP-9) were measured by Western blot. Co-culture of either S100A4
overexpressed or suppressed SCs with SGNs, and the growth associated protein 43 (GAP43)
expression in SGNs was detected by immunofluorescence (IF), qPCR and Western blot. The
migration of SCs was significantly enhanced by S100A4 overexpression (P < 0.001), while was
suppressed by S100A4 knockdown (P < 0.01). Further, the expressions of VEGF and MMP-9 were
notably up-regulated by S100A4 overexpression, while were down-regulated by S100A4
knockdown. Moreover, co-culture with the S100A4 overexpressed SCs significantly increased the
expression of GAP43 in SGNs (P < 0.01). As expected, co-culture with S100A4 knockdown SCs
decreased GAP43 level (P < 0.05). S100A4 enhanced the migratory ability of SCs. SCs genetically
modified to overexpress the S100A4 could up-regulate the GAP43 expression in SGNs.
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Introduction

Schwann cells (SCs) originate from the neural crest are
the predominant cell type constituting the structure of
peripheral nerves.1 SCs are implicated in many impor-
tant aspects of peripheral nerve biology, including the
conduction of nervous impulses, production of the
nerve extracellular matrix, modulation of neuromuscu-
lar synaptic activity, and presentation of antigens to T-
lymphocytes.2-5 Besides, SCs can produce and secrete
neurotrophic factors, especially brain-derived neuro-
trophic factor (BDNF) which supports and influences
the growth and regenerative capacity of neurons.6 Spi-
ral ganglion neurons (SGNs) are located in Rosenthal’s
canal within themodiolus of the cochlea.7 Maintenance
of a robust SGNs population may improve the efficacy
of the electrode-neural interface and enhance cochlear
implant performance.8 Previous studies have shown
that BDNF secreted from SCs can improve SGNs sur-
vival and prevent degeneration in models of

deafness.9,10 In a word, SCs have an intimate relation-
ship with SGNs.

S100A4, also known asmts1, amember of S100 family
of transcription factors, locates in the 1q21 human chro-
mosome region.11 S100A4 has been reported as a vital
regulator in modulating cell cycle, proliferation, apopto-
sis, migration of various types of cells through different
mechanisms.11,12 S100A4 is widely expressed in the ner-
vous system, and it appears to be involved in the regula-
tion of neuron survival plasticity, and responses to injury
or disease.13 Later studies have identified S100A4 as a
neuroprotectant in peripheral nervous system.14,15 How-
ever, little was known about the neuroprotective effects
of S100A4 on SCs and SGNs.

In this study, rat SCs line RT4-D6P2T were
employed and transfected with S100A4 vector or small
interfering RNA (siRNA) against S100A4, to obtain
S100A4 overexpressed or suppressed SCs. Further, the
migratory ability of transfected cells was determined
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to reveal the effects of S100A4 on SCs migration. Next,
SGNs were co-cultured either with S00A4 overex-
pressed or suppressed SCs, and the expression level of
growth associated protein 43 (GAP43) in SGNs was
detected, to investigate the role of S100A4 dysregu-
lated SCs in SGNs. This study might add data on the
molecular correlation of SCs with SGNs.

Materials and methods

SCs and primary SGNs culture

Rat SCs line RT4-D6P2T was purchased from the
American Type Culture Collection (ATCC; Manassas,
VA). Cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) high glucose (Life Technologies,
Carlsbad), supplemented with 10% fetal bovine serum
(FBS; Hyclone, Logan, UT) and were incubated at 37�C
in a humidified atmosphere containing 5% CO2.

16

A total of 12 Sprague-Dawley rats (postnatal day 3–
5) were provided by the Animal Center of the Academy
of Military Science of the Chinese PLA. Cochleae were
isolated after rats were decapitated, and SGNs were dis-
sociated as previous described.17 The SGNs were culti-
vated in DMEM high glucose (Life Technologies),
25 mMHEPES (Life Technologies), 30 U/mL penicillin
(Gr€unenthal GmbH, Aachen), 3 mL/mL N2 supple-
ment (Life Technologies) and 5 mg/mL insulin (Sigma-
Aldrich, St. Louis).18 SGNs were incubated in a humid-
ified atmosphere with 5% CO2 at 37�C. The mere kill-
ing of rats for tissue analyses was approved by our local
ethics committee. All procedures were performed in
accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals.
Precautions were taken to minimize suffering and the
number of animals used in each experiment.

Cell transfection

SCs were seeded in 6-well plates at a density of
2£ 105. After culture for 24 h, cells were divided into 3
groups, namely control, pc S100A4 and si S100A4. A
S100A4 expression vector, i.e., pc S100A4, was con-
structed by sub-cloning the full-length S100A4 coding
sequence into pcDNA3.1 (Sangon Biotech, Shanghai,
China), and the vector was transfected into cells in pc
S100A4 group. Cells in si S100A4 group were trans-
fected with siRNA against S100A4 (RiboBio, Guangz-
hou, China). All transfections were performed by using
Lipofectamine 2000 reagent (Invitrogen) following the

manufacturer’s protocol. At 48 h after transfection, the
cells were prepared for further analyses.

Real-time quantitative PCR (qPCR)

After transfection, cells were collected and total RNA
in cells were extracted by using TRIzol (Invitrogen).
DNaseI (Invitrogen) was used for removing the DNA
contamination. Afterward, 1 mg RNAs of each sample
were used for cDNA synthesis by using Transcriptor
First Strand cDNA Synthesis Kit (Roche, USA),
according to the manufacturer’s instructions. qPCR
was carried out for a total of 20 mL reaction mixtures
on an ABI Prism 7000 Sequence Detection System
(Applied Biosystems, Foster City, CA, USA) using
FastSTART Universal SYBR Green Master (ROX)
(Roche, USA).18 Data were analyzed according to
2¡DDCt method and were normalized to GAPDH
expression in each sample. All primers were synthe-
sized by GenePharma (Shanghai, China).

Western blotting

After transfection, cells were collected and cellular
protein was extracted by RIPA lysis buffer (Beyotime
Biotechnology, Shanghai, China). Protein concentra-
tion was quantified using BCATM Protein Assay Kit
(Pierce, Appleton, WI, USA), according to the manu-
facturer’s recommendations. Equal amounts of pro-
teins were separated on a sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and
blotted onto polyvinylidene fluoride (PVDF) mem-
branes. The membranes were blocked with 5% skim
milk for 1 h, and then probed with primary antibodies:
S100A4 (sc-292281), vascular endothelial growth fac-
tor precursor (VEGF; sc-7269), matrix metallopepti-
dase 9 (MMP-9; sc-21733), GAP43 (sc-17790) or
GAPDH (sc-365062; Santa Cruz Biotechnology, Santa
Cruz, CA) at 4�C, overnight. Afterward, the mem-
branes were incubated with the appropriate horserad-
ish peroxidase-conjugated secondary antibodies. The
bands were visualized by the ECL Plus Western Blot-
ting Substrate (Thermo Scientific).19

Cell migration assay

Cell migration was evaluated by Transwell assay using
the 8 mm-pore Transwell migration chambers (Corn-
ing, USA). Briefly, transfected cells were seeded in the
upper portion of a chamber with serum-free medium.
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Complete medium filled in the lower chamber as an
attractant. At 48 h after incubation, the non-migrated
cells in the upper chamber were removed by cotton
swabs. The migrated cells were stained with 0.1% crys-
tal violet (Beyotime, Nantong, China) for 30 min, and
then photographed and counted under optical micro-
scope (Olympus, Tokyo, Japan).19

Immunofluorescence (IF)

SGN and SCs were co-cultured as previous described.8

Briefly, SGN were plated onto 8-well chamber slides
(Nalge Nunc International, Rochester, NY, USA) at a
density of 2 £ 104 cells/well. The transfected SCs were
collected and added to the SGN at 2 £ 104 cells/well.
After 24 h of incubation in DMEM high glucose with
10% FBS, cells were washed with phosphate-buffered
saline (PBS) 3 times and fixed with 4% formaldehyde for
20 min on ice. Cells were then permeabilized with 1%
Triton X-100 for 25 min, and blocked in 10% goat serum
(Beyotime) for 30 min at 37�C. The cells were incubated
with the primary antibody GAP43 (sc-17790, Santa Cruz
Biotechnology) overnight at 4�C, and followed by

incubation with fluorescent secondary antibody for 1 h at
room temperature. Cell nuclei were stain for 5 min by
using 40, 6-diamidino-2-phenylindole (DAPI; Beyotime).
The fluorescent images were obtained using an auto-
mated upright microscope system (Leica, DM4000B
LeicaMicrosystems,Wetzlar, Germany).20

Statistical analysis

Data in histograms were from 3 independent experi-
ments in triplicate and were presented as the mean §
standard deviation (SD). All other data were displayed
from one assaying only. Statistical analyses were per-
formed using GraphPad Prism 5 software (GraphPad,
San Diego, CA), and statistical significance between dif-
ferent groups was analyzed by Student’s t tests. A P-
value of< 0.05 was considered as statistical significance.

Results

Effects of transfection on SCs

SCs were transfected with pc S100A4 or si S100A4,
and then the transfection efficiency was verified in

Figure 1. Effects of transfection on SCs. SCs were transfected with S100A4 vector or siRNA against S100A4. (A) The morphology of the
transfected SCs was observed and photographed under a light-microscope. (B) The mRNA level expression of S100A4 in transfected SCs
was determined by qPCR. (C) The protein level of S100A4 was detected by Western blotting. SCs, Schwann cells; siRNA, small interfering
RNA; qPCR, quantitative PCR; ��, P < 0.01.
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vitro. The morphology of transfected SCs observed
from a light-microscope shown that (Fig. 1A), there
was no notable difference between the control group
and transfection group. Subsequently, the protein and
mRNA level expression of S100A4 in cells were
detected by qPCR and Western blot analysis. As
results showed in Fig. 1B and 1C, both the protein and
mRNA levels of S100A4 were elevated by pc S100A4
(P < 0.01), while were suppressed by si S100A4 (P <

0.01). Thus, the overexpressed and suppressed
S100A4 SCs were successfully obtained, and were used
for the forthcoming analyses.

Effects of S100A4 on SCs migration

To explore the functional effects of S100A4 on SCs,
the migration of transfected SCs was measured by
Transwell assay. Results in Fig. 2A and 2B showed
that, cell migration was significantly enhanced by
S100A4 overexpression (P < 0.001), while was inhib-
ited by S100A4 suppression (P < 0.01). Furthermore,
the protein expressions of VEGF and MMP-9 in trans-
fected SCs were detected by Western blotting, to reveal

the underling mechanism of S100A4 on SCs migra-
tion. We found that, both VEGF and MMP-9 were
upregulated by S100A4 overexpression, whereas were
downregulated by S100A4 suppression. Taken
together, we inferred that S100A4 improved SCs
migration might be via regulating VEGF and MMP-9.

Effects of dysregulated S100A4 SCs on the
expression of GAP43 in SGNs

To explore the effects of the dysregulated S100A4 SCs
on SGNs, SCs were firstly transfected with pc S100A4
or si S100A4, and co-cultured with SGNs. GAP43 in
SGNs was probed by IF and its expression was deter-
mined by qPCR and Western blot analysis. As results
showed in Fig. 3A, the expression of GAP43 in SGNs
was remarkably elevated by S100A4 overexpressed
SCs, while was decreased by S100A4 suppressed SCs.
In line with the results in Fig. 3A, Fig. 3B and 3C
showed that, both the protein and mRNA levels of
GAP43 were up-regulated by S100A4 overexpressed
SCs (P < 0.01), whereas were down-regulated by
S100A4 suppressed SCs (P < 0.05). These data

Figure 2. Effects S100A4 on SCs migration. SCs were transfected with S100A4 vector or siRNA against S100A4. (A) SCs migration was
measured by Tranwell assay, and the migrated SCs were stained with crystal violet and photographed under a light-microscope. (B)
Quantification of migrated SCs. (C) Protein expressions of VEGF and MMP-9 in transfected SCs were measured by Western blot. SCs,
Schwann cells; siRNA, small interfering RNA; VEGF, vascular endothelial growth factor precursor; MMP-9, matrix metallopeptidase 9;
��, P < 0.01; ���, P < 0.001.
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suggested that, the expression of S100A4 in SCs might
play a pivotal role in GAP43 expression in SGNs.

Discussion

SCs have an intimate relationship with SGNs with a
number of important functions. S100A4 is widely
expressed in the nervous system, and it appears to be
involved in the regulation of neuron survival plasticity.
However, few investigations have focus on the role of
S100A4 in SCs and SGNs. In this study, SCs were
genetically modified to overexpress or suppress
S100A4. We found that S100A4 overexpression
enhanced the migratory ability of SCs, while S100A4
suppression reduced SCs migration. Additionally, the
expression levels of VEGF and MMP-9 proteins were
upregulated by S100A4 overexpression, while were
downregulated by S100A4 suppression. More impor-
tant, co-culture of S100A4 overexpressed SCs with
SGNs remarkably up-regulated the expression of
GAP43 in SGNs. However, the level of GAP43 was

down-regulated after SGNs were co-cultured with
S100A4 suppressed SCs.

SCs migration is a pivotal step preceding myelina-
tion and remyelination in the peripheral nervous sys-
tem.21 Biochemical reports also demonstrated that
SCs could gradually migrate to the peripheral nerve
injured site and provide supportive effects to proximal
axons which promotes successive neuro-regeneration
by expressing a variety of trophic factors.22 Nowadays,
studies have illuminated that multiple factors, such as
concentrated growth factor (CGF), NMDA receptors
and Netrin-1, have the capacity of improving SCs
migration.23-25 However, our study provided the first
evidence that S100A4 could enhance SCs migration.
VEGF is a potent soluble growth factor, which plays a
key role in regulating angiogenesis.26 Accordingly, an
increasing number of studies evidenced VEGF could
modify the migration of neurons and glia.27 MMP-9 is
an intriguing MMP family member found in adult
nerve only after injury and predominantly in SCs.28

MMP-9 was also reported as a pivotal regulator in SCs

Figure 3. Effects of dysregulated S100A4 SCs on the expression of GAP43 in SGNs. SGNs were co-cultured either with S100A4 overex-
pressed or suppressed SCs. (A) GAP43 in SGNs was probed by IF and observe under an automated upright microscope system. (B) The
mRNA level expression of GAP43 in SGNs was detected by qPCR. (C) The protein expression of GAP43 was detected by Western blot.
SCs, Schwann cells; SGNs, spiral ganglion neurons; GAP43, growth associated protein 43; IF, immunofluorescence; qPCR, quantitative
PCR; �, P < 0.05; ��, P < 0.01.
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migration.29 In the current study, both VEGF and
MMP-9 were upregulated by S100A4 overexpression
in SCs, implying that S100A4 enhanced SCs migration
at least partly via modulation these 2 factors.

GAP43, a protein kinase C substrate, is a member of
the calmodulin-binding protein family and concen-
trates in the presynaptic membrane and growth
cones.30 GAP43 is enriched in neuronal growth cone
and seems to play an important role in neurotransmit-
ter vesicle fusion and recycling, long-term potentiation,
spatial memory formation and learning.31 Moreover,
GAP43 is involved in the damage repair and regenera-
tion of SGNs. In the rat, loss of spiral ganglion caused a
substantial re-emergence of GAP43 immunoreactivity
in varicose fibers of the ipsilateral ventral cochlear
nucleus and cell bodies of the lateral superior olive.32

Up-regulation of GAP43 in SGNs might indicate neu-
ronal regeneration and plasticity.7 Interestingly, in the
present study, the expression of GAP43 in SGNs was
elevated by co-culturing with S100A4 overexpressed
SCs, indicating that S100A4 was implicated in the role
of SCs in SGNs regeneration.

In summary, this study demonstrated that SCs
genetically modified to overexpress the S100A4 could
up-regulate the expression of GAP43 in SGNs in vitro.
Transplantation of S100A4 overexpressed SCs into the
cochlea may provide a clinically relevant means of
preventing SGNs degeneration. Nevertheless, further
research is still needed to fully confirming this
hypothesis.
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