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Abstract

In response to deregulated oncogene activation, mammalian cells activate disposal programs such as programmed cell
death. To investigate the mechanisms behind this oncogenic stress response we used Bcr-Abl over-expressing cells
cultivated in presence of imatinib. Imatinib deprivation led to rapid induction of Bcr-Abl activity and over-stimulation of
PI3K/Akt-, Ras/MAPK-, and JAK/STAT pathways. This resulted in a delayed necrosis-like cell death starting not before
48 hours after imatinib withdrawal. Cell death was preceded by enhanced glycolysis, glutaminolysis, and amino acid
metabolism leading to elevated ATP and protein levels. This enhanced metabolism could be linked to induction of cell
death as inhibition of glycolysis or glutaminolysis was sufficient to sustain cell viability. Therefore, these data provide first
evidence that metabolic changes induced by Bcr-Abl hyper-activation are important mediators of oncogenic stress-induced
cell death. During the first 30 hours after imatinib deprivation, Bcr-Abl hyper-activation did not affect proliferation but
resulted in cellular swelling, vacuolization, and induction of eIF2a phosphorylation, CHOP expression, as well as alternative
splicing of XPB, indicating endoplasmic reticulum stress response. Cell death was dependent on p38 and RIP1 signaling,
whereas classical death effectors of ER stress, namely CHOP-BIM were antagonized by concomitant up-regulation of Bcl-
xL. Screening of 1,120 compounds for their potential effects on oncogenic stress-induced cell death uncovered that
corticosteroids antagonize cell death upon Bcr-Abl hyper-activation by normalizing cellular metabolism. This protective
effect is further demonstrated by the finding that corticosteroids rendered lymphocytes permissive to the transforming
activity of Bcr-Abl. As corticosteroids are used together with imatinib for treatment of Bcr-Abl positive acute lymphoblastic
leukemia these data could have important implications for the design of combination therapy protocols. In conclusion,
excessive induction of Warburg type metabolic alterations can cause cell death. Our data indicate that these metabolic
changes are major mediators of oncogenic stress induced by Bcr-Abl.
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Introduction

It is accepted that activation of growth-promoting oncogenes by

either mutation, gene fusion, or amplification, is necessary but not

sufficient for malignant outgrowth. In fact, tumor cells are often

addicted to the activity of these oncogenes, which makes them perfect

therapeutic targets [1]. However, a prerequisite for an unscheduled

proliferation of tumor cells upon activation of oncogenes seems to be

the simultaneous inhibition of tumor suppressor mechanisms such as

over-expression of anti-apoptotic proteins or inactivation of tumor

suppressors [2,3]. This theory has been arisen from the finding that

normal cells respond to hyper-activation of oncogenes by the

induction of genetically encoded programs such as apoptosis or

senescence [4–6]. Therefore, extreme activation of a growth

promoting oncogene appears to disturb cellular homeostasis, a

phenomenon known as oncogenic stress. Senescence or cell death

pathways induced as consequences of oncogenic stress have been

primarily studied in cells derived from solid tumors rather than

hematopoietic malignancies, which are often triggered by constitu-

tively active oncogenic fusion-proteins such as Bcr-Abl.

Bcr-Abl is derived from a balanced translocation between the

chromosomes 9 and 22 and can be detected in almost all patients

with chronic myeloid leukemia (CML) and in around 20% of cases

of acute lymphoblastic leukemia (ALL). The outcomes for patients

with Bcr-Abl positive leukemias have been substantially improved

with the introduction of the Abl kinase inhibitor imatinib [7]. In

ALL patients, however, imatinib monotherapy produces only a

transient response. Combination therapy strategies using imatinib

and conventional chemotherapy including corticosteroids such as

prednisone and dexamethasone turned out to be superior to the

single administration [8].

The constitutively active tyrosine kinase Bcr-Abl acts upstream

of numerous growth and antiapopototic signaling pathways [9].

Via docking to the adaptor molecules and guanine-nucleotide
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exchangers GRB2 and SOS, Bcr-Abl activates the Ras-MAPK

pathway [10], which in turn enhances the level of the

antiapoptotic protein Bcl-2 [11]. Bcr-Abl also constitutively

activates PI3K/Akt via the scaffold adapter GAB2. PI3K/Akt

acts upstream of mTOR, a pivotal regulator of protein synthesis

[12], and inhibits the proapoptotic BH3 only protein BAD [13].

Bcr-Abl also phosphorylates several Src kinase family members

such as Hck, and Lyn [14] which is required for induction of

Ph+ALL [15]. Several signaling pathways downstream of Src

kinases prevent induction of apoptosis, e.g. Hck recruits STAT5

which not only modulates proliferation but also upregulation of

the antiapoptotic Bcl-xL [16].

Interestingly, Bcr-Abl has also been associated with metabolic

reprogramming [17,18], a phenomenon that is a commonly

accepted hallmark of malignant cells [19]. Already in 1924 Otto

Warburg postulated that in contrast to most cells in normal tissue,

cancer cells generate their energy by ‘‘fermentation’’ of glucose

into lactate even when sufficient oxygen is present [20]. This

phenomenon (today known as aerobic glycolysis or the Warburg

effect), which facilitates uptake and incorporation of nutrients into

the biomass of cancer cells allowing them to sustain higher

proliferative rates [21], also holds true for Bcr-Abl transformed

cells. Bcr-Abl positive cells express the high affinity GLUT-1

glucose transporter and show an increased glucose uptake [17].

When the intracellular glucose content exceeds the capacity to

assimilate glucose, the cells respond with an induction of HIF-1a
that is required to eliminate excess glucose carbon from these cells

in the form of lactate [18]. Therefore, probably via upregulation/

stabilization of HIF-1a, Bcr-Abl switches cellular metabolism to

increased lactate production and reduced oxygen consumption.

This altered metabolic regulation depends on Bcr-Abl kinase

activity since inhibition of Bcr-Abl by imatinib reduces HIF-1a
[18] and changes glucose metabolism back from aerobic glycolysis

to mitochondrial citrate cycle [22].

Recently, it has been demonstrated that acute activation of Bcr-

Abl in imatinib resistant, Bcr-Abl over-expressing cells can induce

cell death [23]. In the present study, we investigated the

correlation between acute Bcr-Abl activation, altered metabolism,

and cell death induction in Bcr-Abl over-expressing cells after

imatinib withdrawal. We here describe that hyper-activation of

Bcr-Abl leads to a significantly enhanced rate of aerobic glycolysis

and glutaminolysis. This ‘‘overshooting’’ metabolism is responsible

for the induction of a p38 and RIP-1 dependent cell death. These

data provide the first evidence that excessive induction of Warburg

type metabolic changes can cause cell death.

Results

Effects of imatinib on Bcr-Abl over-expressing cell clones
To investigate cellular responses following hyper-activation of

Bcr-Abl oncogene we established a cell model based on Bcr-Abl

over-expressing BaF3 cells selected by continuous cultivation in

the presence of 2 mM imatinib. Two imatinib resistant (IMR) cell

clones (termed as p190IMR6 and p190IMR10) were selected for

the study. Both clones were negative for Abl kinase mutations (not

shown) and showed Bcr-Abl overexpression (figure 1A, upper

panel; lanes 3–8). In these clones Bcr-Abl phosphorylation in

presence of imatinib was comparable to that observed in Bcr-Abl

positive parental cells without imatinib (Figure 1A, upper panel;

lanes 1, 3 and 6). Imatinib withdrawal leads to hyper-phosphor-

ylation of Bcr-Abl in IMR cells (Figure 1A, upper panel; lanes 4, 5,

7, and 8) causing an excessive stimulation of Bcr-Abl downstream

pathways as indicated by enhanced phosphorylation of Crkl, Akt,

MAPK, and STAT5 (Figure 1A, lower panel).

Both cell lines were partially resistant to imatinib. Concentra-

tions exceeding 4 mM rapidly killed both cell lines. Interestingly,

imatinib withdrawal also led to a loss of viability of these cell lines

(Figure 1B). Whereas the cell death after high dose imatinib

exposure was related to loss of Bcr-Abl phosphorylation, imatinib

withdrawal induced loss of cell viability was accompanied by an

excessive hyper-phosphorylation of this protein.

To investigate the dependency of these cells on imatinib we

performed cell cycle analysis and AnnexinV-staining. During the

first 24 hours after imatinib withdrawal the cells did not show any

evidence for changes in cell cycle, proliferation (Figure 1C), and

cell viability (Figure 1D). First signs of cell death were apparent

48 hours after imatinib withdrawal as indicated by an increased

number of sub-G1 cells (Figure 1C). To characterize the

mechanism of cell death induced by Bcr-Abl hyper-activation,

we performed Annexin V and propidium iodide (PI) double

staining. Classical apoptosis is characterized by a lag time between

Annexin positivity (phosphatidylserine exposure on the cell

surface) and PI positivity (membrane permeabilization), whereas

in necrosis these events coincide (Figure S1; [24]). Our data show

that already at 48 h when first signs of cell death appeared as well

as at later time points most dead cells were positive for PI

indicating that cell death induced by imatinib withdrawal is more

necrosis-like rather than classical apoptotic (Figure 1D). Cell death

was not only prevented by optimal concentrations of imatinib but

also by partial inhibition of Bcr-Abl-activity by other Abl inhibitors

such as dasatinib and nilotinib indicating that Bcr-Abl-hyper-

phosphorylation is indeed responsible for loss of viability observed

in IMR cells upon imatinib withdrawal (Figure S2).

These results demonstrate that hyper-activation of Bcr-Abl

achieved by imatinib withdrawal leads to a delayed induction of a

necrosis-like cell death.

Imatinib withdrawal influences cellular metabolism
Although the cells did not show any changes in proliferation after

24 h of imatinib withdrawal, we could observe significant changes

in intracellular ATP and protein content as well as an increase in

cell size at this time point (Figure 2A). This could represent a

primary metabolic reaction upon Bcr-Abl hyper-activation. It has

been demonstrated that Bcr-Abl expression is associated with an

increased rate of glycolysis [18,22]. Therefore, we analyzed the

metabolic profile of IMR cells 24 h after imatinib withdrawal using

mass spectrometry assays for the detection of a broad variety of

metabolites as described previously [25–27]. In fact, these cells

showed an increase of glycolysis and pentose-phosphate pathway

intermediates as shown for glucose-6-phosphate, fructose-1,6-

bisphosphate, phosphoenolpyruvate, pentose-phosphates, seduhep-

tulose-7-phosphate and pyruvate (Figure 2B). Together with the

increased extracellular concentrations of lactate (Figure 2B) these

data confirm the view that Bcr-Abl activation leads to an elevated

aerobic glycolysis. Hyper-activation of Bcr-Abl also led to a

consistent increase of the intracellular concentration of all

proteinogenic amino acids as displayed for glutamine, methionine,

serine, alanine, and tyrosine (Figure 2B). Notable was the more than

twofold increase of glutamine upon imatinib withdrawal, indicating

that glutamine is also used as an energy source through elevated

glutaminolysis using several steps of the tricarboxylic acid cycle.

This was supported by our finding that the levels of tricarboxylic

acid cycle intermediates change divergently upon hyper-activation

of Bcr-Abl: the intracellular concentrations of fumarate and malate

were increased whereas the citrate and isocitrate levels were

decreased (Figure 2B). Importantly, this enhanced cellular meta-

bolic activity upon acute hyper-activation of Bcr-Abl was not

beneficial for the cells as proposed by Warburg [28]. On the
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contrary, enhanced glycolysis could be linked to the cell death

observed 48 hours after imatinib withdrawal as inhibition of

glycolysis by 2-deoxyglucose (2-DG) completely rescued cells from

imatinib withdrawal induced death (Figure 2C, left panel). A

significant, although incomplete, inhibition of cell death was also

observed upon partial deprivation of glutamine from the medium

and inhibition of glutaminase activity using the glutaminase

inhibitor 6-diazo-5-oxo-l-norleucine (DON; Figure 2C, middle

and right panels). Although DON turned out to be toxic in presence

of imatinib, it significantly reduced imatinib withdrawal induced cell

Figure 1. Phenotype of Bcr-Abl over-expressing imatinib resistant (IMR) cells. (A) Bcr-Abl expression and activity. Upper panel: Bcr-Abl
protein level and autophosphorylation in imatinib-sensitive cells (p190wt) in comparison to imatinib-resistant cell clones (IMR6 and IMR10) in the
presence or absence of 2 mM imatinib. Lower panel: activity of Bcr-Abl downstream-signaling in IMR cells in the presence of imatinib and following
imatinib withdrawal. (B) Effect of imatinib on survival (as measured by MTT) of Bcr-Abl over-expressing p190IMR clones in comparison to cell
expressing wtBcr-Abl (p190wt) or T315IBcr-Abl (p190T315I). IC50 values of p190wt and p190T315I cells are indicated with dotted lines (C) Effect of
imatinib deprivation on cell cycle distribution. Cells were cultivated in absence or presence of imatinib for indicated time periods and pulse treated
with BrdU for 45 min. Cells were then fixed and evaluated for DNA content and synthesis via BrdU and propidium iodide (PI) staining and analyzed by
flow cytometry. (D) Effect of imatinib deprivation on cell viability. Cells were stained with Annexin V or PI alone (upper two panels) or with the
combination of both Annexin V and PI (lower panel) and analyzed by Flow cytometry.
doi:10.1371/journal.pone.0025139.g001
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death. Interestingly, cellular ATP levels were only slightly decreased

in imatinib deprived cells treated with 2-DG or DON (Figure S3)

indicating that these cells can produce ATP from either glucose or

glutamine.

These experiments indicate that not only enhanced glycolysis

but also enhanced glutaminolysis is involved in cell death induced

by Bcr-Abl-mediated oncogenic stress.

Imatinib withdrawal induces cellular swelling and severe
ER stress

The enhanced metabolic rate in imatinib deprived Bcr-Abl

over-expressing IMR cells led to remarkable morphologic changes.

Microscopically we observed not only cellular swelling but also

cytoplasmic vacuolization with mostly large ballooned vacuoles

(Figure 3A). Such severe cytoplasmic vacuolization may reflect

endoplasmatic reticulum (ER) stress [29]. We therefore stained

cells with ER tracker upon imatinib withdrawal. ER staining

revealed a huge dilation of the ER cisternae indicating that the

vacuoles observed upon imatinib withdrawal were formed by the

ER (Figure 3A). To further confirm that Bcr-Abl hyper-activation

induces ER stress we also investigated expression of typical ER

stress markers. Western blot analysis revealed that imatinib

withdrawal increased phosphorylation of eIF2a on serine 51 and

induced the ER stress-mediated apoptotic protein CHOP

(Figure 3B, left panel), both being distinct markers of ER stress

[30]. Another typical ER stress protein is the transcription factor

XBP-1. XBP-1 is up-regulated and the transcript is converted into

mature mRNA by unconventional splicing mechanisms upon ER

stress [31]. As shown in Figure 3B (right panel), deprivation of

imatinib led to induction of XBP-1 expression and to its alternative

splicing. These results demonstrate that hyper-activation of Bcr-

Abl results in a strong ER stress response.

Recent findings indicate that ER stress is also a potent inductor

of autophagy. We therefore next examined if inhibition of

autophagy might influence cell death. In our cellular system

autophagy was probably induced because Beclin-1 and ATG7

were up-regulated upon imatinib withdrawal. However, neither

the autophagy inhibitor 3-Methyladenin (3-MA) nor silencing of

Beclin or ATG7 (Figure S4) had any influence on induction of cell

death upon imatinib withdrawal.

Therefore, our data indicate that autophagy is induced by acute

Bcr-Abl activation but is not involved in the execution of the

delayed cell death.

Cell death is independent of CHOP-BIM mediated
apoptosis but depends on RIP1 and p38 activation

It has been demonstrated that severe ER stress induces

apoptosis by activating the BH3-only Bcl-2 family member BIM

via CHOP-mediated transcriptional induction [32]. Indeed, BIM-

EL, BIM-L, and BIM-S were elevated upon imatinib withdrawal

in Bcr-Abl overepressing cells (Figure 4A, left panel). Interestingly,

however, despite an almost complete siRNA-mediated down-

modulation of CHOP and BIM (Figure 4A, middle and right

upper panels), neither silencing of CHOP nor BIM had any effect

on induction of cell death in these cells (Figure 4A, middle and

right lower panels). These results indicate that the ER stress

triggered apoptotic pathway via IRE, CHOP, and BIM does not

play a dominant role for induction of cell death in these cells

despite its induction upon imatinib withdrawal. This was further

supported by the result that inhibition of caspases by zVAD-fmk

was not able to prevent but rather enhanced imatinib withdrawal

induced cell death (Figure S5). It appears feasible that BIM-

induced apoptosis is blocked by the antiapoptotic Bcl-2 family

member Bcl-xL which is also up-regulated upon Bcr-Abl hyper-

activation (Figure 4B, upper panel). This hypothesis is supported

by the observation that in the presence of the BH-3 mimetic ABT-

737, which is able to bind and inhibit Bcl-xL, cell death was

induced already 24 hours after imatinib withdrawal (Figure 4B,

lower panel). In contrast to the delayed cell death in absence of

ABT-737, this early cell death was a predominant apoptotic

process since approximately half of the dead cells were positive for

Annexin but negative for propidium iodide (Figure S6).

Together, these results indicate that the deregulated metabolism

induces severe ER stress and also apoptotic signals through the

induction of the pro-apoptotic protein BIM. However, execution

of apoptosis is blocked by the concomitant induction of Bcl-xL at

early time points after imatinib withdrawal.

It is known that inhibition of apoptosis by overexpression of

antiapoptotic Bcl-2 proteins can result in induction of RIP1-

dependent programmed necrosis [33]. RIP1 is a death domain

containing protein kinase that complexes with TRAF2 to activate

MEKK4 and ASK1. Both MEKK4 and ASK1 activate p38

MAPKs via MKK3 and MKK6 [34]. As shown in Figure 4C (left

upper panel), RIP1 activity was induced upon imatinib depriva-

tion as demonstrated by the occurrence of additional slower

migrating RIP1 signals, indicative for RIP1 autophosphorylation

[35]. An enhanced phosphorylation was also observed for p38

upon imatinib deprivation (Figure 4C, left lower panel). Inhibition

of RIP1 by Necrostatin-1 and even more effectively p38-MAPK

inhibition by the p38 inhibitor III rescued cells from imatinib

deprivation induced cell death (Figure 4C, right panel), indicating

that these proteins play a major role for cell death upon oncogenic

stress. RIP1 activation was completely blocked upon inhibition of

aerobic glycolysis by 2DG further supporting that this pathway is

indeed activated by the overshooting metabolism upon acute Bcr-

Abl activation (Figure 4D). Interestingly, inhibition of p38 also

blocked RIP1 activation indicating the existence of a positive

feedback loop (Figure 4D).

Corticosteroids prevent imatinib deprivation induced cell
death

Next, we used a high throughput screening assay to determine

whether approved drugs would interfere with imatinib withdrawal

induced cell death. For this, we screened the Prestwick Chemical

LibraryH which contains 1,120 marketed drugs by means of MTT

assay. Upon imatinib deprivation cell viability was reduced to

20.7% of imatinib-treated control cells in the absence of inhibitors

(DMSO controls; Figure 5A, indicated with blue line). Among

those 1,120 compounds, only 17 were identified capable to

significantly protect Bcr-Abl over-expressing cells from imatinib

withdrawal induced cell death resulting in a survival rate of more

than 60% (Figure 5A, red bars). Interestingly, 16 of those turned

out to be corticosteroids such as the glucocorticoids betamethasone

and prednisolone. To confirm these hits of our screening results,

we determined the percentage of cell death upon imatinib

withdrawal in presence or absence of betamethasone and

prednisolone by Annexin-V staining. As shown in Figure 5B (left

panel), both compounds almost completely rescued Bcr-Abl hyper-

activated cells from imatinib deprivation induced cell death.

Importantly, treatment with corticosteroids was sufficient to

normalize glucose metabolism: in Bcr-Abl hyper-activated cells

betamethasone reduced key intermediates of glycolysis, such as

glucose-6-phosphate, fructose-1,6-bisphosphate, and phosphoenol-

pyruvate, to levels comparable to those observed in imatinib

treated controls (Figure 5B, right panel). These results support our

observation that cell death upon Bcr-Abl overactivation is
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Figure 2. Imatinib withdrawal alters cell metabolism in IMR cells. (A) ATP content (*: P = 0.0313, left panel), protein content (*: P = 0.0367,
middle panel), and cell size (***: P,0.0001, right panel) of IMR cells cultivated with imatinib or 24 hours after imatinib withdrawal. Values reflect
means 6 SD from 3 experiments. (B) Effects of imatinib withdrawal on glucose and amino acid metabolism. Cells were cultivated in presence or
absence of imatinib for 24 hours and then harvested and prepared for GC-MS or LC-MS-MS. Values reflect means 6 SD from 3 experiments. (C)
Induction of cell death in IMR cells cultivated with imatinib or 48 hours after imatinib withdrawal in the presence or absence of 2-deoxy-D-glucose

Metabolism and Cell Death upon Oncogenic Stress
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mediated by enhanced glucose and glutamine metabolism which

can be antagonized by corticosteroids.

Corticosteroid treatment enhances Bcr-Abl
transformation and selects for Bcr-Abl overexpression

Our results so far demonstrate that hyper-activation of the

oncogene Bcr-Abl led to induction of cell death as a consequence

of an enhanced metabolic activity. To study whether this cell death

limits the transforming activity of Bcr-Abl, we transfected BaF3

cells with an expression vector containing e1a2Bcr-Abl as insert in

the presence or absence of prednisolone or betamethasone. As

shown in Figure 6A, transfection efficacy was significantly

enhanced in the presence of corticosteroids despite of a markedly

reduced proliferation capacity of more than 50% in BaF3 cells (not

shown). Furthermore, the proliferation rate of Bcr-Abl transfected

cells was enhanced in presence of corticosteroids as indicated by

an elevated size of the colonies (Figure 6A, left panel).

Interestingly, most of the cell clones cultivated in presence of

corticosteroids were characterized by higher expression and

activation of Bcr-Abl (Figure 6B). Together, these data indicate

that corticosteroids enhance cell transformation through Bcr-Abl

and select for Bcr-Abl overexpression.

Discussion

Oncogenes are altered version of normal genes (proto-

oncogenes) with deregulated activity [36]. Although they are best

known for their role in induction of cell proliferation and

inhibition of apoptosis, oncogenes can also, under certain

conditions, initiate cellular disposal programs. For example,

expression of oncogenic Ras in normal cells is sufficient to trigger

cell death [37]. Here we show that the same principle holds true

for another oncogene, namely Bcr-Abl. In Bcr-Abl over-expressing

cells partially resistant to imatinib, withdrawal of this TKI leads to

a protracted induction of cell death. Our data indicate that this

lethal oncogenic stress response is caused by an enhanced aerobic

glycolysis and glutaminolysis.

According to our knowledge, these data provide the first

evidence linking enhanced aerobic glycolysis and glutaminolysis to

induction of cell death. High rates of glucose utilization and lactate

production despite the presence of sufficient oxygen are the most

common metabolic hallmarks of malignant cells [38]. This

metabolic switch from mitochondrial glucose oxidation to aerobic

glycolysis, also known as Warburg effect, is an efficient strategy of

tumor cells for both energy production and maximizing their

anabolic growth. In addition, the accompanying repression of

mitochondrial respiration seems to serve as a protective mecha-

nism for tumor cells to avoid excessive production of ROS [39].

Our data indicate that an excessive glycolysis upon acute hyper-

activation of oncogene-dependent pro-proliferative and antiapop-

totic signals can have opposite effects and induces cell death. The

paradoxical observation that Bcr-Abl mediated excessive glucose

consumption can suppress leukemic cell growth has also been

previously reported [18]. Zhao et al. investigated HIF-1a induced

effects on metabolism in Bcr-Abl over-expressing clones. They

found that these cells display an increase in glycolysis but a

concomitant reduction in cell counts. These authors interpreted

these data as evidence for diminished cell proliferation [18]. Our

data show that this reduced cell number is more likely the result of

induction of cell death. We further demonstrate that inhibition of

glycolysis or glutaminolysis is sufficient to abrogate cell death upon

hyper-activation of Bcr-Abl, strongly supporting the hypothesis

that cell death is indeed mediated by an enhanced glucose

metabolism. Numerous experiments have demonstrated that

Figure 3. Imatinib withdrawal induces ER stress. (A) Phase contrast images of IMR cells cultivated with or without imatinib for 24 hours (left
panels) and p190IMR cells stained with ER-TrackerTMGreen dye (Invitrogen) 24 hours after imatinib withdrawal (right panel). (B) Imatinib withdrawal
induces prototypical ER stress markers. Left panel: phosphorylation of eIF2a and protein level of CHOP in presence of imatinib and upon imatinib
withdrawal evaluated after indicated time periods by western blot analysis. Right panel: agarose gel electrophoresis of XBP-1 splicing variants
amplified by PCR.
doi:10.1371/journal.pone.0025139.g003

(**: P = 0.0048, upper panel), in medium with different glutamine concentrations (*: P = 0.02, middle panel) or in presence or absence of 6-diazo-5-
oxo-l-norleucine (DON; **: P = 0.0014). After treatment cells were harvested, stained for Annexin-V-FITC and cell death was quantified by FACS
analysis. Values reflect means 6 SD from 3 experiments.
doi:10.1371/journal.pone.0025139.g002
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tumor cells strongly rely on aerobic glycolysis [38]. Our

experiments show that induction of aerobic glycolysis above a

critical level can be lethal for transformed cells. Furthermore, they

demonstrate that abnormal activation of cellular oncogenes is

capable of inducing glycolysis above this lethal threshold. The

biological significance of this observation is further supported by

the fact that compounds antagonizing these metabolic alterations

render the cells permissive for the transforming activity of Bcr-Abl.

Induction of cellular death upon Bcr-Abl hyper-activation is a

remarkably slow process. During the first 24 hours after imatinib

withdrawal we observed neither signs of cell death nor any

changes in cell cycle distribution. During this time period the cells

showed an enhanced anabolic metabolism paralleled by an

increase in PI3K, Ras, and STAT signaling. Moreover, the cells

displayed both morphological and molecular changes indicative

for a prototypical ER stress response. Interestingly, a comparable

cellular response has also been described in primary melanocytes

following exogenous expression of another oncogene, namely the

oncogenic form of HRAS [40] supporting the hypothesis that ER

stress might represent a more general limiting factor for the

transforming capacity of oncogenes.

ER stress can be activated by several signals such as the

unfolded protein response, changes in protein and lipid metabo-

lism [41] and alterations of the redox or metabolic state of a cell

[42,43]. Dependent on cell type and the given status of a cell,

severe ER stress can have different consequences such as the

Figure 4. Imatinib deprivation leads to non-apoptotic cell death mediated by p38 and RIP1. (A) BIM is highly induced but does not affect
cell death upon imatinib deprivation. Left panel: Cells were cultivated in presence or absence of imatinib for indicated time periods and harvested for
detection of BIM protein variants in western blot analysis. Right panel: cells were transfected with control siRNA or siRNA targeting BIM or CHOP. After
16 hours medium was changed and cells were further cultivated with or without imatinib for 48 hours. Cells were then harvested for western blot
analysis or quantification of cell death by Annexin staining and flow cytometry. (B) Apoptosis is antagonized by a parallel induction of Bcl-xL. Upper
panel: western blot analysis of Bcl-xL from cells cultivated with or without imatinib. Lower panel: inhibition of Bcl-xL by ABT-737 leads to induction of
apoptosis early after imatinib withdrawal (***: P = 0.0012). Cells were cultivated in the presence and absence of imatinib and ABT-737 for 24 hours
and then harvested for Annexin V-FITC staining and flow cytometry. Values reflect means 6 SD from 3 experiments. (C) RIP1 and p38 activity is
induced upon imatinib withdrawal and responsive for induction of cell death. Left panel: cells were cultivated with or without imatinib and harvested
for western blot analysis using specific antibodies recognizing p38-Thr180/Tyr182, p38 or RIP1. Right panel: inhibition of RIP1 by Necrostatin-1
(**: P = 0.0076) and inhibition of p38 (*: P = 0.0102) antagonize cell death upon imatinib withdrawal. Cells were incubated with or without Necrostatin-
1 and p38 inhibitor III and imatinib for 48 hours and then harvested for Annexin V staining and flow cytometry. Values reflect means 6 SD from 3
experiments. (D) Inhibition of glycolysis or p38 activity abrogates RIP1 posttranslational modification upon Imatinib withdrawal. Cells were incubated
with or without 2-deoxy-D-glucose or p38 inhibitor III and Imatinib as indicated. 48 hours after Imatinib withdrawal cells were harvested for western
blot analysis.
doi:10.1371/journal.pone.0025139.g004
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induction of apoptosis [44] or the initiation of autophagy [45]. At

early time points after Bcr-Abl hyper-activation both apoptosis

and autophagy related proteins were up-regulated, indicating that

different cell death mechanisms are activated. However, cell death

development induced either by apoptotic or autophagic signals

was antagonized by a parallel induction of the antiapoptotic Bcl-

xL protein. If execution of apoptosis is blocked by high levels of

antiapoptotic proteins or by defects in activation and/or function

of caspases, alternative non-apoptotic cell death pathways can be

activated, such as RIP1-dependent programmed necrosis [33].

RIP1 is a death domain containing protein kinase that complexes

with TRAF2 to activate MEKK4 and ASK1. Both MEKK4 and

ASK1 then activate p38 via MKK3 and MKK6 [34]. Indeed, our

data show that both RIP1 as well as p38 were activated upon Bcr-

Abl hyper-activation. Inhibition of RIP1 by Necrostatin-1 partially

rescued cells from imatinib deprivation-induced cell death,

indicating that this necrotic/necroptotic signaling pathway

substitutes for the blocked apoptosis at least partially. This is not

only supported by our observation that after Bcr-Abl hyper-

activation most dead cells showed typical features for necrosis in

Annexin V and propidium iodide staining (Figure 1D) but also by

the fact that zVAD-fmk enhances, rather than blocks cell death

development (Figure S4; [46]). Importantly, inhibition of aerobic

glycolysis by 2DG blocked activation of RIP1, indicating that this

Figure 5. Modulation of cell death and altered metabolism induced by imatinib withdrawal in IMR cells. (A) Effects of a panel of 1,120
approved small molecule inhibitors (Prestwick library) on cell survival upon imatinib-deprivation. Cells were incubated with DMSO control, inhibitors
and with or without imatinib for 48 hours and cell survival was then measured by MTT colorimetric analysis. Values reflect percent survival of cells
treated with inhibitor in absence of imatinib in relation to imatinib treated controls. Survival of imatinib withdrawal alone is indicated by a dotted
line. (B) Effects of betamethasone (**: P = 0.001) and prednisolone (***: P,0.0001) on induction of cell death (left panel) and glucose metabolism
(right panel) on imatinib withdrawal induced cell death. Cells were cultivated in the presence or absence of betamethasone, prednisolone, and
imatinib for 48 hours and then harvested for cell death quantification by Annexin V staining and flow cytometry (left panel) or for fixation and
preparation for GC-MS or LC-MS-MS (right panel). Values reflect means 6 SD from 3 experiments.
doi:10.1371/journal.pone.0025139.g005
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kinase activity dependent pathway is indeed activated by the

overshooting metabolism upon hyper-activation of Bcr-Abl.

Interestingly, inhibition of p38 was even more effective in rescuing

cells from Imatinib deprivation induced death. It has been

demonstrated that p38 inhibition may reduce HIF-1a protein

expression and therefore negatively regulate aerobic glycolysis

[47]. The HIF-1a induced changes in glycolysis in Bcr-Abl over-

expressing cells [18] may therefore be dependent on p38

activation. This hypothesis is supported by our finding that

inhibition of p38 had the same effect on RIP1 activity as inhibition

of glycolysis. Therefore, p38 may also act upstream of RIP1 via

induction of glycolysis.

In conclusion our data provide insight into the molecular

mechanisms connecting oncogene-altered metabolism with cell

death. The above observations support the hypothesis that

overshooting glycolysis and glutaminolysis upon acute Bcr-Abl

hyper-activation trigger a RIP1 and p38 dependent necrosis-like

cell death. This ability to induce cell death by hyper-activation of

Bcr-Abl may also be relevant to other oncogenes and their

pathways such as the PI3K pathway which regulates many of the

normal metabolic consequences of growth factor stimulation [38].

Pharmacological hyper-activation of this pathway could be

achieved by inhibition of PTEN.

It remains open to what extent these findings will have clinical

implications. In vitro, overexpression and/or amplification have

been shown to represent important mechanisms of secondary

resistance to imatinib [48]. In vivo, however, amplification of Bcr-

Abl has rarely been observed to be causal for clinical resistance to

imatinib. The majority of CML patients with a chronic phase

resistant to imatinib develop imatinib resistant cell clones

harboring point mutations in the kinase domain of Bcr-Abl.

Interestingly, the major risk factor for developing resistance during

chronic phase is poor compliance [49]. From this it could be

concluded that these inadvertent interruptions of imatinib

treatment predispose for resistance caused by Bcr-Abl point

mutations but not for clones harboring an amplified Bcr-Abl gene.

This clinical observation is well in accordance with our results.

Nevertheless, as interruptions of imatinib treatment favor the

development of resistant Bcr-Abl mutants, therapy free intervals

cannot be recommended for clinical study.

A second clinical observation also supports the relevance of our

experiments. In a few CML patients multiple copies of the Bcr-Abl

Figure 6. Corticosteroids render the BaF3 cells permissive for the transforming activity of Bcr-Abl. (A) Colony number and colony size of
BaF3 cells transfected with an expression vector containing e1a2bcr-abl as insert in presence or absence of prednisolone or betamethasone. 48 hours
after transfection cells were counted and further cultivated in semisolid medium with or without prednisolone or bethamethasone. Left panel:
photographs of representative wells (from 6-well plates). Right panel: colony numbers of cells transfected in absence (c) or presence of prednisolone
(p; **: P = 0.0013) or betamethasone (b; **: P = 0.0013). Values reflect means 6 SEM of triplicates from 3 independent experiments (B) Bcr-Abl
expression and autophosphorylation of bcr-abl transfected cell clones. Left panel: representative example. Right panels: relative Bcr-Abl protein levels
in absence (c) or presence of prednisolone (p) or betamethasone (b) and relative autophosphorylation in absence (c) or presence of prednisolone (p;
*: P = 0.0126) or betamethasone (b; *: P = 0.0364) were measured by forming the ratio of the densitometric values of bands pooled from results of 10
clones.
doi:10.1371/journal.pone.0025139.g006
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oncogene have been observed after transformation to blast crisis

[50]. Interestingly, in one of these patients the cell clone with Bcr-

Abl amplification completely disappeared after discontinuation of

imatinib [50]. Again, our in vitro finding that imatinib withdrawal

induces cell death in Bcr-Abl over-expressing cell clones provides a

possible mechanism for this phenomenon.

Imatinib monotherapy in previously treated patients with Ph-

positive ALL produced a response which was only modest and

short-lived [51]. Therefore, these patients are currently treated

with the combination of imatinib, chemotherapeutics, and

corticosteroids [52,53]. In vitro data from us and others indicate

a complex interaction between Bcr-Abl activity and effects of

corticosteroids. Bcr-Abl protects cells from corticosteroid-induced

cell death [54,55]. Concomitantly, corticosteroids render pre-B

cells more permissive for excessive activity of Bcr-Abl as supported

by our observation that the transforming capacity of Bcr-Abl is

increased in presence of prednisolone or betamethasone. More-

over, imatinib resistant Bcr-Abl over-expressing cells are rescued

from imatinib withdrawal induced cell death when cultured in

presence of corticosteroids. The molecular mechanism for this

protection from oncogenic stress is the reversal of Bcr-Abl induced

changes in cellular metabolism. Indeed, corticosteroids have been

shown to reduce glycolysis in macrophages and thymocytes

[56,57]. From these data it may be hypothesized that corticoste-

roids provide survival advantages for tumor cells upon oncogenic

stress and contribute to the pathogenesis of malignant disease.

Indeed, clinical observations demonstrated that corticosteroid

treatment may support the development of malignant tumors.

Corticosteroids have been shown to increase skin cancer risk in

non-Hodgkin’s lymphoma [58] and enhance risk of bladder cancer

[59]. From our finding that corticosteroids are capable of

antagonizing the cell death induced by imatinib withdrawal in

vitro, it may be hypothesized, that intermittent treatment with

imatinib combined with continuous steroid therapy would be

hazardous. The schedules used for treatment of ALL, however,

usually combine continuous treatment of imatinib with intermit-

tent steroid therapy. These schedules should not facilitate

resistance development according to our data. This also might

explain why amplification as a resistance mechanism is very rare in

Bcr-Abl positive ALL. To our knowledge there is no such case

described in the literature.

Together, these observations demonstrate that unexpected and

complex interactions may occur when antitumor drugs with

different mechanisms of action are combined for treatment of

malignant disease. To further complicate the issue, these

interactions are in part schedule dependent. Preclinical studies

using other cell models and primary cells are required to better

understand potential risks of combining different drugs. In

addition, careful clinical observation aware of these risks is of

utmost importance to timely detect potential harmful effects of

such combinations.

Materials and Methods

Cell culture
The BaF3 was provided by the German Collection of

Microorganisms and Cell Cultures (DSMZ, Germany). BaF3p190

was obtained by transfecting the murine factor dependent pro-B

cell line BaF3 with pSRaMSVtkneo-p190e1a2. Cells were

cultured in RPMI 1640 medium (Gibco), supplemented with

10% heat inactivated fetal bovine serum, 50 mg/ml streptomycin

and penicillin (Gibco), 20 mM L-glutamine (or in concentrations

as indicated) and maintained in a humidified 95% air-5% CO2

atmosphere at 37uC. Resistant clones were achieved as described

previously [60] by cultivating Bcr-Abl positive cells in semisolid

medium in the presence of 2 mM imatinib. Cell clones were

characterized for kinase domain mutations.

Reagents
Imatinib mesylate was provided by Research Chemicals inc.

Imatinib was used at a concentration of 2 mM. The Prestwick

Chemical LibraryH containing 1,200 small molecules was obtained

from Prestwick-Chemical and used at a concentration of 2 mg/ml.

2-deoxy-D-glucose (Sigma, Germany) was used at 1 mM. 6-diazo-

5-oxo-l-norleucine (DON; Sigma, Germany) was used at 1 mM. 3-

Methyladenin (Sigma, Germany) was used at a concentration of

300 mM. ABT-737 (Toronto Research Chemicals, Canada) was

used at 1 mM. P38 MAPK Inhibitor III (Calbiochem, USA) was

used at 2 mM. Necrostatin-1 (Sigma, Germany) were used at

50 mM. Prednisolone and betamethasone (Sigma, Germany) were

used at a concentration of 2 mg/ml. The pan-caspase inhibitor

zVADfmk (Calbiochem, USA) was used at 50 mM.

Analysis of protein expression
The cellular pellet was resuspended in Laemmli buffer, boiled

for 5 min at 97uC and sonicated as described [61]. Following

electrophoresis proteins were transferred to nitrocellulose mem-

branes (Schleicher & Schuell Bioscience, Germany). The blots

were blocked in 5% nonfat milk in TBS-Tween and incubated

with the primary antibodies: anti-Bcl-xL (BD Pharmingen, USA),

anti-Abl, anti-p-Tyr-100, anti-(Tyr207)Crkl, anti-(ser473)AKT,

anti-AKT, anti-(Tyr202/Tyr204)p44/42, anti-(Tyr694)-Stat5, an-

ti-(Thr180/Tyr182)p38, anti-p38, anti-(Ser51)eIF2a, anti-CHOP,

anti-Bim, anti-Beclin-1, anti-ATG7 (Cell Signaling Technologies,

USA), and anti-b-actin (Sigma, Germany). Afterwards, blots were

incubated with secondary antibody conjugated to horseradish

peroxidase (Cell Signaling Technologies, USA) and signals were

detected by chemiluminescence (Pierce Biotechnology, USA).

Detection of cell death
Induction of cell death was assessed by FITC-conjugated

Annexin V (Pharmingen, USA) and propidium iodide (PI; Sigma,

Germany) staining. The staining was performed according to

manufacturers’ instructions and analyzed by flow cytometry.

Cell cycle analyses
Cells were pulse-treated with 10 mM BrdU for 45 min, then

pelleted and fixed in ethanol. Cells were stained with propidium

iodide (PI) and analysis was performed by determination of DNA

content using flow cytometry (Becton Dickinson, Germany).

Growth inhibition analysis
Growth inhibition and IC50 was assessed from the changes in

mitochondrial activity after 48 hours of imatinib treatment using

MTT assay [62].

siRNA experiments
For silencing we used siGenome SMARTpool siRNA (Dhar-

macon, UK). Transfection was performed as previously described

[63]. In brief, cells were set to a density of 3.26106/ml. 800 ml of

this cell suspension were mixed with 650 mmol siRNA in a 4 mm

electroporation cuvette (Peqlab, Germany) and electroporated.

Sequences targeted by SMARTpool siRNAs are listed in table 1.

As a control we used Non-Targeting siRNA#1 (Dharmacon, UK).

16 hours after transfection imatinib was washed out. 24 hours

after imatinib withdrawal transfection was repeated. After 48 h
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cell death was quantified. The efficacy of siRNA silencing was

tested by Western Blot.

Transfection experiments
BaF3 cells were transfected with the retroviral vector

pSRaMSVtkneo-p190e1a2 by electroporation using a double-

pulse protocol (first pulse: 750 V, 25 mF, 99 V, second pulse:

120 V, 1,500 mF, 99 V). Transfected cells were transferred to

medium containing 1 ng/ml mIL-3 and 2 mg/ml betamethasone

or prednisolone. Control cells were transferred to medium without

corticosteroids. After two days, mIL-3 was deprived and 16106

cells were further cultivated in semi-solid medium. The semi-solid

layer was covered by another layer of medium with or without

betamethasone or prednislone. After one week colonies were

counted and 10 clones each were picked and analyzed for Bcr-Abl

expression and autophosphorylation.

Microscopy
For analysis of the vacuolization cells were incubated with

50 mM ER-TrackerTMGreen dye (Invitrogen, Germany) and

analyzed by conventional fluorescence microscopy (Leica, Ger-

many).

Metabolomics
The concentrations of glucose, lactate, pyruvate, fumarate,

malate, a-ketoglutarate, cis-aconitate, isocitrate, citrate, and

proteinogenic amino acids were determined by GC-MS as

described [25,26].

Glucose-6-phosphate, fructose-6-phosphate, phosphoenolpyr-

uvate, 3-phosphoglycerate, fructose-1,6-bisphosphate, 6-phospho-

gluconate, sedoheptulose-7-phosphate, ribose-5-phosphate, ribu-

lose-5-phosphate, and glucose-1-phosphate were determined by

LC-MS-MS [27] using [13C6]glucose-6-phosphate, [13C6]glucose-

1-phosphate, [13C3]phosphoenolpyruvate, and [13C6]fructose-1,6-

bisphosphate as internal standards.

XBP-1 RT-PCR splicing assay
The detection of XBP-1 splicing variants was performed as

described by [64].

Quantification of ATP and protein content
Quantification of ATP was performed using the ATP tumor

chemosensitivity assay (DCS Diagnostics, Germany) with 16,000

cells/well in triplicates according to the manufacturers’ instruc-

tions.

For quantification of total cellular protein content 16106 cells

were collected by centrifugation and dissolved in lysis buffer

(50 mM Tris-HCl, pH 7.6; 250 mM NaCl; 0.1% Triton X-100;

5 mM EDTA; 1 mg/ml leupeptin; 1 mM phenylmethylsulfonyl

fluoride (PMSF); 1 mM dithiothreitol (DTT); 1 mg/ml aprotinin).

Protein content of the extracts was then determined using

Advanced Protein Assay (Cytoskeleton Inc, USA) according to

the manufacturers’ instructions with bovine serum albumin as a

protein standard.

Statistics
Data are expressed as standard deviation of the means (SD).

Changes in paired samples were analyzed using two-sided paired t-

Test.

Supporting Information

Figure S1 Analysis of phosphatidyl serine (quantified by
Annexin V FITC) versus cell permeability (quantified by
propidium iodide) by flow fluorocytometry in BaF3p190
IMR cells incubated with or without prototypical
inducers of apoptosis and necrosis. Cells were incubated

with/without staurosporine as apoptotic control or H2O2 as

necrotic control (Zhang et al., 2009*) for 4 hours and then stained

with Annexin V or propidium iodide alone (upper two panels) or

with the combination of both Annexin V and propidium iodide

(lower panel). *Zhang H, Zhong C, Shi L, Guo Y, Fan Z. (2009).

Granulysin Induces Cathepsin B Release from Lysosomes of

Target Tumor Cells to Attack Mitochondria through Processing of

Bid Leading to Necroptosis. J Immunol 182: 6993–7000.

(TIF)

Figure S2 The second generation Bcr-Abl inhibitors
dasatinib and nilotinib reduce Bcr-Abl activity and
rescue Bcr-Abl over-expressing cell clones from imatinib
withdrawal induced cell death. Left panel: Bcr-Abl protein

level and autophosphorylation in imatinib-sensitive cells (p190wt)

in comparison to imatinib-resistant cell clones (IMR6 and IMR10)

in the presence or absence of 2 mM imatinib, 100 nM dasatinib, or

75 mM nilotinib. Right panel: induction of cell death in cells

cultivated in presence or absence of imatinib, dasatinib, or

nilotinib.

(TIF)

Figure S3 Cellular ATP levels in imatinib deprived cells
incubated with or without 2-DG or DON. Cells were

cultivated in presence or absence of 1 mM 2-DG or 1 mM DON

for 48 hours and then harvested for ATP quantification. Values

are presented as relative to controls (cells cultivated with imatinib)

and reflect means 6 SD from triplicates.

(TIF)

Figure S4 Inhibition of autophagy has no effect on
induction of cell death upon Bcr-Abl hyper-activation. (A)

3-MA has no effect on imatinib withdrawal induced cell death.

Cells were pre-treated with the authophagy inhibitor 3-MA prior

to Imatinib withdrawal. After 48 hours cells were harvested for cell

death quantification by Annexin V staining and flow cytometry.

(B) Down-modulation of central regulators of autophagy has no

influence on imatinib withdrawal induced cell death. Cells were

Table 1. siRNA target sequences.

gene siRNA1 siRNA2 siRNA3 siRNA4

BIM UUACAACUGUUACGCUUUA GGAGACGAGUUCAACGAAA UGAUGUAAGUUCUGAGUGU GGGUGUUUGCAAAUGAUUA

CHOP GGAAGCAACGCAUGAAGGA GAGCAAGGAAGAACUAGGA CAACAGAGGUCACACGCAC GGUAUGAGGAUCUGCAGGA

Beclin-1 GGAAGAGGCUAACUCAGGA GGAGUGGAAUGAAAUCAAU GGGAGUAUAGUGAGUUUAA GUACCGACUUGUUCCCUAU

ATG7 GAUACAAGCUUGGCUGCUA GCUAGAGACGUGACACAUA GGCAGCCUCUGUAUGAAUU GGUCGUGUCUGUCAAGUGC

doi:10.1371/journal.pone.0025139.t001
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transfected with control siRNA or siRNA targeting Beclin (left

panel) or ATG7 (right panel), cultivated with/without Imatinib for

48 h, and then harvested and analyzed for protein levels and cell

death.

(TIF)

Figure S5 Inhibition of Caspase activity by zVADfmk
enhances, rather than blocks cell death development.
Cells were pre-treated with 50 mM zVAD-fmk for 2 hours before

imatinib withdrawal. After 48 h cells were harvested and cell death

was quantified by Annexin V-staining.

(TIF)

Figure S6 Characterization of early cell death after
imatinib withdrawal in cells pretreated with ABT-737 by
Annexin V and propidium iodide staining. Cells were

cultivated in the presence and absence of imatinib and ABT-737

for 24 hours and then harvested for Annexin V or propidium

iodide single staining.

(TIF)
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