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Sickle cell disease (SCD) is associated with chronic hemolytic anemia 
and a heightened inflammatory state. The causal role of inflamma-
tory pathways in stroke associated with SCD is unclear. Therefore, 

the hypothesis that deletion of the non-hematopoietic interleukin-1 
receptor (IL-1R) pool may be beneficial in SCD was pursued. Since 
potential deleterious effects of IL-1R signaling in SCD could be mediated 
via downstream production of interleukin-6 (IL-6), the role of the non-
hematopoietic IL-6 pool was also addressed. Bone marrow transplanta-
tion (BMT) from SCD to wild-type (WT) recipient mice was used to gen-
erate SCD mice (Wt,SCDbmt). In order to generate mice with non-
hematopoietic deficiency of IL-1R or IL-6, SCD marrow was transplant-
ed into IL-1R deficient (IL1R-/-,SCDbmt) or IL-6 deficient recipients (IL6-/-, 
SCDbmt). Blood counts, reticulocytes, soluble E-selectin (sEsel), and IL-6 
levels were analyzed 14-15 weeks post-BMT. Ischemic stroke was 
induced by middle cerebral artery (MCA) photothrombosis at 16 weeks 
post-BMT. A separate group of Wt,SCDbmt mice was given the IL-1R 
inhibitor, anakinra, following stroke induction. Seventy-two hours after 
MCA occlusion, stroke volume was assessed by staining brain sections 
with 2,3,5-triphenyltetrazolium chloride. Formalin-fixed brain sections 
were also stained for macrophages with MAC3, for endothelial activa-
tion with ICAM-1, and for loss of blood brain barrier integrity with fib-
rin(ogen) staining. All SCD mice generated by BMT were anemic and the 
severity of anemia was not different between Wt,SCDbmt,  
IL1R-/-,SCDbmt, and IL-6-/-,SCDbmt mice. Three days following MCA 
occlusion, stroke volume was significantly reduced in IL1R-/-,SCDbmt 
mice compared to Wt,SCDbmt mice and IL6-/-,SCDbmt mice. Plasma levels 
of sEsel were lower in IL1R-/-,SCDbmt compared to Wt,SCDbmt and 
IL-6-/-,SCDbmt mice. Post-stroke treatment of Wt,SCDbmt mice with 
anakinra decreased stroke size, leukocyte infiltration, ICAM-1 expres-
sion, and fibrin(ogen) accumulation compared to vehicle-treated mice. 
Deficiency of non-hematopoietic IL-1R or treatment with an IL-1R 
antagonist is sufficient to confer protection against the increased stroke 
size associated with SCD. These effects of IL1R deficiency are associated 
with reduced endothelial activation, leukocyte infiltration, and blood 
brain barrier disruption, and are independent of non-hematopoietic IL-6 
signaling.
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ABSTRACT

 

Introduction 

Sickle cell disease (SCD) is associated with acute and chronic vascular complica-
tions leading to premature morbidity and mortality, including adverse cerebrovas-
cular events, such as stroke.1 The stroke risk for a child with SCD is over 300 times 
greater than for a child without SCD2 with clinically apparent strokes occurring in 
11% of SCD patients before the age of 20. Approximately two thirds of these 
patients experience recurrent cerebral infarction.3 Genotype greatly influences the 



risk of stroke in SCD patients, with those with hemoglo-
bin (Hb)SS having the highest risk and those with sickle 
β+-thalassemia having the lowest risk.2 In general, the 
most prevalent subtype of stroke associated with SCD 
patients is ischemic stroke, however between the ages of 
20 and 29 hemorrhagic strokes are more prevalent.2 Stroke 
prevention in SCD patients is primarily accomplished 
through chronic blood transfusions4 and hydroxyurea 
treatment.5-7 

Although erythrocyte sickling in response to stressors 
constitutes the primary underlying defect of SCD, subse-
quent inflammatory responses to vascular occlusive 
events contribute to organ damage and further vascular 
dysfunction.8-11 This heightened inflammatory milieu is 
characterized by leukocytosis and elevated levels of 
cytokines in SCD.12-14 Therapies shown to be beneficial in 
SCD such as hydroxyurea and anti-selectin antibodies 
may exert their beneficial effects, in part, via dampening 
of leukocyte-mediated inflammatory responses.15,16 

Hemolysis in SCD may result in the activation of leuko-
cytes via Toll-like receptors (TLR) and NOD-like receptor 
3 (NLRP3) by free heme.17 TLR and NLRP3 inflammasome 
expression levels, including interleukin-1β (IL-1β ), are 
increased in peripheral blood monocytes from SCD 
patients.18,19 IL-1β  is a particularly important mediator of 
acute and chronic inflammatory disease processes, as ther-
apeutic targeting of IL-1β  has proven beneficial in several 
inflammatory diseases.20-22 Additionally, some genetic 
polymorphisms of IL-1β  have been shown to affect IL-1β  
transcription and are associated with arthritis, cardiovas-
cular disease, and complications of SCD.9,23,24 While these 
studies suggest IL-1β  signaling pathways are involved in 
some manifestations of SCD, the causal role of these path-
ways remains unclear.  

IL-1β  may represent a particularly important modulator 
of stroke outcomes.25,26 IL-1β is rapidly upregulated during 
ischemic stroke and may contribute to ischemic injury.26 
In a meta-analysis of 16 non-SCD animal studies, admin-
istration of the IL-1R antagonist, anakinra, produced a 
36% reduction of infarct volume.27 IL-1β may promote 
neuronal death indirectly, via effects on astrocytes and 
endothelial cells.25 The binding of IL-1β to astrocyte IL-1R 
activates signaling cascades resulting in the production of 
IL-6, TNF-α, and other chemokines which influence cen-
tral nervous system (CNS) inflammation28 and neurotoxi-
city.28 Neurotoxicity mediated by IL-1β may also occur 
through endothelial interleukin-1 receptor (IL-1R)-mediat-
ed activation of cerebral endothelial cells,30 leading to 
leukocyte infiltration31 and the loss of blood brain barrier 
integrity.32 The recruitment of peripheral leukocytes by  
IL-1β can sustain neuroinflammation,33 further promoting 
neurotoxicity,34 and blood brain barrier (BBB) disruption.35 
IL-1β may also induce permeability of the BBB directly 
through endothelial cell signaling pathways.36  

Mouse models of SCD have been developed that mimic 
the predominant features of SCD in humans.37-39 In gener-
al, these mice exhibit hemolysis, anemia, splenomegaly, 
and multi-organ infarcts.37-39 SCD mice have thus been a 
useful aid to identify mechanisms involved in vaso-occlu-
sion and to test potential therapeutic interventions. 
Because of reduced fertility and complex genetics, gener-
ating SCD mice with complete deficiency of a disease-
modifying candidate gene through intercrosses is cumber-
some, as is generation of suitable littermate controls. 
However, bone marrow transplantation (BMT) is an effi-

cient means to generate SCD mice, and if a candidate gene 
of interest exerts its effects via non-bone marrow-derived 
cellular pools, then informative SCD mice can be readily 
generated by transplanting SCD marrow to recipient mice 
with deficiency of the candidate gene. In order to modify 
IL-1β signaling pathways using this strategy, transplanta-
tion of SCD marrow to mice lacking the receptor for  
IL-1β, (IL-1R), leads to lack of IL-1 signaling in non-
hematopoietic IL-1R cellular pools. The endothelial IL-1R 
pool is responsible for mediating the upregulation of 
endothelial adhesion molecules and leukocyte-endothelial 
interactions in response to IL-1β stimulation,40 which 
might be particularly relevant to SCD pathogenesis.  
Therefore, to study IL-1β signaling pathways in SCD, 
mice were generated by transplanting SCD marrow into 
recipients with IL-1R deficiency and compared to control 
wild-type (WT) recipients on the same C57BL6/J strain 
background. The role of IL-1R signaling was then ana-
lyzed with regards to anemia and stroke in SCD mice. The 
effect of an IL-1R pharmacologic antagonist was also 
assessed.  

 
 

Methods 

Animals 
Male C57BL/6J wild-type (WT), homozygous SCD ( SCD, Stock 

No:013071 Townes model), IL1R null mice (IL1R-/-, Stock No: 
003245), interleukin-6 null mice (IL6-/-, Stock No: 002650) were 
purchased from Jackson Laboratory (Bar Harbor, Maine, USA). 
SCD and control experimental mice were then generated by BMT 
from SCD mice into WT, IL1R-/-, and IL6-/- recipients. Additional 
controls were generated by transplantation of WT marrow into 
WT recipients. Mice were housed under specific pathogen-free 
conditions in static microisolator cages with tap water ad libitum 
in a temperature-controlled room with a 12:12-hour light/dark 
cycle. Mice were fed a standard laboratory rodent diet (No. 5001, 
TestDiet, Richmond, IN, USA). All animal use protocols complied 
with the Principle of Laboratory and Animal Care established by 
the National Society for Medical Research and were approved by 
the University of Michigan Committee on Use and Care of 
Animals. 

Bone marrow transplantation and blood parameter 
analysis 

SCD mice were generated by BMT as previously described.41,42 
Briefly, 8 week-old male WT, IL1R-/- and IL6-/-  mice were used as 
recipients that received bone marrow from 8 week-old SCD male 
donors. Bone marrow was harvested from the donor mice by 
flushing their femurs and tibias with RPMI medium 
(Gibco/Invitrogen, Carlsbad, CA, USA) containing 10% fetal 
bovine serum (Gibco/Invitrogen, Carlsbad, CA, USA). Cells were 
then centrifuged at 300g and resuspended in phosphate-buffered 
saline before injection. Each recipient mouse was irradiated 
(2×650 rad [0.02×6.5 Gy]) and injected with 4×106 bone marrow 
cells via the tail vein in a 200 μL bone marrow suspension in phos-
phate-buffered saline. Acid water (6 mM HCl, pH=2.5) was pro-
vided to animals beginning 4 days before BMT to 4 weeks follow-
ing BMT. Transplant efficiency was determined by hemoglobin 
electrophoresis, as done previously.41,43,15 weeks following BMT, 
blood parameter analyses were performed with a Hemavet (Drew 
Scientific, Inc) on whole blood collected in EDTA-lined tubes via 
retro-orbital sampling from isofluorane-anesthetized mice (n=5 
per group). Reticulocyte percentages were quantified by new 
methylene blue staining (n=5 per group) (Ricca Chemical 
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Company, Arlington, TX, USA), according to the manufacturer's 
instructions and expressed as a percentage of total erythrocytes.  

Stroke model 
Sixteen weeks after BMT, middle cerebral artery (MCA) occlu-

sion was induced by photochemical injury as previously 
described,41,42 n=3-5. On day 3 following MCA occlusion, mice 
were anesthetized with pentobarbital, and blood drawn via car-
diac puncture. Mouse bodies were perfused with PBS, then brains 
were excised and sliced into 2 mm segments before staining for 20 
minutes with 2, 3, 5-triphenyltetrazolium chloride at room tem-
perature while protected from light. The brain sections were 
imaged with a Nikon SMZ-2T microscope and Spot Idea camera 
model 29.2-13MP using Spot 5.1 software, and stroke size was 
then calculated as done previously.41 Brain macrophages were 
stained with an anti-mouse MAC3 antibody (1:200; #550292, BD 
Biosciences, San Jose, CA), n=3-5. Fibrin(ogen) was stained with 
an anti-mouse fibrin(ogen) antibody (1:4,000; ab189490, Abcam, 
Cambridge, MA) and ICAM-1 was stained with anti-mouse 
ICAM-1 antibody (2 ug/mL; #14-0542-85, ThermoFisher 
Scientific, Waltham, MA), followed by a biotin-conjugated sec-
ondary IgG (1:100), n=3-5. A Nikon Microphot-SA Epi-FL3 micro-
scope, Nikon Ds Fi3 camera, and NIS Elements software were 
used to capture images. Quantification of fibrin(ogen) stained area 
was performed with Image J software. Quantification of MAC3-
positive cells was attained for each mouse by manually counting 
stained cells in 20 fields of view at 10x. For each field, the number 
of MAC3-positive cells was divided by the area of brain imaged in 
each field.  

Circulating E-selectin and IL-6 measurements 
Soluble E-selectin (sEsel), and IL-6 enzyme-linked immunosor-

bent assays (ELISA) were performed according to the manufactur-
er’s instructions (R&D Systems, Inc.; Minneapolis MN, USA; 
Cat#: MES00 & MPS00), n=3-5. Blood for ELISA was collected via 
cardiac puncture at the time of sacrifice and plasma prepared by 
centrifugation at 8,500 rpm for 10 min.   

Drug treatment 
Anakinra (Swedish Orphan Biovitrum AB, Stockholm, Sweden)  

(100 mg/kg via one intraperitoneal injection [i.p.]) or vehicle con-
trol (phosphate buffered saline) was administered 1 hour follow-
ing induction of stroke (n=4 per group).  

Statistical analysis 
Data are presented as mean ± standard deviation. Analysis was 

carried out using GraphPad Prism and tests for normality were 
performed using the Shapiro-Wilk test. Differences between 
groups were then analyzed using a one way ANOVA or an 
unpaired t-test for comparison between groups or Mann Whitney 
U test. Probability values of P < 0.05 were considered statistically 
significant. 

Data sharing 
For original data, please contact deitzman@umich.edu. 
 
 

Results 

Effect of IL-1R and IL-6 status on hematological data in 
SCD mice  

  In order to determine whether signaling through the IL-
1R or IL-6 in non-hematopoietic tissues would impact ane-
mia in SCD mice, whole blood was analyzed for cell 
counts, platelets, and reticulocytes 15 weeks following 

BMT. Compared to WT mice transplanted with WT bone 
marrow (Wt,WTbmt), WT recipients of SCD bone marrow 
(Wt,SCDbmt) were more anemic with elevated leukocyte 
and reticulocyte counts (Figure 1). IL-1R-/- and IL-6-/- recipi-
ents of SCD marrow (IL1R-/-,SCDbmt and IL6-/-, SCDbmt) dis-
played similar anemia and reticulocyte counts compared to 
Wt,SCDbmt mice (Figure 1). 

 
Effect of IL-1R and IL-6 status on circulating levels of IL-
6 in SCD mice   

Plasma levels of IL-6 were detectable in Wt,SCDbmt mice 
(4.877±3.62 pg/mL) but undetectable in both  
IL-1R-/-,SCDbmt and IL6-/-,SCDbmt mice, consistent with a 
non-hematopoietic source for circulating IL-6 in SCD and a 
critical role for non-hematopoietic IL-1 receptor signaling 
towards IL-6 levels in SCD.       

  
Effect of IL-1R and IL-6 status on stroke size in  
sickle cell disease following middle cerebral artery 
occlusion 

SCD mice have been shown to experience larger strokes 
following MCA occlusion due to vasocclusion by sickled 
erythrocytes in the penumbra.42 In order to determine 
whether IL1R-/-,SCDbmt mice would be protected from the 
increased stroke size associated with SCD, photochemical-
mediated thrombosis was induced in the MCA in 
Wt,SCDbmt mice and IL-1R-/-,SCDbmt mice. Three days later, 
the stroke area was quantitated and IL-1R-/-,SCDbmt mice 
were found to have a similar stroke areas to Wt,WTbmt mice, 
both of which had reduced areas when compared to 
Wt,SCDbmt mice (Figure 2A to C). In contrast, stroke size in 
IL6-/-,SCDbmt mice was not reduced compared to Wt,SCDbmt 
mice (Figure 2D). Thus, although non-hematopoietic IL-1R 
signaling pathways regulate circulating IL-6 levels, this 
pathway does not account for the effects of non-
hematopoietic IL-1R signaling on stroke size in SCD. 

Reduction in stroke size in IL-1R-/-,SCDbmt mice was also 
associated with reduced peri-infarct infiltration of 
macrophages, as denoted by staining of MAC3 (Figure 3). 
Since endothelial IL-1R signaling regulates expression of 
endothelial adhesion molecules40,44 which could affect the 
stroke phenotype, levels of sEsel were measured given its 
endothelial specificity. Plasma levels of sEsel were found to 
be significantly reduced in IL-1R-/-,SCDbmt compared to 
Wt,SCDbmt mice (32.12±2.08 ng/mL vs. 50.10±2.31 ng/mL; 
P=0.03). Circulating values of sEsel in IL6-/-,SCDbmt were not 
significantly different compared to Wt,SCDbmt (54.03±10.10 
ng/mL, P=0.37). Fixed brain sections were also stained for 
ICAM-1. Expression of ICAM-1 was significantly 
decreased IL-1R-/-,SCDbmt compared to Wt,SCDbmt mice 
(0.008±0.002% area vs. 0.029±0.007% area, P<0.05).     

Increased infiltration of leukocytes may diminish blood 
brain barrier integrity, leading to leakage of fibrin(ogen)-
containing plasma into the brain from the vasculature.45-47 
Fibrin(ogen) immunopositivity was significantly decreased 
in IL-1R-/-,SCDbmt compared to Wt,SCDbmt mice, whereas 
IL6-/-,SCDbmt were not significantly different than 
Wt,SCDbmt  mice (Figure 4). 

 
Effect of single dose anakinra on stroke size given post 
middle cerebral artery occlusion 

From a practical therapeutic standpoint, treatment with 
antagonists of IL-1β or IL-1 receptor signaling pathways 
may not be feasible in SCD patients prior to the onset of 
stroke, however therapies could be administered following 
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stroke onset. In order to determine whether stroke size 
could be reduced by pharmacologic blockade of the IL-1R, 
even when administered following MCA occlusion, the IL-
1R antagonist, anakinra, was administered 1 hour following 
stroke induction in Wt,SCDbmt mice. Compared to vehicle 
control, mice given anakinra after stroke onset experienced 
reduction in stroke volume when analyzed 3 days follow-
ing MCA occlusion (Figure 5). A decrease in peri-infarct 
MAC3-positive cells was also observed (Figure 6), similar to 
what was seen in IL1R-/-,SCDbmt brain sections post-stroke.  

 
Discussion 

SCD results from a missense mutation leading to an 
amino acid substitution in the β-globin gene.48 Although 
SCD is a monogenic disease, there is marked phenotypic 
heterogeneity in patients with SCD that applies to anemia, 

cerebrovascular disease, acute chest syndrome, pain crises, 
and death.49,50 Differential activation of inflammatory path-
ways may be a mechanism which accounts for the 
observed phenotypic heterogeneity and may be a critical 
link between hemolysis and subsequent vascular complica-
tions.10 Multiple cytokines, including IL-1β and IL-6, have 
been postulated to play a role in SCD phenotypes, and as 
these cytokines are also known to regulate stroke volume in 
non-SCD populations, the hypothesis that the deletion of 
the endothelial IL-1R pool may be beneficial in SCD was 
pursued by utilizing an MCA occlusion model. This model 
of stroke leads to sustained occlusion of the MCA in the 
absence of treatment51 and the increased stroke size in sick-
le cell mice is likely due to vaso-occlusion in the penumbra 
microvasculature.42 Since potential deleterious effects of IL-
1R signaling in SCD could be mediated via downstream 
production of IL-6, this pathway was also studied.  
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Figure 1. Blood parameter analysis at 15 weeks post-bone marrow transplantation. Circulating erythrocytes (A), hemoglobin (B), hematocrit (C), reticulocytes (D), 
and leukocytes (E) of Wt,WTbmt, Wt,SCDbmt, IL1R-/-,SCDbmt and IL6-/-,SCDbmt mice (mean ± standard deviation). Total WBC: total white blood cells; NE: neutrophils; LY: 
lymphocytes; MO: monocytes, *P=< 0.05, **P<0.01, ***P<0.005 as determined by ANOVA. In Figure 1E, asterisks indicates significance to Wt,WTbmt and pound 
signs indicate significance to Wt,SCDbmt.   



Results from this study support a critical role of non-
hematopoietic IL-1R signaling in mediating acute brain tis-
sue damage in SCD mice in to the setting of ischemic 
stroke. This effect was associated with IL-1R-mediated 
regulation of endothelial adhesive properties. Signaling via 
the endothelial IL-1R leads to upregulation of endothelial 
adhesion molecules with resultant increases in leukocyte-
endothelial interactions and tissue leukocyte infiltration.40 
This signaling pathway involves enhanced NFκB signal-
ing.40 Enhanced endothelial expression of adhesion mole-
cules is detrimental in SCD, promoting vascular occlu-

sions and pain crises.52 Regulation of endothelial IL-1R 
responses to IL-1β has also been shown to occur indirectly 
by leukocyte interactions with selectins. For example, 
mice with leukocyte deficiency of p-selectin glycoprotein 
ligand-1 (Psgl-1) are resistant to IL-1β-mediated stimula-
tion of endothelial adhesion molecule expression and 
show reduced leukocyte-endothelial interactions.40 This is 
potentially relevant to SCD as an antibody to p-selectin, 
crizanlizumab, has been shown in human clinical trials to 
reduce the frequency of vaso-occlusive events.53 Preclincal 
studies have also shown that SCD mice treated with an 
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Figure 2. Stroke area following middle cerebral artery occlusion. Representative brain sections stained with 4% 2,3,5-triphenyltetrazolium chloride (TTC) to assess 
stroke size (in white) of (A) Wt,WTbmt, (B) Wt,SCDbmt, (C) IL1R-/-,SCDbmt mice, and (D) IL6-/-,SCDbmt mice. (E) Quantification of stroke volume (mean ± standard deviation). 
The brain sections were imaged with a Nikon SMZ-2T microscope and Spot Idea camera model 29.2-13MP using at Nikon 0.45x TV lens and Spot 5.1 software. 
*P<0.05 as determined by ANOVA.  

Figure 3. Post-stroke macrophage infiltra-
tion. Representative images of MAC3-posi-
tive cells in the peri-infact area of Wt,WTbmt, 
Wt,SCDbmt, IL1R-/-,SCDbmt and IL6-/-,SCDbmt 

mouse brains, and quantification (mean ± 
standard deviation). A Nikon SE upright 
microscope and a Nikon DS-Fi3 camera was 
used to capture 10x and 20x images of ipsi-
lateral brain and 10x images of contralateral 
brain. Dotted line denotes transition 
between infarcted area and heathy tissue. 
*P<0.05 as determined by ANOVA. 

A                                  B

C                                  D

E



antibody to Psgl-1 displayed reduced leukocyte-endothe-
lial interactions and reduced levels of circulating 
selectins.54 Circulating monocytes express Psgl-1 and use 
this receptor to engage E-selectin when undergoing 
extravasion from the vasculature to the damaged tissue.55 
In agreement with the known role of IL-1β in endothelial 
activation,4,54 IL1R-/-,SCDbmt mice had lower circulating 
levels of sEsel post-stroke than Wt,SCDbmt or  
IL6-/-,SCDbmt mice. The lower sEsel concentrations of  
IL1R-/-,SCDbmt mice correlated with decreased MAC3-pos-
itive macrophages present in the peri-infarct area. A simi-
lar decrease in MAC3-positive cells was also attained with 
post-stroke administration of anakinra. ICAM-1 may also 
contribute to the leukocyte infiltration as immuno-stain-

ing for ICAM-1 was also reduced in IL1R-/-,SCDbmt mice 
compared to Wt,SCDbmt mice in the peri-infarct region. 
This is consistent with a previous in vitro study in which 
ICAM-1 was upregulated on endothelial cells following 
exposure to sickled erythrocytes and was further 
increased in the presence of IL-1β.56 

IL-1β has also been shown to reduce BBB integrity.36 A 
decrease in infarct-associated fibrin(ogen) immunostain-
ing, was observed to be significantly decreased in  
IL1R-/-,SCDbmt mice relative to both Wt,SCDbmt  and  
IL6-/-,SCDbmt  mice, suggesting less BBB disruption. As dis-
ruption of the BBB can lead to a greater influx of leuko-
cytes,57 inhibition of IL-1β-mediated actions on endothe-
lial cells may reduce leukocyte accumulation by both 
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Figure 4. Blood brain barrier integrity post-
stroke. Representative staining immunopos-
itive to Fibrinogen in the peri-infact area of 
Wt,WTbmt, Wt,SCDbmt, IL1R-/-,SCDbmt and  
IL6-/-,SCDbmt mouse brains, and quantifica-
tion (mean ± standard deviation). A Nikon 
SE upright microscope and a Nikon DS-Fi3 
camera was used to capture 10x and 20x 
images of ipsilateral brain and 10x images 
of contralateral brain. Dotted line denotes 
transition between infarcted area and 
heathy tissue. *P<0.05, **P<0.01, 
***P<0.005 as determined by ANOVA.

Figure 5. Infarct area in response to anakinra. Representative brain sections stained with 4% 2,3,5-triphenyltetrazolium chloride (TTC) in Wt,SCDbmt given one 
intraperitoneal injection of phosphate buffered saline (PBS) (A) or anakinra (B) immediately post-stroke induction, and quantification of stroke volume (mean ± stan-
dard deviation) (C). The brain sections were imaged with a Nikon SMZ-2T microscope and Spot Idea camera model 29.2-13MP using at Nikon 0.45x TV lens and 
Spot 5.1 software. *P<0.05 as determined by student’s t-test. 

A                                         B                                        C



decreasing adhesion molecules such as E-selectin and 
ICAM-1,56 and also by preservation of BBB integrity. 
Although some studies have shown BBB integrity may be 
preserved by the action of macrophages,35 this study 
demonstrated that macrophages recruited acutely through 
IL-1R pathways may be deleterious. Long term human 
studies targeting IL-1β in SCD will be informative. A clin-
ical study with the IL-1β antagonist, canakinumab, is cur-
rently underway to determine safety and efficacy of IL-1β 
inhibition in SCD patients (clincialtrials gov. Identifier: 
NCT02961218). 

The beneficial effects of IL-1R inhibition observed in 
this study are independent of non-hematopoietic IL-6. In 
response to ischemia, neurons and other cell types in the 
brain produce IL-6,58,59 and circulating IL-6 concentrations 
have been positively associated both with stroke size in 
patients,60 and with worsening outcomes within 48 hours 
post-stroke.61 While IL-6 may adversely affect stroke 
acutely.23,59 IL-6 may show beneficial effects towards res-
olution of stroke damage.62 The assessment of stroke vol-
ume 72 hours after stroke induction in this study may 
have been too early to observe the full effects of IL-6 
towards stroke repair. However, the failure of  
IL-6-/-,SCDbmt mice to phenocopy IL1R-/-,SCDbmt mice in 
relation to stroke size illustrates the lack of dependence on 
the downstream induction of IL-6 toward the acute detri-
mental action of IL-1R signaling.  

While chronic treatment of SCD patients with anti-
cytokine therapies may increase susceptibility to infec-
tions, short term treatment could be administered to 
patients presenting with acute complications. 
Remarkably, the IL-1R antagonist, anakinra, was benefi-
cial even when administered following onset of MCA 
occlusion. These findings suggest that targeting the IL-1R 
may be beneficial in SCD patients presenting with stroke 
or other vascular complications. 

Limitations of this work include the use of BMT to gen-
erate chimeric mice. It is possible the irradiation procedure 
used to ablate the bone marrow could have affected the 
vascular phenotypes, however, this strategy has been 
widely employed and greatly facilitates the generation of 
chimeric SCD mice.63-65 It is also possible that other bene-
ficial effects of chimeric IL-1R deficiency in this model are 

at play. Although there were no differences in anemia 
between different recipient transgenic mice receiving sickle 
cell marrow, we cannot rule out differences in engraftment 
related to recipient IL-1R status. Future experiments with 
mice generated by crossbreedings to produce complete and 
tissue-specific gene deletions will be useful to confirm and 
expand these studies. The stroke model used in this study 
is induced by MCA thrombotic occlusion. A more relevant 
model would include spontaneous stroke due to vaso-
occlusion triggered by sickled erythrocytes. However, well 
validated models of spontaneous stroke are not available in 
SCD mice to our knowledge. Additionally, we cannot rule 
out differences in blood flow following MCA occlusion 
due to difference in IL-1R signaling. These studies would 
require a time course analysis after stroke induction in 
addition to laser doppler imaging. While there is no stan-
dard drug for treatment of acute stroke associated with 
sickle cell disease, future experiments comparing anakinra 
with tissue plasminogen activator or emergent blood trans-
fusion would be interesting. Finally, longer periods 
between stroke induction and stroke volume measurement 
may be informative. 

In conclusion, non-hematopoietic deficiency of the  
IL-1R is sufficient to reduce stroke size in SCD. Therapies 
targeting this pathway may be beneficial towards the treat-
ment of stroke and possibly other complications of SCD. 
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Figure 6. Post-stroke macrophage infiltration in response to anakinra. Representative staining immunopositive to MAC3 in the peri-infact area of Wt,SCDbmt given 
one intraperitoneal injection of phosphate buffered saline (PBS) or anakinra immediately post-stroke induction, and quantification of MAC3-positive cells (mean ± 
standard deviation). A Nikon SE upright microscope and a Nikon DS-Fi3 camera was used to capture 10x and 20x images of ipsilateral brain and 10x images of con-
tralateral brain. Dotted line denotes transition between infarcted area and heathy tissue. **P<0.01 as determined by student’s t-test.
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