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Review article

Cells survive and proliferate through complex interactions 
among diverse molecules across multiomics layers. Conven­
tional experimental approaches for identifying these interac­
tions have built a firm foundation for molecular biology, but 
their scalability is gradually becoming inadequate compared 
to the rapid accumulation of multiomics data measured 
by high-throughput technologies. Therefore, the need for 
data-driven computational modeling of interactions within 
cells has been highlighted in recent years. The complexity of 
multiomics interactions is primarily due to their nonlinearity. 
That is, their accurate modeling requires intricate conditional 
dependencies, synergies, or antagonisms between considered 
genes or proteins, which retard experimental validations. 
Artificial intelligence (AI) technologies, including deep learning 
models, are optimal choices for handling complex nonlinear 
relationships between features that are scalable and produce 
large amounts of data. Thus, they have great potential for 
modeling multiomics interactions. Although there exist many 
AI-driven models for computational biology applications, 
relatively few explicitly incorporate the prior knowledge within 
model architectures or training procedures. Such guidance of 
models by domain knowledge will greatly reduce the amount of 
data needed to train models and constrain their vast expressive 
powers to focus on the biologically relevant space. Therefore, 
it can enhance a model’s interpretability, reduce spurious 
interactions, and prove its validity and utility. Thus, to facilitate 
further development of knowledge-guided AI technologies 
for the modeling of multiomics interactions, here we review 
representative bioinformatics applications of deep learning 
models for multiomics interactions developed to date by cate­
gorizing them by guidance mode.
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Key message

· The need for data-driven modeling of multiomics interactions 
was recently highlighted.

· Many artificial intelligence-driven models have been develop­
ed, but only a few have incorporated biological domain 
knowledge within model architectures or training procedures.

· Here we provide a comprehensive review of deep learning 
models to decipher complex multiomics interactions regarding 
the biological guidance imposed upon them to facilitate further 
development of biological knowledge-guided deep learning 
models.

Introduction

To date, the mechanistic principles of cellular processes have 
been primarily characterized as a series of interactions between 
various intracellular molecules including DNA, RNA, proteins, 
and metabolites. The identification of such interactions using 
carefully designed experimental approaches has increased 
our understanding of molecular biology over decades.1,2) 
Meanwhile, the development of high-throughput measure­
ment technologies has led to the rapid accumulation of a vast 
number of omics profiles that offer great opportunities for 
the comprehensive identification of multiomics interactions. 
However, it is difficult to fully leverage these valuable resources 
using experimental approaches and conventional bioinformatic 
approaches owing to the limitations of cost and computational 
expressive powers, respectively. On the other hand, modern 
artificial intelligence (AI) technologies, mainly deep neural 
network models and deep learning, are inherently suitable for 
processing large amounts of data and, thus, have great potential 
for the modeling of complex multiomics interactions in this era 
of big biodata.3)

The interaction between entities from different omics 
layers can be conceived as an evolutionarily principled way to 
propagate biological information within cells, or even across 
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Deep neural networks consist of numerous neurons. Each 
neuron is connected to other neurons, and a scalar value called 
weight is assigned to each connection. Given the numeric 
representation of input data, a neural network, defined as a set 
of directed connections of neurons, produces output through 
the forward propagation of information. During forward pro­
pagation, the information contained in a set of neurons is linearly 
combined according to the weight assigned to the corresponding 
connection toward a descendent neuron. As a result, the follow­
ing neuron receives the information and decides how much 
information it will keep and propagate through its descendent 
neurons by a nonlinear activation function. This nonlinearity 
allows each neuron to decide whether it should be activated 
based on the input values received. Therefore, deep learning 
models can manage the conditionality and competitiveness 
occurring in typical multiomics interactions. The goal of training 
a deep learning model is to identify the optimal configuration of 
weights that achieves the best result based on predefined criteria.

Given the importance of neural network architecture in­
tegrated with biological prior knowledge, here we compre­
hensively review neural network models developed to date to 
decipher complex multiomics interactions by classifying them 
into 2 categories based on the characteristics of the biological 
guidance imposed on them: (1) weak guidance, in which little 
to no biological knowledge is used; and (2) strong guidance, 
in which prior knowledge is explicitly utilized for model 
architecture or training.

Weakly guided deep learning models reveal 
unbiased principles of cell biology

Early applications of deep learning to biological problems 
tended to simply adopt the existing prominent neural network 
architectures from general AI studies. Because such general-

a cell population.4,5) The precise and efficient transmission 
of such information is crucial for a cell to survive diverse 
environmental perturbations by eliciting appropriate responses. 
Indeed, these interactions are extremely complex. For example, 
some interactions are condition-dependent,6) in which they 
only take place upon a certain level of upstream stimuli above 
the threshold, while other interactions are competitive against 
each other as the number of common participants is limited. 
7) Therefore, the dynamics of multiomics interactions are 
nonlinear, which means that their dynamics cannot be modeled 
simply based on the number of immediate participants. This 
complexity makes the extensive characterization of multiomics 
interactions with handcrafted features that are almost intract­
able. In this regard, a neural network model is one of the most 
plausible model architecture choices because it can automatically 
extract important features from data while being trained.

There have been many approaches utilizing AI technologies 
in the field of computational biology, but it is crucial to note 
that the performance of AI-driven modeling substantially varies 
depending on deep neural network model architecture. The 
most recent and prominent example emphasizing the power 
of a well-designed neural network architecture is AlphaFold2,8) 
which predicts the structure of a protein with near-experimental 
accuracy. In fact, deep learning-based approaches have already 
been employed to solve protein structure prediction 2 years 
before the development of AlphaFold2,9,10) but one of the reasons 
that AlphaFold2 far outperformed the other deep learning 
models stems from its well-designed model architecture. It 
nudges the model to attend to the most relevant biological 
information, namely the evolutionary context of amino acids 
and the interaction between amino acid pairs, while allowing 
the mutual exchange of information between the 2 factors. 
Therefore, embedding biological knowledge into the structures 
of neural network models can dramatically improve model 
performance.

Graphical abstract



www.e-cep.org https://doi.org/10.3345/cep.2021.01438 241

purpose neural network architectures are not specifically de­
signed to address biological challenges, the models are passively 
guided to learn the core principles of multiomics interactions 
from scratch. Nevertheless, training models with passive or 
minimal guidance are still important since they can reveal many 
exciting patterns of multiomics interactions in an unbiased 
manner. In this section, we review how the fundamentals of 
molecular biology can be derived only from the compilation of 
omics profiles by deep learning (Fig. 1).

1. Learning the sequence preference of proteins on DNA and 

RNA binding

The efficiency of the interaction between proteins and DNA is 
often determined by the compatibility between protein structure 
and DNA sequence.11) In particular, many DNA-binding 
proteins, including transcription factors (TFs), have an intrinsic 
preference for short stretches of DNA with unique ordering 
of nucleotides, or sequence motifs.12) Sequence motifs bound 
by TFs, namely TF-binding sites (TFBSs), are conventionally 
determined by high-throughput experiments such as chromatin 
immunoprecipitation combined with DNA sequencing (ChIP-
seq)13) or SELEX-seq14) followed by motif-finding algorithms 
including MEME15) and HOMER.16) The resulting TFBSs 
are often represented as position weight matrices (PWMs) that 
encode the relative base preference for each position within the 
motif.

DeepBind17) pioneered the application of deep learning for 
binding prediction of TF or RNA-binding proteins (RBPs) 
using high-throughput experimental data. For each TF or RBP, 
individual DeepBind models were trained to classify whether 
the corresponding protein would bind to the given nucleotide 
sequence in a supervised manner. More specifically, a number of 
short nucleotide sequences that were experimentally validated 
to be bound by the protein were prepared along with random 
negative sequences. The model weights were optimized to make 
the model produce correct predictions for either of the 2 classes.

Although no explicit prior knowledge was incorporated in 
DeepBind training, it is worth noting that the choice of model 
architecture provides minimal guidance or inductive bias for 
the model to successfully detect motifs. DeepBind adopts a 
convolutional neural network (CNN) architecture,18) which 
was originally developed for computer vision applications 
such as image recognition. Key operators at the CNN core are 
convolutional filters, which iteratively slide throughout the 
image and produce a scalar for each of its patches. The scalar 
value is computed as a dot product between the weight of the 
filter and the pixel intensity of the image patch, thus producing 
high values at the patch that are preferred by the filter. A simple 
but powerful analogy can be derived from this formulation 
when we consider a convolutional filter as a learnable PWM that 
slides through the sequence and detects the short substring that 
is compatible with the PWM. The PWM denoting TF-binding 
motifs can be learned by optimizing the model to respond 
positively to TF-binding sequences.

DeepBind models showed improved accuracy of TF-binding 
specificity prediction compared to conventional models. Fur­
thermore, it could predict mutations that would disrupt TF 
binding, and many have already been reported as disease-associated 
mutations. Since the successful introduction of deep learning 
models for the task of revealing protein-DNA/RNA interactions, 
many variants of DeepBind models have been developed. 
DeeperBind19) appended recurrent neural network (RNN) archi­
tecture20) after convolutional layers to capture dependencies 
between motifs as well as positional bias in probes used for high-
throughput screens such as protein-binding microarrays. DanQ21) 
is another model that uses the hybrid structure of CNN and RNN, 
but it differs from the aforementioned models in that it is trained by 
multitask learning.22) In other words, it is a single unified model that 
predicts the binding specificity of about 1,000 TFs. The utility of 
multitask learning is especially highlighted in biological applications 
because the most fundamental dogmas are shared across every 
cell. More recently, a CNN-based model without pooling, called 
BPNet,23) along with a motif discovery method TF-MoDISco,24) 
further captured the detailed syntaxes of TF-binding motifs, such 
as helical periodicity of motifs and multiple motifs repeatedly 
occurring at a fixed distance because of the cooperative DNA 
binding of interacting proteins. The fine resolution of the analysis 
could be achieved using high-resolution TF-binding signals from 
ChIP-nexus25) experiments, underscoring the importance of 
training data quality.

2. Learning DNA sequence determinant of gene expression 

and RNA splicing from scratch

As discussed above, TFBSs mark hotspots of protein-DNA 
interactions and potentiate the activation of downstream genes 
upon binding to the corresponding TFs. In other words, TFBSs 
can serve as major sequence determinants of gene expression. If 
a deep learning model is powerful enough, by training the model 
to predict whether a gene is highly or lowly expressed solely 
based on the nearby DNA sequence (especially promoters), 
the model may learn the sequence motifs of TFBSs and localize 
them. At first glance, this seems infeasible because the model is 
trained without any information on TFs, but surprisingly, deep 
learning models can successfully fill the missing links of TF 
binding between DNA sequences and gene expression.

Basenji26) is one of the first CNN-based attempts to predict 
gene expression levels from DNA sequences. It adopts a multitask 
learning scheme that predicts read coverage representing various 
modalities in 128-bp genomic bins using genomic sequence 
information. Gene expression measurements were obtained 
by cap analysis of gene expression followed by sequencing 
(CAGE-seq27)), which allows the precise quantification of gene 
expression specifically in the vicinity of the transcription start 
sites. Moreover, the models were trained to predict chromatin 
features measured by DNase-seq and ChIP-seq. Interestingly, 
Basenji was able to predict expression quantitative trait loci 
and disease-associated variants without any prior knowledge 
of them. Similarly, a multitask CNN-based model named 
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Expecto28) allows tissue-specific stratification of variants in terms 
of their transcriptional effect; using the genomic information 
of other species, especially mice, it boosts the accuracy of 
gene expression prediction based on deep learning models.29) 

Another CNN-based model, Xpresso,30) trained solely based 
on promoter sequences, can explain about 60% of the variation 
in human gene expression and clearly reveals general sequence-
based features dictating gene expression, such as promoter CpG 
contents. More recently, modern deep learning architectures, 
apart from CNNs, have started being applied to genomic tasks. 
Enformer31) is one of the forefront applications of transformer 
architecture32) for gene expression prediction. Transformer 
layers allow the model to capture the long-range interactions 
of distal elements at most 100 kb away from the gene, whereas 
Basenji only captures a 20-kb window.

Meanwhile, mRNA splicing is a complex biological process 
that confers the functional diversity and plasticity of cells. Since 
the process involves sequential binding of RBPs to pre-mRNAs, it 
is conceivable that the signals governing the efficiency of splicing 
lie within DNA sequences. Several well-known grammars of 
mRNA splicing have been firmly established, including the 
consensus sequence of donor and acceptor sites33) and the 
existence of branch points.34) However, there are numerous 
combinations of donor and acceptor sites within a gene, only a 

subset of which is actually spliced out. In other words, the current 
knowledge on the grammars of mRNA splicing is insufficient to 
specifically determine the splice site. SpliceAI35) filled this gap by 
training a deep learning model with reference genome sequence 
and exon annotations, and it almost perfectly predicted whether 
a base is a splice donor or acceptor. One interesting observation 
drawn from SpliceAI training is that the performance steadily 
increased as the model was allowed to see larger genomic 
windows (up to 10 kbp), implying the long-range sequence 
determinant of mRNA splicing.

3. Learning the correlation between genome and epigenome

The intimate relationship between genomic sequence and 
epigenomic features has been of great research interest because 
it enabled the high-throughput measurement of epigenomes. 
Revealing the dependency of the epigenome on genomic se­
quences is especially important in clinical applications since it 
may reveal uncharted pathologic roles of noncoding variants. 
However, characterizing their quantitative relationship is 
challenging because there are many complex types of nonlinear 
interactions across different epigenomic features involving 
diverse protein machineries. Accordingly, there are great oppor­
tunities for the application of deep learning approaches.

DeepSEA36) is a CNN-based model that predicts allele-

Fig. 1. Interactions between omics layers that are modeled by weakly guided deep learning models. 
The schematic diagram shows 6 types of interactions that are formulated as tasks for deep learning 
models: (1) DNA/RNA binding specificity prediction, (2) mRNA splicing prediction, (3) gene expression 
prediction based on genomic sequences, (4) prediction of DNA methylation states and levels based on 
genomic sequences, (5) capturing relationship between genome and epigenome, and (6) simultaneous 
integration of multiple omics features. The black lines denote DNA, purple lines denote mRNA, and 
green lines denote miRNA. The black and white circles denote the methylation states of CpG sites, while 
the other colored circles represent proteins.
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specific chromatin profiles from a 1,000-bp sequence window. 
Models were trained to simultaneously predict 125 DNase 
I-hypersensitive site profiles and 104 histone mark profiles 
along with 690 TF-binding profiles. The training data were 
compiled from ENCODE (Encyclopedia of DNA Elements)37) 
and Roadmap Epigenomics projects.38) The model not only ac­
curately predicted chromatin features based on DNA sequences, 
it also showed the capability to functionally prioritize single 
nucleotide variants. The functional impact of each variant was 
determined by mutating a single base from the original input and 
propagating the mutated input through the model to obtain the 
perturbed prediction. The discrepancy between the perturbed 
and original predictions represents the functional impact of the 
variant. The power of DeepSEA for functional prioritization 
of variants implies that deep learning models can capture the 
general rules of sequence-based regulation of the epigenome 
while not being overfitted to the training data.

Similarly, Basset39) is another CNN-based model trained 
to predict sequence-level grammars by controlling genome 
accessibility. As mentioned above, its modified version, Basenji,26) 
accepts a much larger genomic window as an input and predicts 
more diverse profiles, including ChIP-seq and CAGE profiles. 
Strikingly, Basenji successfully captured the importance of distal 
regulatory elements. By computing the gradient of the model 
prediction with respect to each of the input base positions, one 
can obtain the effect of small perturbation or mutation in each 
position in the sequence on the model prediction. Accordingly, 
a base is considered important when the magnitude of the 
corresponding effect size, or saliency, is large. Peaks in the saliency 
map derived from Basenji revealed that the model focuses on 
distal regulatory elements, especially enhancers, in addition 
to promoters. This observation underscores the importance of 
using sufficiently large genomic windows as inputs to allow the 
model to capture as many unbiased sequence features as possible.

DNA methylation is another major epigenetic feature that 
regulates gene expression. It is defined as the covalent attachment 
of a methyl group at the fifth carbon of cytosine bases, and it 
commonly refers to the methylation of cytosine bases within 
CG dinucleotides. Since DNA methylation is tightly associated 
with the regulation of nearby chromatin states, the link between 
aberrant patterning of DNA methylation and diseases has long 
been studied. However, systematic characterization of the role 
of genomic sequences in the regulation of DNA methylation 
patterns remains challenging.

DeepCpG40) predicts a single-cell-level DNA methylation 
state based on the DNA sequence context and nearby methyla­
tion states of multiple cells observed by single-cell bisulfite 
sequencing. It consists of 2 modules, in which the CpG module 
summarizes the neighboring methylation states of cells with 
bidirectional RNN and the DNA module summarizes the 
genomic sequence with the CNN. The outputs of the 2 modules 
were combined in a joint module. Investigating the filters of 
the first convolutional layer revealed de novo sequence motifs 
associated with cell-to-cell methylation variability as well as 

average methylation levels. While DeepCpG conducts binary 
classification of DNA methylation states at the single-cell level, 
MRCNN41) is a CNN-based model that aims to regress cell pop­
ulation–level methylation.

Finally, deeply learned correlative relationships between ge­
nomic and epigenomic features allow us to predict or impute 
the missing observations for certain epigenomic features from 
the other present features. The correct imputation of missing 
epigenomic profiles is important because it may significantly 
reduce experimental costs and thus facilitate the large-scale 
measurement of epigenomic features. Avocado42) is a clever 
deep factorization-based approach that decomposes the signal 
value into multiscale genomic position factors, assay factors, and 
cell-type factors. By jointly learning the 3-factor embeddings 
and weights for their nonlinear combinations to produce 
accurate signals, the model could correctly predict epigenomic 
signals that were not observed during training. As the learned 
latent embedding enhanced the performance of downstream 
predictive tasks, such as the prediction of gene expression, 
promoter-enhancer interaction, and replication timing, Avocado 
successfully encoded the underlying correlative relationship 
between epigenetic features.

4. Integrating multiple multiomics modalities at once

The methods discussed so far mainly focus on binary 
interactions between the 2 omics layers. However, the actual 
landscape of intracellular multiomics interactions is far more 
complex because it involves multiple interactions among several 
omics modalities.

Although we still have a long way to go to achieve clear deep 
learning model understanding and explaining of the multiomics 
interaction landscape, there have been several initial attempts 
to show the potential of deep learning-based multiomics 
integration. One approach utilized a bottlenecked autoencoder 
to integrate mRNA expression, DNA methylation, and miRNA 
expression levels and showed that deeply integrated features 
perform well as a biomarker for predicting the prognosis of 
hepatocellular carcinoma.43) Here, a bottlenecked autoencoder 
is defined as a model that is trained to emit an output that is 
identical to the input, where the dimension of the bottleneck 
layer is far smaller than that of the input. The expression and 
methylation levels were concatenated into a single vector and 
fed into the model. The rationale behind this study is that the 
model should learn a compact representation that captures the 
interactions involving 2 or more omics layers. On the other 
hand, MOLI44) adopts the late integration of mutation, copy 
number, and gene expression profiles with deep learning. Each 
omics feature was separately encoded by an individual neural 
network called encoding subnetwork, and the representations 
were concatenated and fed into the fully connected layers to 
predict the drug response of the corresponding sample.

https://doi.org/10.3345/cep.2021.01438
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Utilizing prior knowledge for strong guidance 
of deep learning models

While many fundamental scientific findings for multiomics 
interactions can be made through training models with minimal 
guidance, such approaches have several limitations. First, since 
the weights in general-purpose deep learning models are usually 
difficult to interpret by themselves, the interpretation of a trained 
model requires post-hoc interpretation methods such as guided 
backpropagation,45) DeepLIFT,46) integrated gradients,47) or 
in silico mutagenesis.36) These model interpretation methods 
are useful, but their interpretation often largely depends on 
the method of choice, which is undesirable for drawing firm 
conclusions. Next, the findings from passively guided models 
are prone to false positives because the model cannot discern the 
causative relationships from spurious or confounded correla­
tions. Finally, these drawbacks result in poor model performance 
and generalizability.

The active integration of domain knowledge into the deep 
learning model is a promising way to address these challenges. 
When the design of a model constrains its weight to have 
conceptual biological meaning, the interpretation of the train­
ed model will be straightforward and unique since it does 
not depend on external interpretability methods. Moreover, 
our prior knowledge of the basic principles of multiomics 
interactions can be used to prevent the model from being de­
ceived by many false-positive relationships and guide it to be 
more focused on potentially causal relationships.

With the establishment of large-scale knowledge bases of 
biological concepts and interactions, there has been increasing 
interest in the development of methods that actively utilize them 
as practical guidance imposed on the model. The knowledge 
bases can be coarsely classified into 3 groups: (1) databases for 
biological interactions, (2) databases for biological concepts, 
and (3) databases for other experimental observations. In this 
section, we discuss how these databases have been incorporated 
into deep learning models to model multiomics interactions and 
briefly show how the models can be applied to address various 
biomedical challenges.

1. Using biological interactions as a guidance

Large-scale networks for functional interactions between 
proteins and genes include BioGRID,48) STRING,49) HumanNet, 
50) and Reactome.51) Because edges in such networks represent 
paths through which biological information flows, its modeling 
will be straightforward if we locally propagate information 
only through the neighboring nodes. To this end, graph neural 
networks (GNNs)52) have been widely applied for network-
guided modeling of multiomics interactions (Fig. 2A). An early 
study53) utilizing graph convolutional filtering on GNNs to capture 
localized patterns of gene expressions showed promising increase 
in performance of predicting subtypes of breast cancer samples, 
and another work using the Kyoto Encyclopedia of Genes and 
Genomes pathways54) along with attention-based interpretation 

revealed subtype-specific aberrations in the biological pathways.55)

On the other hand, networks can also be indirectly used 
as a regularizer for the latent features learned by the model. 
The multiview factorization autoencoder56) adopts a general 
scheme called graph Laplacian regularizer57) to incorporate 
network information in the training of autoencoders. The 
graph Laplacian regularizer measures the overall discrepancy 
of the learned features between neighboring nodes (e.g., genes) 
in terms of Euclidean distance, and its value is added to the loss 
term. Thus, a pair of genes connected by an edge in the network 
is forced to have similar latent representations.

Knowledge-primed neural networks (KPNNs)58) are ex­
amples of biologically transparent and interpretable model 
architectures that use biological networks (Fig. 2B). Each node 
in the KPNN represents a gene or a protein, and the edges 
between nodes denote the known interactions between them. 
Given that the model achieves the desired performance for 
modeling a biological phenomenon, the model itself can be 
interpreted as a quantitative hypothesis for the phenomenon. 
The weight of a connection between 2neurons in the network 
represents the importance of the regulatory connection between 
them, thus allowing the prioritization of genes or proteins in 
the biological process. Notably, a KPNN trained for single-cell 
experimental results of T-ell receptor (TCR) stimulation showed 
prediction accuracy comparable to that of a generic deep neural 
network. Understandably, the topology of KPNN resembles that 
of a biological network in terms of 4 properties: (1) shortcuts 
between layers, (2) scale-freeness, (3) modularity, and (4) restrict­
ed reachability of hidden neurons to input neurons. As a result, 
the key mediators of TCR signaling could be identified by 
analyzing the activation of the edge weights connected to each 
gene upon stimulation compared to control inputs. Since the 
model could be clearly explained in terms of genes and proteins 
while accurately predicting the system-level outcome, it would 
be a good starting point for system-level characterization and 
simulation of a cell. Recent work on estimating transcriptomic 
age using KPNN supports this as known associations between 
the core pathways and aging were captured, but virtual knock­
down of genes accurately recapitulated the effects on aging that 
were experimentally validated.

2. Using the biological knowledge hierarchy as guidance

Many biomedical concepts can be represented hierarchically. 
Therefore, these concepts are naturally organized as tree-like 
data structures. For example, the concept “cell cycle” encom­
passes more specific concepts such as “mitotic cell cycle” and 
“meiotic cell cycle,” and “mitotic cell cycle” includes concepts 
like “G1/S transition” and “DNA replication.” The most pro­
minent example of the hierarchical compilation of biomedical 
concepts is the gene ontology (GO) terms,59) where the concepts 
are organized into 3 trees rooted in 3 categories: biological 
processes, molecular functions, and cellular components. MeSH 
(medical subject headings)60) is another exemplary database that 
uses a conceptual hierarchy to organize biomedical terms.
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DCell61) was the first approach to constructing a deep learning 
architecture that inherits the topology of the GO hierarchy (Fig. 
2C). Its model, the visible neural network (VNN), consists of 
thousands of subsystems corresponding to each term in the 
GO hierarchy. Multiple neurons constitute a subsystem, and 
the connections between neurons are only allowed for the 2 
neurons belonging to a pair of subsystems with hierarchical 
relationships. Since the leaf nodes of the GO hierarchy are 
genes, each node at the input layer of the VNN corresponds 
to a gene and its state represents the mutation status of the 
corresponding gene. Therefore, the input as a vector collectively 

denotes the cell’s genotype. The model was trained to predict 
the growth phenotype of yeast cells based on their genotypes. 
DCell could be used for mechanistic interpretation of perturbed 
biological processes due to mutations. Because the information 
flow originating from the mutations at the input layer is visible 
and interpretable throughout the network, a mechanistic 
explanation of genotype-phenotype association and their 
simulation is possible.

DrugCell62) extends DCell to predict the drug responses of 
human cancer cells based on their genotype. The genotypes 
are embedded with VNN as in DCell, and the latent represen­

(A) Graph neural network

(B) Knowledge-primed neural network

(C) DCell and DrugCell

Fig. 2. Strong biological guidance of deep learning models. (A) Graph neural networks (GNNs) are 
suitable for the modeling of interaction networks. Gene expression values for each sample are 
assigned to the corresponding nodes in the network to instantiate the network as an input for GNNs. 
Information of each gene is propagated to its neighbors by graph convolution. After a few iterations of 
graph convolution and pooling, information of the whole node is aggregated through readout function. 
Aggregated information is used to predict output values. (B) Knowledge-primed neural network. Nodes 
in a knowledge-primed neural network directly correspond to genes or proteins, and edges represent 
the interaction and transcriptional regulation between them. After training the network to predict the 
observed biological outcome upon certain stimuli, the model is clearly interpretable by edge weights 
and, thus, the core regulators of the process can be identified. (C) DCell and DrugCell incorporate 
hierarchical representations of biological knowledge to their network structure called a visible neural 
network (VNN). While input nodes denote the mutational states of genes, the nodes in hidden layers 
correspond to the biological concepts. Note that the nodes close to the output layer represent the 
broader concept. The VNN output, an embedding of the genotype, is subsequently used for phenotype 
prediction in DCell and drug response prediction in DrugCell.

https://doi.org/10.3345/cep.2021.01438
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tation of drugs is computed using generic deep neural networks. 
The resulting 2 representations, genotypes and drugs, are 
concatenated and fed to a fully connected layer with nonlineari­
ties to predict the cell’s response to the drug. The authors ex­
pressed this procedure as an in silico treatment of a cell with a 
drug. Similar to DCell, DrugCell was able to prioritize subsystems 
according to their predictive strength for the drug response of 
the cell. In other words, DrugCell revealed specific mechanisms 
that convey the effects of drug treatment. Since the model could 
identify the most crucial intracellular subsystem for each drug, 
strikingly, the principled design of synergistic drug combinations 
that maximizes the drug efficacy was demonstrated as possible.

3. Other approaches for biological knowledge-guided deep 

learning

Although much biological knowledge can be structured in the 
form of networks as discussed so far, much knowledge cannot 
be simply organized as networks. Therefore, it is becoming an 
active area for researchers to apply their own ideas to transform 
rich information into an organized form that can explicitly guide 
models.

As discussed in the previous section, the binding motif 
preference of TFs can be learned de novo through supervised 
learning. However, it would be desirable to utilize the pre­

compiled TF-binding motif preference data such as JASPAR,63) 
TRANSFAC,64) or GTRD.65) This idea was initially examined by 
Ploenzke and Irizarry,66) where the weights of the convolutional 
filters were initialized with PWMs of JASPAR motifs. Because 
not all TFs are important for a specific prediction task, the filters 
are discarded if their contribution to the model performance 
is negligible. New randomly initialized filters were added to 
the model to allow de novo motif learning. On the other hand, 
because the PWMs allow us to compute the putative binding sites 
and binding affinities of each subsequence, we can incorporate 
the precomputed TFBSs into the deep learning model. Kang et 
al.67) realized this idea by adding the binding site information and 
the expression levels of corresponding TFs as extra information 
for the gene expression prediction task. Interestingly, guiding 
the model with putative TFBSs resulted in slightly improved 
model performance. Combined with attention weights, the 
model enabled the mechanistic interpretation of the interaction 
between TF binding and methylation level on gene expression.

Analysis of the 3-dimentional (3D) organization of chromatin 
has recently been of great interest. Accordingly, there are still 
many unexplored possibilities when the traditional 1-dimen­
sional view of genomic sequences is modified to a 3D view. 
In particular, the prediction of gene expression levels may 
benefit from such new modeling of genomes because it allows 
the efficient incorporation of distal regulatory relationships. 
The 3D chromatin contacts are usually measured by Hi-C 
and are represented as a pairwise contact map representing 
the likelihood of contact between genomic fragments. Thus, 
utilizing the contact map in deep learning may increase its 
performance. ChromeGCN68) was the first model to use 3D 

chromatin contacts to predict chromatin profiles. Using the 
500,000 most likely Hi-C contacts between 1,000-bp fragments 
per chromosome, ChromeGCN views each chromosome 
as a graph in which the nodes and edges represent genomic 
fragments and contacts between them, respectively. As a result, 
the study showed that exchanging the information of genomic 
sequences through graph edges based on 3D contact using a 
graph convolutional network outperformed the state-of-the-art 
model that uses only a local sequence context.

Conclusion

In this review, we discussed the diverse applications of AI 
methodologies for deciphering complex multiomics interac­
tions. Despite their extreme complexity, the simple adoption of 
general-purpose deep learning to model interactions worked 
surprisingly well. This is presumably due to the vast expressibility 
of deep learning models for nonlinear relationships between 
variables. However, these generic deep learning models are often 
referred to as black-box models because their interpretation 
is not straightforward and often nonrobust. Moreover, the 
dimension of multiomics profiles is usually far larger than the 
number of samples and the modeling powers of deep models 
are usually too powerful, so they become overconfident with 
spurious interactions that are not actually present in living cells. 
Therefore, sensible ways to guide models with prior knowledge 
are especially desirable for the biological application of deep 
learning.

Designing new methods for the biological guidance of deep 
learning models is still a largely unexplored area of research, 
although there exist a few useful modular approaches such as 
GNNs or transformers to incorporate knowledge in the form of 
networks. GNN allows restricted information transfer between 
multiomics entities that are known to interact. This approach 
resembles the way cells specifically propagate biological infor­
mation; therefore, it has the potential to accurately model 
multiomics interactions. The transformer seems to be a more 
versatile choice at the cost of computational burden because it 
can naturally learn the optimal all-pairwise affinities between any 
input features, while the prior pairwise relevance measures can 
be incorporated as a bias term.

Meanwhile, although deep learning models that reflect prior 
biological knowledge offer great opportunities for systematic 
and interpretable cellular modeling, their performances are 
often worse than or comparable to those of black-box models. 
This is a typical example of the trade-off between interpretability 
and performance, which has recently become a major research 
interest in the field of AI. Based on the recent rapid development 
of explainable AI technologies, we expect that a highly 
explainable AI model for biological modeling that outperforms 
conventional black-box models will be developed in the near 
future. Another drawback of strongly guided AI methods is that 
they cannot be applied to complex nonmodel organisms, for 
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which comprehensive knowledge of their cellular characteristics 
has yet to be established. One appealing approach to addressing 
this challenge until the accumulation of a sufficient amount of 
relevant knowledge is to utilize and transfer existing knowledge 
from well-known model organisms. It can be done in the form 
of transfer learning or meta-learning, in which the knowledge 
is directly transferred or the model is guided to learn how to 
learn the relationship between biological entities. It should be 
noted that since all species are evolutionarily related, knowledge 
transfer or meta-training would be better done by incorporating 
evolutionary relationships between species.

A single groundbreaking AI-driven approach can greatly 
accelerate the forward movement of the entire field. It may also 
give rise to numerous additional discoveries derived from it. 
AlphaFold2 is obviously a good example since studies using its 
results are already rapidly accumulating. In the near future, it is 
almost certain that the field of biological science will enter a cycle 
in which AI-powered hypotheses on multiomics interactions 
facilitate experimental validation and accumulating biological 
evidence accelerates the identification of plausible targets by 
deep learning models. The key to this path is the creative and 
effective idea to incorporate accumulated biological knowledge 
into the architecture or training process of deep learning models.

In particular, complete modeling of cell biology through deep 
modeling of cells will revolutionize therapeutic strategies for 
diseases. Given the genetic background of a patient and tissue-
specific reference model, perhaps in the form of knowledge-
guided deep learning models, it will become possible to model 
the response of cells to a certain stimulus, including drug 
treatment. Elucidating the precise molecular mechanisms of a 
drug response will optimize the combination of synergy between 
drugs, as in DrugCell, and dramatically reduce side effects. 
Furthermore, the accumulation of high-resolution molecular 
profiles will allow the temporal modeling of cellular responses 
to establish drug treatment schedules that are optimized for each 
patient. The modeling of multiomics interactions and, therefore, 
of cell biology, will be a pivotal milestone that must be achieved 
to finally realize AI-driven precision medicine.
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