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Abstract

Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly
important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities
mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not
been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of
either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide
information about the potential capabilities of organisms and communities but not the extent to which such potential is
expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations
spanning latitudes from 76uS to 79uN to hydrolyze a range of high molecular weight organic substrates and thereby initiate
organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex
substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As
changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by
microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of
DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir, such a change could profoundly affect the
global carbon cycle.
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Introduction

Marine DOC (dissolved organic carbon) is one of the largest

actively cycling reservoirs of organic carbon on earth, comparable

in magnitude to the atmospheric reservoir of CO2 [1];

heterotrophic microbial communities play a key role in driving

the DOC cycle [2–4]. DOC consists of many thousands of

different compounds, and is operationally divided into labile, semi-

labile, and recalcitrant fractions that are defined based on

timescales of removal in bioassays or by direct measurement in

the ocean [5]. Structural or mechanistic explanations for varying

timescales of DOC degradation, however, are lacking [6]. Since

heterotrophic bacteria are unable to transport directly into the cell

most substrates with a molecular weight greater than 600 Da [7],

hydrolysis via extracellular enzymes is required prior to substrate

uptake. The requirement for enzymatic hydrolysis is therefore a

promising starting point to search for mechanistic explanations of

variations in the abilities of marine bacteria to utilize specific

fractions of DOC as a substrate. The activities and structural

specificities of polysaccharide-hydrolyzing enzymes are of partic-

ular importance in this respect, since carbohydrates constitute a

large proportion of marine high molecular weight DOC: 54% of

surface water DOC and 25% of DOC in the deep ocean [8]. Most

of the rest of DOC is classified as ‘uncharacterized’ on a molecular

basis, since lipids, amino acids, and amino sugars together

constitute less than ca. 5% of the total [9].

Assessing the enzymatic capabilities of marine heterotrophic

microbial communities can best be done directly in seawater, since

cultured microbial isolates constitute only a small, unrepresenta-

tive fraction of extent marine microbes [10]. Most measurements

of enzyme activity in seawater are based on small chromogenic or

fluorogenic substrates (e.g. [11]), which provide very little

information about enzymatic substrate specificities [12]. Genomic

investigations can yield valuable insights into community and

organism potential [13–15], but provide no information about the

extent to which such potential might be expressed. Metatran-

scriptomic profiling is a promising route to investigate the extent to

which genetic potential is realized, but assignment of sequences

from the environment to functions such as specific enzyme

activities is still problematic due to limitations in database coverage

[16] and the vast structural and functional diversity of polysac-

charide-hydrolyzing enzymes [17].

To gain insight into the capabilities of natural microbial

communities to access polysaccharides, we measured extracellular

enzyme activities in surface waters at 32 stations in the Atlantic,

Pacific, Arctic, and Southern Oceans, as well as the Gulf of

Mexico, spanning latitudes from 76uS to 79uN and a temperature

range from 21.8uC to 29uC (Table 1; Fig. S1). We focused on
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direct detection of the hydrolysis of specific polysaccharides, rather

than on investigations of genetic potential, in order to measure the

abilities of microbial communities to access substrates irrespective

of the multiplicity of enzyme(s) [18] —of known and unknown

sequence—that might hydrolyze a specific substrate. Since

determining the specific structures of marine dissolved carbohy-

drates is not possible using currently available analytical

techniques [19], we used as substrates a suite of polysaccharides

that are components of marine algae [20], and/or whose

hydrolytic enzymes have been identified in the genomes of

recently-sequenced marine bacteria [13,15,21]. These polysac-

charides—laminarin, xylan, fucoidan, arabinogalactan, pullulan,

and chondroitin sulfate—are structurally diverse, vary in mono-

mer composition and linkage position, and because they are

constituents of marine plankton, many are present in considerable

quantities in the ocean. The production of laminarin by diatoms

and Phaeocystis in the ocean, for example, has been estimated at 5

to15 billion metric tons annually [22]. A previous investigation at a

few locations had shown evidence of spatial variations in microbial

extracellular enzyme activities in surface ocean waters [23]. The

present study, the culmination of a series of investigations carried

out over the course of a decade, demonstrates that there are

recognizable patterns in microbial potential to access DOC on

large-scale gradients, mirroring emerging patterns of microbial

biogeography in the ocean [24–28].

Results and Discussion

Differing abilities to hydrolyze a diverse range of substrates, as

evident in our survey (Fig. 1), demonstrate functional differences

among pelagic microbial communities. All substrates were

hydrolyzed at only 4 of the 32 stations, all in the Gulf of Mexico.

At the other 28 sites, the spectrum of hydrolysis ranged from one

to five substrates. Only laminarin was hydrolyzed at every station;

chondroitin and xylan were hydrolyzed at the majority (81% and

78%, respectively) of the stations, while pullulan, arabinogalactan,

and fucoidan were hydrolyzed at 63%, 47%, and 34% of the

stations, respectively. Summed hydrolysis rates were maximal at

tropical/subtropical stations, and these summed rates as well as

the spectrum of detected enzyme activities, decreased towards the

poles (Figs. 1 and 2). The relative contribution of each enzyme

activity to the sum at a given station (evenness of hydrolysis rates;

Fig. 3) showed a similar pattern, with increasing evenness at higher

temperatures (and lower latitudes).

The broad correlation between latitude and summed hydrolysis

rates points to the relationship between summed hydrolysis rates

and water temperature (n = 35, including 4 visits to a single station

(Station J; Table 1), r2 = 0.64, p,0.005), a relationship that could

be due to the kinetic effect of temperature. This correlation,

however, is driven primarily by the correlation with laminarin

(r2 = 0.79; p,0.005) and by the fact that a broader spectrum of

enzyme activities is detected across the range of stations in lower-

latitude waters (Figs. 1 and 2). Temperature was poorly correlated

with hydrolysis of chondroitin (r2 = 0.15; p,0.05), arabinogalactan

and pullulan (r2 = 0.20 and 0.21, respectively; p,0.01), and

fucoidan (r2 = 0.23, p,0.005). The correlation with xylan was

stronger (r2 = 0.49, p,0.005), but hydrolysis rates of the substrates

at stations with similar temperatures varied greatly. At tempera-

tures close to 28uC, for example, the variation in hydrolysis of

xylan, fucoidan, arabinogalactan, and chondroitin was an order of

magnitude or more (Table 1; Table S1; Fig. 1). Moreover, the

differences in hydrolysis rate evenness (Fig. 3) are not explained

solely by temperature, since a purely kinetic effect of temperature

on hydrolysis rates would be expected to cause a generally

proportionate change in the activities of all enzymes, and greatly

extended incubation times do not markedly broaden the spectrum

of substrates hydrolyzed at high latitude [29].

To the extent that these differences in enzymatic capabilities

cannot be explained by temperature, they may derive from

variations in microbial community composition that cascade into

these functional differences. Arctic microbial communities differ in

composition from their temperate counterparts [24,30–31].

Recent investigations have demonstrated latitudinal gradients in

microbial community richness, with markedly reduced diversity at

high latitudes [26–28]. The functional consequences of these

variations are unknown, since microbial phylogeny and function

are not well correlated. Our results demonstrate that microbial

community function varies systematically across latitudinal

gradients. The lower summed hydrolysis rates and the more

limited spectrum of substrates enzymatically accessible to micro-

bial communities at high latitudes coincides with a reduction in

community richness (Figs. 1 and 2).

Table 1. Station locations and water temperatures.

Station Latitude Longitude Water temp. (6C)

J 79.4N 11.1E 4

AB 77.4N 15.1E 4

P2 66.5N 168.1W 8.7

DO 38.4N 74.6W 13.5

CO 36.4N 74.8W 22

P10 35.5N 164.2W 24.2

GOM1 30.2N 87.4W 28

GOM11 29.6N 87W 28

GOM072 28.5N 89.4W 28.7

GOM073 28.3N 89.4W 28.9

P15 15.5N 161.4W 27.4

BOT12 15.1N 105.5W 29.1

BOT10 10.2N 99.4W 28.6

BOT8 5.4N 92.4W 27.4

T33 1.1N 83.5W 26

BOT7 0.005S 86W 24.1

P21 7.2S 168.4W 29.2

BOT5 8.2S 83.5W 19.8

BOT4 12.2S 81.4W 18

BOT3 17S 79.1W 17.3

T15 23.1S 79.2W 17.5

BOT1 26.3S 75W 15.2

P27 26.5S 173W 21.1

T3 39.2S 77.6W 11

G1 49.3S 174.4W 8.5

R1 56.3S 176.2E 6

R3 62.3S 178.4W 21.5

M9 65S 176W 21.7

G11B 74.3S 173.3W 0

R10C 76.1S 170.3E 21.8

G9A 76.3S 179W 0

R13f 76.5S 177.5E 21.8

doi:10.1371/journal.pone.0028900.t001
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Differences in the extent to which genes for polysaccharide

hydrolases are expressed may also contribute to differences in

enzyme activities among microbial communities, but the genetic

diversity of polysaccharide hydrolases even among well-studied

organisms is barely beginning to be explored [32], complicating

efforts for a concerted genetic investigation. One study suggests

that a high diversity of hydrolases is potentially available to

microbial communities in the North Atlantic [14], but the extent

and the conditions under which this genetic potential might be

expressed are still matters of speculation. A search of the

CAMERA database (http://camera.calit2.net/), for example,

yielded numerous gene sequences related to an alpha-L-fucosidase

of Pseudoalteromonas atlantica T6c (http://img.jgi.doe.gov/cgi-bin/

pub/main.cgi). These sequences were found at 60 different Global

Ocean Survey (GOS) sites (available through CAMERA),

spanning latitudes of 32uS to 45uN, despite the fact that this

enzyme activity was not detected in many of our samples from the

same range of latitudes (Fig. 1). Likewise, a search (via CAMERA)

of the two marine sites in the Antarctic Aquatic Metagenome

produced sequences from Newcomb Bay (66uS) closely matching

pullulanases from fully-sequenced marine bacteria (http://blast.

ncbi.nlm.nih.gov/Blast.cgi), although pullulanase activity was not

detectable at any of our sites at latitudes higher than 49uS or 38uN
(Fig. 1). Limited geographical overlap between the current

CAMERA database and our samples presently preclude a more

detailed comparison among sites that would provide insight into

the extent to which microbial communities vary in their genetic

response to environmental parameters.

Patterns of microbial community composition at a given

location are temporally repeatable [33–37]. Results from our

investigation suggest that patterns of hydrolytic activities are also

consistent over multi-year timescales. One high-latitude station

Figure 1. Summed enzymatic hydrolysis rates in surface water at each station plotted against latitude (south latitudes shown with
negative numbers). Bar height shows the sum of the maximum enzymatic hydrolysis rate of each substrate at each station. All stations were visited
once, with the exception of Station J (79uN); values shown for Station J are averages from 4 visits. (See Fig. 4 and Table S1 for data from each
sampling time at Station J.) Pullulan hydrolysis is shown in blue, laminarin in yellow, xylan in red, fucoidan in green, arabinoglactan in white, and
chondroitin sulfate in aqua. Hydrolysis rates and standard deviations for all substrates and stations are in Table S1.
doi:10.1371/journal.pone.0028900.g001

Figure 2. Proportionate contribution of each enzyme activity to summed hydrolysis rates, normalized to 100%. Station latitude and
color key for enzyme identity are as in Fig. 2.
doi:10.1371/journal.pone.0028900.g002

Latitudinal Gradients in DOC Degradation
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(79uN, Stn. J; Table 1) sampled four times over the course of 10

years consistently showed hydrolytic activity dominated by

chondroitinase (.50% of total activity), with similar patterns

and levels of total activity (Table S1; Fig. 4). Likewise, two pairs of

stations close to one another in the Gulf of Mexico (GOM1 and

GOM11, 28uN; also GOM072 and GOM073, 28.2–30.2uN;

Table 1) sampled 6 years apart showed the same broad substrate

spectrum (nearly unique among sample locations; Fig. 2) and high

levels of total activity (Fig. 1).

The patterns in enzymatic activities observed here provide

insight into the potential of microbial communities to access

components of the DOC pool, rather than a snapshot of enzyme

activities expressed at the time of sampling, since our enzyme

incubations lasted several days to two weeks. These experiments

demonstrate the potential of a microbial community to access

specific substrates over timescales sufficiently long to allow for

cellular growth as well as for enzyme induction. The observation

that many substrates remained unhydrolyzed over these timescales

suggests that some microbial communities collectively lack the

capabilities (enzymes, inducers, or organisms) to access specific

substrates [38].

This information is unique, since no other currently available

analytical method tests the abilities of microbial communities to

access specific polysaccharide structures. Likewise, the concentra-

tions of specific polysaccharides in the ocean cannot be measured

with currently-available techniques [19], precluding direct mea-

surement of polysaccharide production or concentration. Compa-

rable data cannot be obtained by measuring surface water DOC

concentrations at diverse locations, because DOC concentrations

are a function of DOC production, DOC degradation, and water

mass history [39] (the radiocarbon age of bulk DOC is ca. 6000

years [40].) Measurements of DOC concentrations in the surface

ocean therefore cannot differentiate unambiguously between

changes in the metabolic capabilities of heterotrophic microbes,

changes in DOC production, and differences in water mass

history. Moreover, attempts to constrain production and con-

sumption terms for DOC across broad latitudinal gradients are

greatly complicated by the multitude of sources and varying

bioavailabilities of different components of the DOC pool [6], as

well as the paucity of data from high latitude environments [9,41].

A measure of the spectrum of enzyme activities capable of

hydrolyzing a class of biomolecules constituting the largest

identified component of the DOC pool thus yields insight into

processes otherwise not amenable to quantification.

The broader spectrum of enzyme activities observed at

temperate and tropical sites indicates that those microbial

communities can access a wider range of substrates than their

high-latitude counterparts. The fact that this trend was discernable

in our global data set despite variations in season, levels of

productivity, oceanic province, and a host of other factors, is

remarkable. The functional factors controlling the breadth of

microbial community metabolic capabilities remain to be

determined. However, the pattern observed here matches the

decrease in bacterial species richness observed at high latitudes

[26–27]. The reason for that trend is not well understood [42];

bacterial richness correlates to a similar extent with water

temperature and latitude [26]. A recent model investigation of

global patterns of phytoplankton diversity, however, points at the

magnitude of seasonal variability in environments and at relative

rates of organism dispersal as key factors controlling latitudinal

diversity gradients for phytoplankton [43]. Similar factors may

control diversity gradients of heterotrophic bacteria.

Projected changes in ocean environments over the coming

decades driven by global warming [44–45] may increase the rates

and widen the spectrum of enzyme activities due to changes in

microbial community composition that are facilitated by changes

in ocean temperature, circulation, or biogeochemical parameters

[46]. Particularly in the Arctic, where rapid temperature increases

are projected for the near future, the input of terrestrially-derived

DOC into the Arctic basin may be greatly accelerated due to

melting of permafrost and increased runoff [47]. Currently, much

of this organic matter is buried or exported to the North Atlantic

[41,48–49]. In the future, more organic matter may reach the

Arctic Ocean, and if the range of complex substrates available to

heterotrophic microbial communities is broader in a future Arctic

Ocean, a larger fraction of it may be remineralized there.

Kirchman et al. [46] predict that climate change in polar waters

may also lead to changes in food web structure resulting in greater

transfer of carbon from phytoplankton to DOC to bacteria, and

thus to the respiration of a larger fraction of marine primary

production to CO2. These processes would be greatly facilitated if

future polar microbial communities can use a wider range of

enzymatic tools, as their temperate to tropical counterparts

Figure 3. Evenness of enzymatic hydrolysis rates as a function
of temperature. Average values (as shown in Figs. 1 and 2) were used
for Station J, the only station that was sampled more than once. Line fit:
r2 = 0.6154, n = 26, p,0.001.
doi:10.1371/journal.pone.0028900.g003

Figure 4. Relative contributions to summed hydrolysis rates for
four visits to Station J, Svalbard. Each enzyme activity is shown in a
different color; summed rates are normalized to 1.0. Pullulan hydrolysis
is shown in blue, laminarin in yellow, xylan in red, fucoidan in green,
arabinoglactan in white, and chondroitin sulfate in aqua. All rates plus
standard deviations are listed in Table S1.
doi:10.1371/journal.pone.0028900.g004

Latitudinal Gradients in DOC Degradation

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28900



currently do. Since DOC reactivity is a function of the metabolic

capabilities of microbial communities as well as intrinsic chemical

characteristics, predictive understanding of the global carbon cycle

will require further investigation of the ways in which these

metabolic capabilities are likely to change in response to changing

climate.

Materials and Methods

Sample collection, substrate incubation, and sample
analysis

Surface water was collected at each site (Table 1; Fig. S1), by

Niskin or Go-Flo bottles; surface water at Stns. J and AB was

collected by bucket. Water samples were dispensed into replicate

vials. Each vial received a single fluorescently labeled polysaccha-

ride [50] as a substrate, at a concentration of 3.5 mmol monomer

equivalent L21. Triplicate vials were incubated at in situ

temperature. Controls were autoclaved or poisoned with mercuric

chloride before substrate addition. Subsamples from each vial were

filtered through 0.2 mm pore-sized filters, and were stored frozen

prior to analysis. Changes in substrate molecular weight with time

were quantified using gel permeation chromatography, with

Sephadex G-50 and G-75 columns linked in series, and

fluorescence detection (excitation and emission wavelengths of

490 and 530 nm, respectively), as previously described [51].

Hydrolysis rates were calculated from changes in molecular weight

distribution of the polysaccharides, as described previously [50–

51]. No specific permits were required for the collection of water

from the ocean as described above. The field studies did not

involve any endangered or protected species.

Statistical analyses
Statistical comparisons were carried out using two-tailed

Student’s t-test. The evenness of hydrolysis rates (the contribution

of each activity to summed activities) was calculated using

Shannon’s entropy [52], H~{
P6

i~1

fi ln fi, where fi represents

the hydrolysis rate of the ith substrate expressed relative to the sum

of all hydrolysis rates for that station. As previously discussed [53],

H is maximized (H<1.79) when enzymatic hydrolysis rates of all

substrates are equal, and minimized (H = 0) when only one

hydrolysis rate was measurable. Error bars in Fig. 3 represent the

standard deviation of the ensemble results from a Monte Carlo

error simulation, as described in [53].

Supporting Information

Figure S1 Map of sampling locations.

(TIFF)

Table S1 Sampling dates and rates of enzymatic
hydrolysis (nmol monomer L21 h21) of all substrates at
all stations, including standard deviations of triplicate
incubations.

(DOC)
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