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Data presented in this article are related to the research article
entitled “Near Infra-red spectroscopy quantitative modelling of
bivalve protein, lipid and glycogen composition using single-spe-
cies versus multi-species calibration and validation sets” [1]. Band
width selections were determined using a data-driven approach to
modelling Near Infra-red Spectra (NIRS) of protein, lipid and gly-
cogen content in bivalves. Models were produced for single species
and combined species of Saccostrea glomerata, Ostrea angasi,
Crassostrea gigas, Mytilus galloprovincialis and Anadara trapezia.
Band width selection was undertaken using Fourier wavelet
transformation coupled with a genetic algorithm (GA) to aggregate
adjacent wavelet bands to select the minimum number of IR bands
that were consistently identified in the majority of individual
spectra.
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Specifications Table
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ubject area
 Biology, chemometric quantitative modelling

ore specific subject area
 Bivalve energetic quantitative modelling using NIRS.

ype of data
 Excel spreadsheet

ow data was acquired
 FT-IR spectra capture using NIRS

Bandwidth selection using Fourier wavelet transformation coupled
with a GA to aggregate adjacent wavelet bands
ata format
 Raw

xperimental factors
 2nd derivative and MSC correction of spectra prior to bandwidth

selection

xperimental features
 Data collected during data-driven quantitative modelling process.

Spectral image captured for near infra-red range, pre-processed then
bandwidth selection undertaken using fourier wavelet transformation
and GA to aggregate adjacent wavelet bands.
ata source location
 Multiple sites on Australian east coast

ata accessibility
 Data is provided with this article

elated research article
 Companion paper to:

Bartlett et al. [1]
Value of the data

� Data provides example of different bandwidth selections associated with energy stores in bivalve
species when using a data-driven approach to NIRS quantitative modelling.

� Data provides first steps to allowing potential comparisons with other NIRS bandwidth selection
processes.

� Bandwidth selection was undertaken for individual species and pooled to generate 3-oyster and
5-bivalve species models.
1. Data

In the near infra-red range of light, absorptions correspond to overtones and combinations of
fundamental bands of molecular vibrations [2]. Data analysis of NIR spectra using multi-linear
regression allows for computation of predictive models [3,4]. In undertaking regression analysis, more
effective and robust correlations are obtained by applying an approach to discriminate within the
spectra on which band widths to use in the quantitative modelling [4]. Band width or variable/feature
selection is critical to the calibration process as it allows for improvement of data quality by including
relevant information, providing better prediction results and reducing uninformative ‘noise’ Smirnov,
[5].

The data provided are the results of a data-driven bandwidth selection process implemented when
undertaking quantitative modelling of bivalve energy storage components of protein, lipid and gly-
cogen in whole animals. Single species models were developed for each energy storage component
for Saccostrea glomerata, Ostrea angasi, Mytilus galloprovincialis and Anadara trapezia. Multi-species
models were developed for 3 oyster species (S. glomerata, O. angasi and Crassostrea gigas) and all
5-bivalve species.
2. Experimental design, materials, and methods

Bivalve species used in this modelling were collected across 8 sites in New South Wales (NSW),
Victoria and South Australia (SA) in Australia across four seasons to provide a wide range of samples.
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NIR spectra were collected with a Perkin Elmer Frontier FT-IR Spectrometer using the NIR spectral
unit. Samples added to the dish were gently pressed into the dish (30mm) then tapped three times
with a spatula to ensure even packing. NIR spectra were captured at wavelengths 10,000–4000 cm−1

(32 scans) measured as absorbance at a resolution of 16 cm−1 with data intervals of 2 cm−1. NIR
capture was undertaken in triplicate and samples rotated up to 120° between each image capture.
Spectra were captured using Perkin Elmer Spectrum software, v.10.4.3.339 and corrected for stray
light and reference corrected.

Data-driven software was developed to undertake all pre-processing and predictive NIR spectra
model generation. Data was pre-processed by applying multiplicative scatter correction and second
derivative using the mean of the triplicate NIRS scans to normalise the data. Samples were then
screened for outliers with samples where the Mahalanobis distance between individual analyte
concentration values and the median analyte concentration for the entire sample dataset is 4
3.0 with outliers being excluded from the model datasets [3,6]. The dataset was then segregated into
calibration and validation datasets following the methods described by Jiwen et al. [4] and Zhu et al.
[7]. Briefly, the data was ordered from lowest to highest with minimum and maximum values allo-
cated to the calibration data set. The remaining samples were randomly allocated to either the
calibration or validation data set with 25% allocated to the validation set and the remainders to the
calibration set [4,7]. This ensured that the calibration dataset contained the full range of the analyte
concentrations and that both calibration and validation datasets contained a random selection of
samples from across the entire sample dataset. Models were run up to 5 times to ensure robust and
repeatable outcomes.

Band width selection was undertaken using Fourier wavelet transformation coupled with a GA to
aggregate adjacent wavelet bands to select the minimum number of IR bands that were consistently
identified in the majority of individual spectra. The wavenumber search range used to identify the
wavelet peaks in the pre-processed spectra was between 5 cm−1 and 50 cm−1. Wavelet peaks between
2 and 100 cm−1 were tested, with the range of 5 to 50 cm−1 obtaining the most robust models.
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