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Background and aims: Chronic opioid analgesia has the debilitating side-effect of  constipation 

in human patients. The major aims of this study were to: 1) characterize the opioid-specific 

antagonism of morphine-induced inhibition of electrically driven contraction of the small intes-

tine of mice, rats, and guinea pigs; and 2) test if the oral delivery of small milk-derived opioid 

antagonist peptides could block morphine-induced inhibition of intestinal transit in mice.

Methods: Mouse, rat, and guinea pig intact ileal sections were electrically stimulated to 

contract and inhibited with morphine in vitro. Morphine inhibition was then blocked by opioid 

subtype antagonists in the mouse and guinea pig. Using a polymeric dye, Poly R-478, the opioid 

antagonists casoxin 4 and lactoferroxin A were tested orally for blocking activity of morphine 

inhibition of gut transit in vivo by single or double gavage techniques.

Results: The guinea pig tissue was more sensitive to morphine inhibition compared with 

the mouse or the rat (IC
50

 [half maximal inhibitory concentration] values as nmol/L ± SEM 

were 34 ± 3, 230 ± 13, and 310 ± 14 respectively) (P , 0.01). The inhibitory influence of 

opioid agonists (IC
50

) in electrically driven ileal mouse preparations were DADLE ([D-Ala2, 

D-Leu5]-enkephalin) $ met-enkephalin $ dynorphin A $ DAMGO ([D-Ala2, N-Me-Phe4, Gly-

ol5]-enkephalin) . morphine . morphiceptin as nmol/L 13.9, 17.3, 19.5, 23.3, 230, and 403 

respectively. The mouse demonstrated predominantly κ- and δ-opioid receptor activity with a 

smaller µ-opioid receptor component. Both mouse and guinea pig tissue were sensitive to casoxin 

4 antagonism of morphine inhibition of contraction. In contrast to naloxone, relatively high oral 

doses of the µ-opioid receptor antagonists, casoxin 4 and lactoferroxin A, applied before and 

after morphine injection were unable to antagonize morphine inhibition of gut transit.

Conclusions: Casoxin 4 reverses morphine-induced inhibition of contraction in mice and 

guinea pigs in vitro but fails to influence morphine inhibition of mouse small intestinal transit 

by the oral route.
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Introduction
Much attention has been focused on characterizing the central and systemic opioid 

receptor profiles of small laboratory animals used to elucidate the mechanism of 

morphine inhibition of gut transport.1–6 A major challenge is to develop a natural or 

pharmaceutical agent that can relieve the constipating side effect of opioid therapy 

without compromising central analgesia.7 However, there is no guarantee that the agent 

found to be efficacious in an animal model would be functional in humans. Naloxone 

methiodide has been developed as an antimorphine agent that could overcome con-

stipation without antagonizing analgesia because it does not cross the blood–brain 
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barrier,8 but its therapeutic value is limited due to poor oral 

availability.9 In this competitive field, other pharmacological 

agents of interest for the treatment of opioid-induced bowel 

dysfunction are alvimopan and methylnaltrexone,10–12 but fur-

ther data are required to fully assess their place in therapy.13 

Other compounds are now in advanced clinical trials (for 

example, NKTR-118, TD-1211, ALKS 37, and ADL5945) 

for the relief of opioid-induced constipation in chronic pain 

patients.14–17

Our focus has been directed towards antagonism of 

peripheral opioid receptors using small peptides. We have 

demonstrated that the methoxylated tetrapeptide sequence 

isolated from the κ-casein fraction of bovine milk, casoxin 4 

(Tyr-Pro-Ser-Tyr-OCH
3
), antagonized morphine inhibition of 

electrically driven guinea pig ileum when applied specifically 

to the lumen.7 Therefore, our hypothesis is that orally applied 

small milk-derived opioid antagonists can block the morphine-

induced retardation of gut transit in the mouse model. Since 

the mouse is a well characterized model for opioid-induced 

analgesia and inhibition of gut transit, our first aim is to investi-

gate the opioid agonist and antagonist profile of the electrically 

stimulated mouse ileum and compare this with rat and guinea 

pig ileum. Our second aim is to test whether two potent opioid 

peptide antagonist sequences found in milk peptone and whey 

can overcome the anti-motility properties of morphine in the 

mouse when administered orally.

Materials and methods
Animals
Male Wistar rats, male Swiss mice, and male and female 

guinea pigs from the Institute of Medical and Veterinary Sci-

ence Animal Resource Centre (Gilles Plains, South  Australia) 

were fed standard laboratory feed and water ad libitum. 

The guinea pigs were given supplements of fresh fruit and 

 vegetables. Animals were housed and euthanized according 

to the guidelines of the CSIRO Food and Nutritional Sci-

ences Animal Experimental Ethics Committee who approved 

the study under the guidelines of the National Health and 

 Medical Research Council, Australian Research Council, and 

the Australian Vice-Chancellors’ Committee – Australian 

code of practice for the care and use of animals for scientific 

 purposes.18 Power calculations were included in the body of 

the experimental design within the ethics application.

Electrically driven infused  
guinea pig ileum
Guinea pigs of either sex weighing 400–500 g were used. 

After the animals were painlessly asphyxiated with CO
2
, 

the small intestine to just above the ileocecal junction was 

excised and flushed with saline. The terminal 10 cm of the 

distal ileum was discarded. A catheter was inserted at each 

end of a 4–5 cm piece of ileum.7 The proximal end of the 

ileum was plugged via the plastic cannula to a plastic sleeve 

over a glass inlet perfusion cannula that was integral to a glass 

plug that was placed into the bottom of the bath. The cannula 

at the distal end of the ileum was plugged into a plastic sleeve 

and suspended by a 10 cm rigid plastic perfusion outlet tube 

bent at 135° at the top with 5 cm of further outlet tubing. The 

outlet tube was connected at the bend to the arm of a Harvard 

isotonic transducer by a short length of cotton sustaining 2 g 

of tension. This system allows for the separation of opioid 

effects of the bath (or serosa) from the lumen.7 Contractions 

were measured via a Biopac system and translated and stored 

using AcqKnowledge® for Windows (version 3.01; Biopac 

System Inc., Goleta, CA). The tissue was bathed vertically 

in 30 mL of a modified Krebs–Henseleit bicarbonate buffer 

containing in mmol/L: 118 NaCl, 25 NaHCO
3
, 4.7 KCl, 

1.2 MgSO
4
, 1.2 NaH

2
PO

4
, 1.8 CaCl

2
, and 11 glucose, at 

pH 7.4 in a water jacketed bath at 37°C while being gently 

bubbled with 95% O
2
 and 5% CO

2
. The contents of the 

bath were flushed from the bottom and withdrawn from an 

overflow near the top of the bath by vacuum. The ileum was 

initially flushed through the lumen for 30 minutes with buffer 

at a rate of 1.6 mL/min using a Minipuls 2 pump (Gilson Inc., 

Middleton, WI). The tissue was then electrically stimulated 

via two stainless steel  electrodes, both 10 cm long, running 

parallel to and on opposite sides of the tissue in the bath, 

using square wave pulses of 60 V for 5 ms at 0.1 Hz. At 

least 1 hour was allowed for the tissue to stabilize. Peptide 

(or chemical as indicated) was added to the bath as a small 

bolus in saline. Dose curve effects were generated by serial 

addition to the bath.19,20

Electrically driven mouse and rat ileum
Animals were killed by cervical dislocation and the small 

intestine removed and flushed with saline. Distal sections 

of ileum 4–5 cm long were dissected out and tied at each 

end with fine suture. The proximal end was secured to 

the bottom of a 30 mL organ bath and the distal end con-

nected to the torsion arm of a Harvard isotonic transducer 

at minimum (0.1 g) tension to suspend the tissue. The 

bath contained Krebs–Henseleit bicarbonate buffer, and 

contractions were recorded as described above. Tissue was 

stimulated to contract by field stimulation created from 

round stainless steal electrodes at the top and bottom of 

the bath with the tissue situated centrally to the electrodes. 
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Optimal settings for ileal contraction were determined 

by firstly maintaining the voltage at 60 V at 0.1 Hz and 

incrementally increasing the length of time of the square 

pulse (millisecond) for the rat and mice tissue. Once the 

maximal time of stimulation was determined, the mil-

lisecond level was set (again with 0.1 Hz) and the voltage 

increased incrementally until maximal contraction had been 

achieved. At supramaximal settings, the tissue was then 

allowed 1 hour to stabilize. Opioid agonists were added 

to the bath as small boluses, and dose curves were gener-

ated by cumulative additions to the bath. After allowing 

at least 5 minutes with agonist, opioid antagonists were 

added stepwise to the bath.

small intestine transit in the mouse:  
single gavage experiments
Mice were injected subcutaneously (150 µL/30 g mouse) 

with morphine (or morphine with naloxone) at 1.0, 1.5, or 

2.0 mg/kg (of bodyweight) or saline as control as indicated 

and 20 minutes later given 100 µL of a 5% solution of 

 Poly-478 in Milli-Q Plus water (Millipore, Billerica, MA) 

as control or containing casoxin 4 (50 mg/kg) or lactofer-

roxin A (50 mg/kg) or naloxone (2 mg/kg) administered 

by gastric gavage.21 After 45 minutes allowed for transit, 

the mice were euthanized by cervical dislocation, and the 

small intestine was cut into 8 segments of equal lengths. 

Segments were numbered from 1 (proximal) to 8 (distal) 

and all samples plus the stomach were flushed with saline 

up to a final volume of 6 mL at room temperature. Both 

the stomach flush and small intestinal flush were placed in 

test tubes and Poly R-478 was determined by colorimetric 

assay.21–23 The datum for each segment was expressed as a 

percentage of the sum total. The dye front was measured 

and expressed as a percentage of the total small intestine 

length.

small intestine transit in the mouse: 
double gavage experiments
Mice were gavaged with 100 µL saline containing casoxin 4 

(50 mg/kg) or saline as control, and 20 minutes later injected 

subcutaneously with 2 mg/kg morphine or saline as control. 

A further 20 minutes later, the mice were gavaged with 

100 µL Poly R-478 in Milli-Q water as control or containing 

casoxin 4 (50 mg/kg). The total dose of casoxin 4 gavaged 

was therefore 100 mg/kg in 200 µL of solution that calcu-

lates to a maximal net bolus concentration of approximately 

0.7 mol/L in the stomach. Gastrointestinal transit proceeded 

for 45 minutes, at which time mice were euthanized and the 

stomach and intestinal contents treated as described above 

for the single gavage experiments. After single or double 

gavage techniques when the contents of the stomach and 

small intestine were removed, no damage or bleeding was 

observed of the gut mucosa.

Colorimetric assay of Poly r-478
Colorimetric assay of Poly R-478 was performed as described 

previously elsewhere and in our laboratory with small 

modifications.21–23 Flush samples were homogenized for 

10 seconds by Ultra-Turrax® (Janke and Kunkel, GmbH and 

Co., Staufer, Germany) on setting 6. One-half mL of aliquots 

(in duplicates) of each homogenate were placed into plastic 

test tubes containing 1.5 mL 1 N KOH, vortexed, capped, 

and left at room temperature for 12 hours. The samples 

were spun for 10 minutes at 3000 rpm in a Beckman CPR 

centrifuge (Fullerton, CA) and the supernatants decanted into 

test tubes. The supernatants were read against a KOH blank 

at 515 nm on a Varian DMS 80 spectrophotometer (Varian 

Techtron Pty Ltd, Mulgrave, Australia). Several standard 

curves were used.

Drugs
Drugs used were: morphine hydrochloride (Fauldings, 

Adelaide, South Australia); β-casomorphin[1–4] amide (mor-

phiceptin), [D-Ala2, D-Leu5]-enkephalin (DADLE), [D-Ala2, 

N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), dynorphin
[1–13]

 

A, ibuprofen, naloxone hydrochloride, Poly R-478, and 

other chemicals from Sigma-Aldrich Chemical Company 

(Sydney, Australia); met-enkephalin and custom synthesis 

of casoxin 4 and lactoferroxin A from Auspep (Melbourne, 

Victoria, Australia).

statistical analyses
Data were usually shown as mean ± SEM (standard error of 

the mean). The effects of opioid agonists and antagonists on 

small intestinal contractility or transit time were determined 

using two-tailed Students’s t-tests when comparing between 

two sets of data or by 2-way ANOVA for three or more sets 

of data (Sigma-Stat 3.1; Jandel Scientific, Corte Madera, CA). 

When significance was obtained by ANOVA (P , 0.05), post 

tests by Bonferroni were performed or by using Dunnett’s 

multiple comparison post tests using suitable controls. The 

EC
50

 (half maximal effective concentration) and IC
50

 (half 

maximal inhibitory concentration) values and maximal 

contraction values were determined from concentration dose 

curves using Graph fits in Prism (version 4.0; GraphPad 

Software, San Diego, CA) with R2 values . 0.99.
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Figure 1 Morphine inhibition of electrically driven contractions in guinea pig (), 
rat (o), and mouse () ileum. Mouse was also in the presence () of 0.1 µM ibuprofen. 
Each point is the mean ± sEM for ileal tissue from 15–19 guinea pigs and 3–4 rats or 
mice performed in duplicate. Significant differences between species is indicated at 
10-8, 10-7, 3 × 10-7, and 10-6 mol/L as determined by 2-way AnOVA and Dunnett post 
tests as P , 0.01 (letter a) for guinea pig compared with rat or mouse.
Abbreviations: AnOVA, analysis of variance; GP, guinea pig; Mo, mouse; sEM, 
standard error of the mean. 
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Results
Electrically driven ileum of small  
animal models
For the mouse, electrical square pulses of 3–5 milliseconds 

were required to stimulate maximal movement (results not 

shown) of mouse ileum at 60 V and 0.1 Hz. This resulted 

in a large relaxation phase that was followed by a smaller 

contraction phase. The IC
50

 for morphine inhibition for the 

electrically driven contractions in the mouse ileum was 180 ± 

14 nmol/L (Figure 1). It was found that 0.1 µmol/L ibuprofen 

reduced the basal tone and routinely abolished the majority 

of the relaxation phase revealing predominantly the contrac-

tion phase of smooth muscle action. However, in this system, 

ibuprofen did not significantly change the sensitivity to mor-

phine (IC
50

 230 ± 15 nmol/L), compared with morphine alone, 

180 ± 14 nmol/L (Figure 1). In all subsequent experiments, 

ibuprofen was included 5–10 minutes before the addition 

of opioid agonist or antagonist. The relative sensitivities to 

morphine inhibition using the electrical stimulation (IC
50

 as 

nmol/L ± SEM) regimens were for the guinea pig (34 ± 3), 

compared with the mouse (230 ± 15) and rat (310 ± 17), 

which was significantly lower in the guinea pig compared 

with both mouse and rat (P , 0.001) and between the mouse 

and the rat (P , 0.05) as shown in Figure 1 (P , 0.01).

Effect of opioid agonists on electrically  
driven contraction in mouse ileum
The effect of a range of opioid receptor-specific agonists 

on the inhibition of electrically driven contractions in the 

mouse ileum is given in Figure 2. The relative order of 

potency (opioid receptor subtype, IC
50

 in nmol/L ± SEM) was 

DADLE (δ, 13.9 ± 2.1) $ met-enkephalin (δ, 17.9 ± 3.3 ) $ 

dynorphin
[1–13]

 A (κ, 19.5 ± 4.0) $ DAMGO (µ, 23.3 ± 4.1) . 

morphine (µ, 230 ± 13) and morphiceptin (µ, 403 ± 19). The 

IC
50

 values for DADLE, met-enkephalin, and dynorphin
[1–13]

 

A were significantly lower than for morphine, and the mor-

phine value was lower than for morphiceptin (P , 0.05). 

The differences between the various opioid agonists at 10-8, 

10-7, and 10-6 mol/L are given in the legend to Figure 2. The 

µ-opioid receptor agonists (morphine and morphiceptin) had 

maximal inhibition of 48% and 50%, whereas the more active 

agents ranged between 64% and 76% maximal inhibition. It 

is of note that the dose response curve shapes of the various 

opioid agonists are different in Figure 2. However, similar 

variability in curve shapes has been observed for the inhibi-

tion of electrically driven contractions by enkephalins in vitro 

for the guinea pig ileum.7

Antagonist effect of casoxin 4 against 
morphine in the mouse and guinea pig
Concentrations of morphine required to inhibit electrically 

driven contractions by approximately 50% in the guinea 

pig and mouse were 0.1 and 1.0 µmol/L respectively. The 

µ-specific opioid antagonist, casoxin 4, one of the smallest 

and most potent opioid antagonist peptides yet described, 

is a synthetic tetrapeptide fragment of casoxin 6.24,25 
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Figure 2 Effect of opioid agonists on inhibition of the electrically driven mouse ileum 
with 0.1 µmol/L ibuprofen. Opioids: () morphine, (o) DAMGO, () dynophin[1–13]-A, 
() met-enkephalin, () DADLE, () morphiceptin. Each point represents the 
mean ± sEM at each dose tested on n = 3–4 mice in duplicate. On the graph, the 
letter “a” as determined by AnOVA and Bonferroni post tests, at 10-8 mol/L, the % 
inhibition of electrically driven contraction by DAMGO, DADLE, and met-enkephalin 
are significantly higher than morphine, dynophin[1–13]-A, and morphiceptin; for “b” 
at 10-7 mol/L, DAMGO, dynophin[1–13]-A, DADLE, and met-enkephalin are higher 
than morphine and morphiceptin; and “c” at 10-6 mol/L, DAMGO is higher than 
morphine (P , 0.05).
Abbreviations: DADLE, [D-Ala2, D-Leu5]-enkephalin; DAMGO, [D-Ala2,n-Me-
Phe4,Gly-ol5]-enkephalin; sEM, standard error of the mean.
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Figure 3 Casoxin 4 antagonism of morphine inhibition of electrically driven 
contraction in the mouse pre-incubated with 0.1 µmol/L ibuprofen () and guinea 
pig ileum (). The concentrations of morphine used to induce approximately 50% of 
contraction were 1 µmol/L for the mouse and 0.1 µmol/L for the guinea pig. This is 
a representative graph of three determinations on different animals in duplicate. The 
iC50 values for casoxin 4 for n = 3 determinations in duplicate for the guinea pig and 
n = 3 determinations in duplicate for the mouse were 2.1 ± 0.2 µmol/L and 11.3 ± 
0.5 µmol/L, respectively, which were significantly different by two-tailed Student’s 
t-test (P , 0.001).
Abbreviations: GP, guinea pig; iC50, half maximal inhibitory concentration;  
Mo, mouse.
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The potency of casoxin 4 to antagonize morphine inhibition 

of electrically driven contractions is shown in Figure 3. 

The IC
50

 for casoxin 4 reversal of morphine inhibition is 

2.1 ± 0.2 µmol/L for the guinea pig and 11.3 ± 0.5 µmol/L 

for the mouse, respectively, which were significantly dif-

ferent by Student’s t-test (P , 0.001). Using the electri-

cal regimes employed here, the guinea pig was far more 

sensitive and had a higher maximal inhibition to morphine 

compared with the mouse. Furthermore, casoxin 4 overcame 

only 50% of the morphine inhibition of electrically driven 

contraction in the mouse. It was found that all inhibition 

of contractility could be antagonized by 0.1–1.0 µmol/L 

naloxone (results not shown).

Effects of casoxin 4, lactoferroxin A,  
and naloxone against morphine  
inhibition of gut transit in the mouse
We have previously demonstrated that casoxin 4 antago-

nizes the inhibitory effect of morphine on electrically 

driven contraction when specifically applied to the lumen 

of the isolated intact guinea pig ileum.7 In this report we 

have shown that casoxin 4 also inhibits morphine when 

added nonspecifically to the serosal side of the mouse 

ileum. We have further investigated whether casoxin 4 

and another milk-derived oligopeptide, lactoferroxin A, a 

µ-opioid receptor antagonist isolated from the enzymatic 

digestion of human lactoferrin (H–Tyr–Leu–Gly–Ser–

Gly–Tyr–OCH
3
), can antagonize the morphine inhibition 

of gut transit in the mouse model.26,27 Morphine doses of 

1.0, 1.5, and 2.0 mg/kg (subcutaneous) significantly inhib-

ited the transit of the dye Poly R-478 in the small intestine 

of the mouse (Figure 4). After 45 minutes transit time, 

the percentage of Poly R-478 remaining in the stomach 

for saline control, 1.5 mg/kg, and 2.0 mg/kg morphine, 

subcutaneous, (number of mice) were: 14.2 ± 2.8 (24), 

22.5 ± 2.1 (16) and 31.2 ± 7.8 (6), respectively. There 

was significant difference between the groups (P = 0.02), 

with 2.0 mg/kg morphine being significantly higher than 

saline control (P , 0.05). Casoxin 4 gavaged at 50 mg/kg 

did not significantly lower the Poly R-478 content of the 

stomach at the two doses of morphine. Casoxin 4 and lac-

toferroxin A gavaged at 50 mg/kg with the dye 20  minutes 

after injection of morphine also failed to significantly 

overcome the morphine inhibition of small intestinal 

transit (Figure 4).

Since morphine is also known to increase sphincter 

tone and inhibit gastric emptying and hence may prevent 

the gavaged opioid antagonist reaching the small intestine 

at amounts that could antagonize morphine, a double gav-

age experiment was designed to potentially overcome this 

problem.28 However, gavaging the mouse with 50 mg/kg 

casoxin 4, 20 minutes before injection of 2 mg/kg morphine 

and 20 minutes after with 50 mg/kg casoxin 4, also failed to 
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Figure 4 Effect of opioid antagonists on morphine inhibition of small intestinal 
transit in the mouse. The dye front represents the percentage of the total si that 
the dye Poly r-478 has traveled. Morphine was injected subcutaneously at the 
concentrations indicated 20 minutes before the gavage of dye-containing saline as 
control or CsX 4 (50 mg/kg of bodyweight) or LFX A (50 mg/kg). Total gut transit 
time was 45 minutes. results are mean ± sEM, with the number of mice indicated 
inside the bar. Morphine at 1.0, 1.5, and 2.0 mg/kg significantly inhibited transit 
(a, AnOVA, P , 0.01) compared with control (0 mg/kg). The corresponding CsX 4 
or LFX A-treated mice had SI transit dye fronts that were also significantly different 
compared with control (b, AnOVA, P , 0.001) but not significantly different from 
the corresponding morphine dosage treatment alone.
Abbreviations: AnOVA, analysis of variance; CsX 4, casoxin 4; LFX A, 
lactoferroxin A; sEM, standard error of the mean; si, small intestine.
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significantly reverse the morphine inhibition of gut transit 

(Figure 5).

The alkaloid opioid antagonist naloxone, however, 

significantly reversed the morphine inhibition of mouse gut 

transit when added either subcutaneously with morphine or 

orally 20 minutes after subcutaneous injection of morphine 

gavaged with the Poly R-478 (Figure 6).

Discussion
The mouse and rat ileum were electrically stimulated to 

contract by having the tissue under minimal tension and 

inducing current for a similar time required for the guinea 

pig.7,25,26 In the mouse, this electrically induced activity was 

predominantly a relaxation followed by a smaller contractile 

phase. It was found that the nonsteroidal anti-inflammatory 

drug, ibuprofen, which is commonly used to indirectly deduce 

the possible role of prostaglandins,29 reduced the basal tone 

and unmasked the contractile component that was inhibited 

by morphine. Previous investigations with rodents, using 

various electrical geometries, have shown the mouse to be 

insensitive to morphine inhibition3 and that the rat had fast 

atropine-sensitive contraction that produced noncholinergic 

after-contractions.5 However, we determined that the length 

of duration of single square pulses of the small intestine of 

the rat and mouse was slightly longer but similar to that 

described in the guinea pig.30,31

In the systems described, morphine signif icantly 

inhibits electrically induced contractions in the mouse 

and rat intestine at IC
50

 values higher than for the guinea 

pig which is in concordance with other opioid studies.3,5,32 

This follows from the profound effect that morphine and 

other opiates have on the opioid receptor system by delay-

ing gastric emptying and small intestinal transit in these 

rodents.2,4,9,33,34 The rat is a common laboratory animal 

used in gut physiology studies and was included with 

the comparison of mouse and guinea pig in this study 

to determine cross-species sensitivities that may give an 

insight into the level of peptide antagonists that might be 

required in subsequent anti-morphine or other bioactive 

gut trials.32,35,36 In the electrically driven mouse model, for 

the opioid agonists tested, we have determined that the 

∆-selective agonists DADLE and metenkephalin, and the 

κ-selective agonist dynorphin A were only slightly more 
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Figure 5 Effect of double gavage of CsX 4 on morphine inhibition of transit in the si 
of the mouse. The dye front represents the percentage of the total length that the dye 
Poly r-478 has traveled along the length of the si. The control group (no morphine) 
was gavaged with saline 20 minutes before the injection of saline subcutaneously, 
followed 20 minutes later by gavage of dye-containing saline. The morphine group 
was gavaged with saline 20 minutes before being injected subcutaneously with 
morphine (2 mg/kg), followed 20 minutes later by gavage of dye. The third group 
was gavaged with CsX 4 (50 mg/kg) 20 minutes before subcutaneous injection of 
morphine (2 mg/kg), followed 20 minutes later by gavage of dye containing CsX 4 
(50 mg/kg). Total gut transit time was 45 minutes. results are mean ± sEM, with 
the number of mice indicated within the bar. The morphine group and morphine 
group with CSX 4 were significantly different from the control group (a, ANOVA, 
P , 0.01). There was no significant difference between the morphine group and the 
morphine group with CsX 4.
Abbreviations: AnOVA, analysis of variance; CsX 4, casoxin 4; sEM, standard 
error of the mean; si, small intestine.
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Figure 6 Effect of naloxone subcutaneously or orally on morphine inhibition of 
transit in si of the mouse. The dye front represents the percentage of the total 
si that the dye Poly r-478 has traveled along the length of the si. saline alone, 
or morphine (2 mg/kg), or morphine plus naloxone (2 mg/kg each) were injected 
subcutaneously 20 minutes before the gavage of dye ± naloxone (15 mg/kg). Total 
gut transit time was 45 minutes. results are mean ± sEM with the number of 
mice indicated inside the bar. Morphine at 2 mg/kg significantly inhibited transit 
(a, AnOVA, P , 0.01) compared with control as 0 mg/kg morphine. Treatment 
with morphine with naloxone added subcutaneously or with morphine at the same 
time as gavage of dye (orally) were significantly different from morphine treatment 
alone (2 mg/kg) (P , 0.01) but not significantly different from control as 0 mg/kg 
morphine.
Abbreviations: AnOVA, analysis of variance; p.o., orally; s.c., subcutaneously; 
sEM, standard error of the mean; si, small intestine.
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potent than the µ-selective agonist DAMGO. However, all 

these agonists were much more potent than the nonselective 

µ-receptor agonists morphine and morphiceptin. The results 

are consistent with the findings of others who concluded 

that the mouse ileum is predominantly a κ- and ∆-opioid 

receptor system.3,4,6

In this study, the tetrapeptide casoxin 4, one of the 

smallest and most potent peptide opioid antagonists 

described,7,24,25 blocked morphine inhibition of electrically 

induced contraction in the mouse and guinea pig (see 

Figure 3). This result is in accordance with our previous 

study where casoxin 4 and its potentially peptidase-resistant 

analog [D-Ala2]-casoxin 4,7,37 blocked the morphine inhibi-

tion of electrically induced contraction of guinea pig ileum 

when applied to the luminal side in an attempt to mimic 

the situation in vivo.7 Naloxone also antagonizes morphine 

inhibition in both species but at a lower concentration, 

probably due to its higher bioavailability and efficacy. 

Experiments were therefore conducted to determine if natu-

rally occurring peptide sequences had biological potency 

in the mouse gut transit assay that has been shown to be 

sensitive to opioid inhibition.4,6 Both the µ-specific opioid 

receptor  antagonists, casoxin 4 and lactoferroxin A, when 

added orally in high dose did not antagonize morphine 

(subcutaneously) induced inhibition of mouse gut transit 

time. The influence of a two-fold higher dose of casoxin 4 

gavaged 20 minutes before and 20 minutes after morphine 

injection was also without any effect. However, naloxone 

had a profound effect on reversing morphine inhibition of 

intestinal transit time. We had already shown that casoxin 4 

and naloxone reverses the inhibition of contraction medi-

ated by morphine in vitro. The failure of casoxin 4 but not 

naloxone to influence gastrointestinal transit modified by 

morphine is probably due to a number of factors. These 

could include degradation of the peptide by peptidases, 

low tissue penetration to the myenteric plexus, and an IC
50

 

difference in the mouse compared with the guinea pig. The 

potential to use D-amino acid substitutions in the small pep-

tide opioid antagonists as previously employed by us to limit 

peptidase activity,7,38 and increase bioavailability is also a 

possibility. At the current time it is not known which of 

these influences predominates. The major aim of this study 

was to present the small peptide opioid antagonists orally 

and assess antagonism of morphine. Therefore, a limitation 

of this study is not knowing the potential opioid antagonistic 

effects of casoxin 4 and lactoferroxin A when administered 

subcutaneously or intravenously. Further, since casoxin 4 

and [D-Ala2]-casoxin 4 can antagonize  morphine  inhibition 

of electrically driven contractions on both serosal and 

luminal side of the guinea pig ileum in vitro,7 it would be 

instructive to test the casoxins in vivo orally in the guinea 

pig and assess gut transit after subcutaneous morphine 

administration.

Pilot trials aimed at overcoming the constipating side 

effects of morphine analgesia or methadone therapy have 

successfully used intravenous methylnaltrexone, which is a 

peripherally restricted, µ-opioid receptor antagonist.39 It is 

of note that oral bioavailability of methylnaltrexone is low, 

with plasma levels not correlating with its actions in the gut, 

suggesting a predominantly local luminal action in the gut.31 

However, oral application of enteric-coated methylnaltrex-

one has also prevented opioid-induced delay in  oral–cecal 

transit in normal volunteers40,41 and has recently been 

approved in several countries for subcutaneous injections 

for the treatment of opioid bowel dysfunction in advanced 

illness for which the patient is receiving palliative care and 

when laxative therapy is insufficient.42 Further, in a recent 

randomized controlled trial, coadministration of prolonged-

release oral naloxone and prolonged release oral oxycodone 

to patients with chronic pain receiving stable oxycodone 

therapy is associated with a significant improvement in 

bowel function compared with oxycodone alone, with 

no reduction in analgesia.43 Phenyl piperidine derivatives 

have been characterized that can reverse the constipating 

effect of morphine on gut transit of mice at doses that are 

below that required to significantly antagonize the central 

analgesic effects of morphine.9 Selective small molecule 

opioid receptor-like (ORL1) antagonists have also been 

produced.44,45

The results demonstrate that casoxin 4, by an action on 

µ-opioid receptors, reverses the morphine inhibition of con-

traction in the isolated mouse and guinea pig intestinal tissue. 

The µ-opioid receptor component of inhibition is greater in 

the guinea pig than in the mouse. Finally, it was found that 

the results did not confirm our hypothesis. Casoxin 4, and 

lactoferroxin A, failed to achieve a significant inhibition 

unlike the morphine inhibition of gastrointestinal transit 

in the mouse, which was reversed by naloxone. Further 

investigation is needed to determine the usefulness of these 

peptides in reversing opioid-induced inhibition of gastroin-

testinal motility.
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