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Abstract

The clinical success of multitargeted kinase inhibitors has stimulated efforts to identify 

promiscuous drugs with optimal selectivity profiles. It remains unclear to what extent such drugs 

can be rationally designed, particularly for combinations of targets that are structurally divergent. 

Here we report the systematic discovery of molecules that potently inhibit both tyrosine kinases 

and PI3-Ks, two protein families that are among the most intensely pursued cancer drug targets. 

Through iterative chemical synthesis, X-ray crystallography, and kinome-level biochemical 

profiling, we identify compounds that inhibit a spectrum of novel target combinations in these two 

families. Crystal structures reveal that the dual selectivity of these molecules is controlled by a 

hydrophobic pocket conserved in both enzyme classes and accessible through a rotatable bond in 

the drug skeleton. We show that one compound, PP121, blocks the proliferation of tumor cells by 

direct inhibition of oncogenic tyrosine kinases and PI3-Ks. These molecules demonstrate the 

feasibility of accessing a chemical space that intersects two families of oncogenes.
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INTRODUCTION

Tyrosine kinases promote cell growth, survival, and proliferation, and are the target of 

frequent oncogenic mutations in tumors1,2. Eight tyrosine kinase inhibitors have been 

approved for clinical use and dozens more are in late-stage development. As a critical part of 

their signaling function, most tyrosine kinases activate the lipid kinases of the 

phosphoinositide 3-kinase (PI3-K) family3. PI3-K family members include p110α, which is 

the most frequently mutated kinase in human cancer4,5, and mTOR, which is a central 

regulator of cell growth3. In addition, the lipid phosphatase PTEN is a commonly 

inactivated tumor suppressor6. These observations have stimulated interest in the therapeutic 

potential of PI3-K inhibitors, and the first such molecules recently entered clinical trials7,8. 

Together, PI3-Ks and tyrosine kinases define an interconnected set of oncogenes that are the 

focus of intense drug discovery efforts.

We asked whether it would be possible to discover molecules that potently inhibit both 

tyrosine kinases and PI3-Ks. This was motivated by two lines of reasoning. First, 

reactivation of PI3-K signaling is a common mechanism of resistance to tyrosine kinase 

inhibitors9–12, and preclinical studies have shown efficacy by combining inhibitors of these 

two families13–16. For this reason, molecules that target both tyrosine kinases and PI3-Ks 

are likely to possess potent antitumor activity.

Second, we sought to identify chemical principles that might guide the discovery of 

molecules targeting these two families of oncogenes. While there are many examples of 

multitargeted kinase inhibitors, the targets of these drugs are not randomly distributed 

throughout the kinome2,17–19. Drugs that target certain combinations of kinases, but not 

others, tend to be repeatedly discovered. It would be desirable to instead rationally design 

promiscuous drugs based on the biological function of the targets, but it is unclear to what 

extent this can be achieved for proteins that are structurally divergent20.

Protein kinases and PI3-Ks diverged early in evolution21 and therefore lack significant 

sequence similarity (Fig. 1). Nonetheless, these two enzyme families share several short 

motifs (e.g. the DFG sequence that coordinates Mg2+-ATP), and their kinase domains 

display a similar two-lobed architecture22. These enzymes also use a set of analogous 

residues to catalyze the phosphotransfer reaction, even though the orientation of key 

structural elements and the identity of most residues has diverged dramatically (Fig. 1).

Consistent with these structural differences, there is limited overlap among known inhibitors 

of protein kinases and PI3-Ks. A recent comprehensive profiling of kinase inhibitor 

selectivity tested 37 potent and structurally diverse protein kinase inhibitors against p110α 

and found that none were active19; in the same study, the p110α inhibitor PI-103 (1) 

showed little or no activity against over 300 protein kinases19. We have found that clinically 

approved protein kinase inhibitors bind to their primary target >10,000-fold more potently 

than any PI3-K (Supplementary Table 1 online). Nonetheless, pan-specific protein kinase 

inhibitors such as staurosporine (2) and quercetin (3) have been shown to inhibit PI3-Ks at 

micromolar concentrations23. In addition, there are at least two reports of high affinity 

interactions between a PI3-K inhibitor and a protein kinase: wortmannin (4) inhibits the 
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serine-threonine kinase PLK124, and an imidazoquinoline (5) inhibits the serine-threonine 

kinase PDK125. The structural basis for these interactions is not known.

We describe here the systematic discovery of small molecules that potently inhibit both 

tyrosine kinases and PI3-Ks. We trace the unique selectivity of these molecules to 

interactions within a hydrophobic pocket that is conserved between both enzyme classes. 

We demonstrate that one such molecule, PP121 (6), blocks the proliferation of tumor cells 

through direct inhibition of oncogenic tyrosine kinases and PI3-Ks, and further that this 

molecule evades a common mechanism of drug resistance by redundant inhibition of 

members of these two families.

RESULTS

Discovery of dual tyrosine kinase/PI3-K inhibitors

We screened a library of tyrosine kinase inhibitors for activity against the PI3-K p110α. 

This screen yielded two pyrazolopyrimidines, S1 (7) and S2 (8), that inhibit several PI3-Ks 

at low micromolar concentrations (Fig. 2a and Supplementary Table 1 online). Structure-

activity relationship (SAR) data revealed key elements of these hits required for PI3-K 

inhibition. For example, substitution of the exocyclic amine (N4) with N-methyl abolished 

activity against PI3-Ks, suggesting that this amino group may act as a hydrogen bond donor 

(Fig. 2a). At the R2 position, methyl and isopropyl but not t-butyl substituents were 

tolerated, placing steric constraint on substitution in that region.

The pyrazolopyrimidine is a well characterized nucleus for tyrosine kinase inhibition26–28, 

and we profiled S1 and S2 against over 200 protein kinases (Fig. 2b). These molecules 

displayed a selectivity pattern similar to the classical pyrazolopyrimidine kinase inhibitor 

PP1 (9; Fig. 2b), which inhibits Src family kinases, Abl, and several receptor tyrosine 

kinases (e.g. PDGFR and Ret) but is highly selective against the serine-threonine kinome.

Based on this data, we sought to optimize the potency and selectivity of S1 and S2. More 

than 200 analogs of these hits were iteratively synthesized through diversification of the R1 

and R2 substituents (Supplementary Table 1 online). The progress of this chemistry was 

guided by testing each new compound against a panel of 14 tyrosine kinases and PI3-Ks, 

monitoring this extensive SAR in order to identify chemical features that favor binding to 

both target classes, and then incorporating these features into subsequent rounds of analogs 

(Supplementary Fig. 1 online).

From this effort we identified molecules that possess novel target profiles against kinases in 

both families (Fig. 2a). This included dual inhibitors such as PP121 and PP487 (10) that 

inhibit at nanomolar concentrations both PI3-Ks (e.g. p110α and mTOR) and tyrosine 

kinases (e.g. Src, Abl, and the VEGF receptor). We profiled PP121 and PP487 against over 

200 protein kinases and found that they inhibit a pattern of tyrosine kinases similar to 

clinically approved drugs such as dasatinib (11) and sunitinib (12), yet retain a high degree 

of selectivity against the serine-threonine kinome (Fig. 2b). Thus, these molecules are able 

to potently inhibit both tyrosine kinases and PI3-Ks without indiscriminately targeting all 

kinases.
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A selective mTOR inhibitor and other novel target profiles

Although our goal was to identify molecules that inhibit both tyrosine kinases and PI3-Ks, 

we discovered compounds with diverse and unexpected selectivity profiles (Fig. 2a). One 

such molecule was PP242 (13), which potently inhibited mTOR (IC50 = 8 nM) but was 

much less active against other PI3-K family members (Fig. 2a). Testing of this compound 

against 219 protein kinases revealed remarkable selectivity relative to the protein kinome: at 

a concentration 100-fold above its IC50 for mTOR, PP242 inhibited only one kinase by more 

than 90% (Ret) and only three by more than 75% (PKCα, PKCβII and JAK2 V617F; Fig. 2b 

and Supplementary Table 2 online). mTOR has emerged as an important drug target, and 

PP242 is the first selective and ATP competitive inhibitor of mTOR that has been described. 

Unlike rapamycin, PP242 targets both mTOR complexes and therefore can be used to 

explore signaling by mTORC2. We treated BT549 cells with PP242 and found that this 

molecule inhibited the phosphorylation of Akt, the mTOR substrate p70S6K, and its 

downstream target S6 (Supplementary Fig. 2 online). These data are consistent with a 

requirement for mTOR kinase activity in Akt phosphorylation29, and we have used PP242 

to dissect mTOR signaling (manuscript submitted).

We were surprised by the diversity of target profiles that could be achieved by structural 

variation within the pyrazolopyrimidine chemotype (Fig. 2a). In many cases, small changes 

in structure produced dramatic alterations in selectivity. For example, the DNA-PK selective 

inhibitor PP162 (14) and the multitargeted dual inhibitor PP121 differ only in the 

arrangement of nitrogen atoms in the R1 ring (Fig. 2a). Conversely, the highly selective 

p110δ inhibitor PIK-294 (15) contains the pyrazolopyrimidine core embedded within a 

structure derived from an unrelated chemical series18 (Fig. 2a). When PIK-294 is compared 

to tyrosine kinase selective pyrazolopyrimidines such as PP20 (16), these two molecules 

span more than 108-fold in relative target selectivity (Fig. 2a).

To obtain a global view of the target selectivity of these molecules, we compared 172 

pyrazolopyrimidines based on their IC50 values against 13 tyrosine kinases and PI3-Ks using 

principal component analysis (PCA) (Fig. 2c). The proximity of compounds in this two-

dimensional space provides a visual representation of their similarity against the 13 kinase 

targets, and we included as reference compounds four clinically approved tyrosine kinase 

inhibitors (sorafenib (17), gefitinib (18), dasatinib, and sunitinib) and four widely-used PI3-

K inhibitors (wortmannin, PI-103, IC87114 (19), and PIK-90 (20)). This analysis revealed 

that most pyrazolopyrimidines occupy a region of selectivity space intermediate between 

selective PI3-K and tyrosine kinase inhibitors (Fig. 2c), consistent with the targeted profile 

of these compounds. By contrast, pyrazolopyrimidines such as PP20 and PIK294 that 

preferentially inhibit either PI3-Ks or tyrosine kinases co-localized with reference 

compounds that are selective for either family (Fig. 2c). This provides an unbiased 

representation of the target profiles of these various classes of inhibitors.

Structure of pyrazolopyrimidines bound to p110γ

We determined crystal structures of S1 and S2 bound to p110γ in order to understand how 

this chemotype binds to PI3-Ks (Fig. 3). In these structures, the pyrazolopyrimidine N4 and 

N5 nitrogens make hydrogen bonds to the kinase hinge residues Glu880 and Val882, 
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respectively (Fig. 3). Similar hydrogen bonds are made by adenine in ATP bound 

structures22, and these interactions account for SAR suggesting that the exocyclic amine at 

N4 is a hydrogen bond donor to PI3-Ks.

The R1 aryl substitutents of S1 and S2 project into a deeper pocket in p110γ that extends 

beyond the region occupied by ATP. In this region, the m-phenol of S1 makes a hydrogen 

bond to the catalytic lysine (Lys833 in p110γ), whereas the 2-naphthyl of S2 makes 

extensive hydrophobic interactions (Fig. 3). We have previously shown that chemically 

diverse PI3-K inhibitors make interactions in this pocket that are required for high affinity 

binding18.

A gatekeeper for protein kinases but not PI3-Ks

We sought to understand how molecules such as PP121 can potently inhibit both tyrosine 

kinases and PI3-Ks but not serine-threonine kinases. Tyrosine and serine-threonine kinases 

are closely related to each other but only distantly related to the PI3-K family21. For this 

reason, it was surprising that we were able to broaden the selectivity of pyrazolopyrimidines 

to target PI3-Ks without introducing activity against the more numerous serine-threonine 

kinases. To account for this, we searched for structural features that are conserved between 

PI3-Ks and tyrosine kinases and may be utilized by these molecules to achieve their 

selectivity.

Within the protein kinase family, the selectivity of pyrazolopyrimidines is controlled by the 

size of a single amino acid, termed the gatekeeper27,28. Most tyrosine kinases possess a 

small residue (threonine or valine) at this position and are more sensitive to these drugs, 

whereas most serine-threonine kinases possess a larger residue (such as isoleucine or 

methionine) and are less sensitive. We tested the compounds in our panel against a T338I 

gatekeeper mutant of the tyrosine kinase Src and found that this mutation was sufficient to 

confer broad inhibitor resistance (Fig. 4a). Thus, the size of the gatekeeper residue controls 

the protein kinase selectivity of these drugs by preventing binding to most serine-threonine 

kinases.

PI3-Ks possess an isoleucine at the position that is structurally analogous to the gatekeeper 

within the PI3-K family (Fig. 1b). For this reason, the potent inhibition of PI3-Ks by the 

pyrazolopyrimidine chemotype was surprising. We determined crystal structures of four 

compounds bound to c-Src (S1, PP121, PP102 (21), PP494 (22)) and compared these to the 

structures of S1 and S2 bound to p110γ. Because c-Src and p110γ differ in many aspects of 

their structure (Fig. 1a), we focused first on analyzing only the relative orientation of the 

gatekeeper residue, the adenine of ATP, and the drug within the active site of each kinase.

In the Src structures, the pyrazolopyrimidine superimposes with the adenine of ATP, 

positioning the R1 aryl substituent of the drug to project past the gatekeeper (Thr338) into 

the hydrophobic pocket (Fig. 4b,c). This is consistent with previously reported structures of 

pyrazolopyrimidines bound to tyrosine kinases28. When we compared this to the PI3-K 

structures, we noticed that the residue analogous to the gatekeeper in PI3-Ks (Ile879) is 

shifted both vertically and horizontally relative to its counterpart in protein kinases (Fig. 4c). 

This structural difference is accompanied by an alteration of the drug binding mode: the 
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pyrazolopyrimidine core is displaced from alignment with ATP and the R1 aryl substituent 

is rotated 90° (Fig. 4b). The combined effect of these structural differences and compound 

movements is that, in the PI3-K structures, the R1 substituent of the drug projects 

underneath, rather than adjacent to, the side-chain of the gatekeeper (Fig. 4c). This enables 

these molecules to make interactions with the deeper hydrophobic pocket in PI3-Ks despite 

the presence of a sterically demanding isoleucine at the gatekeeper position. This provides a 

structural rationale for the inhibition of PI3-Ks, but not serine-threonine kinases, by the 

pyrazolopyrimidine chemotype.

Potent dual inhibitors target conserved catalytic residues

We synthesized many pyrazolopyrimidines, but only a few, such as PP121 and PP487, 

potently inhibit both tyrosine kinases and PI3-Ks. We analyzed the co-crystal structures of 

these and related compounds in order to identify interactions that may contribute to their 

unique dual potency.

All protein kinases contain a conserved glutamic acid (Glu310 in Src) that makes a 

hydrogen bond to the catalytic lysine (Lys295 in Src). This interaction organizes the active 

site for catalysis and stabilizes helix C in an active conformation (Fig. 4d, top panel). The 

importance of these residues is underscored their functional conservation across diverse 

kinases that share no sequence homology with the protein kinase superfamily21. Structures 

of pyrazolopyrimidines bound to protein kinases reveal that these drugs disrupt the 

interaction between Glu310 and Lys295, resulting in helix C adopting a disordered or 

inactive conformation (Fig. 4d, center panel). However, in the crystal structure of PP121 

bound to Src, this molecule makes a hydrogen bond to Glu310, effectively substituting for 

the structural role of the catalytic lysine (Fig. 4d, bottom panel). This interaction has a 

dramatic effect on the structure of the kinase, resulting in the ordering of helix C and 

stabilization of an active conformation (Fig. 4d and Supplementary Movie). It is likely that 

this interaction contributes to the more potent inhibition of tyrosine kinases by PP121 

relative to closely related molecules such as PP102, which cannot make the same hydrogen 

bond.

We have not obtained a crystal structure of PP121 bound to p110γ, but a structurally 

analogous hydrogen bond is possible in PI3-Ks (Supplementary Fig. 3 online). This suggests 

that PP121 achieves its dual potency by targeting a residue (Glu310 in Src) that has been 

structurally conserved between kinase families. Interestingly, the compound S1 makes a 

hydrogen bond to two residues that are also highly conserved in each kinase family: the 

catalytic lysine in PI3-Ks and the gatekeeper threonine in tyrosine kinases.

Based on these data, we propose that molecules such as PP121 achieve their dual selectivity 

by combining two molecular recognition steps. First, the size of the gatekeeper acts as a 

filter to block binding of pyrazolopyrimidines to most serine-threonine kinases. This filter 

does not block binding to PI3-Ks, because the gatekeeper is in a different orientation in this 

kinase family. Second, the most potent dual inhibitors make specific hydrogen bonds to a 

small subset of residues, such as Lys295 and Glu310 in Src, that are conserved between 

protein and lipid kinases and neighbor the gatekeeper pocket.
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PP121 inhibits PI3-Ks and mTOR in tumor cells

We next explored the cellular effects of the dual inhibitor PP121. Our goal was to dissect the 

activity of this compound into distinct components resulting from direct inhibition of 

individual PI3-Ks (e.g. p110α and mTOR) or tyrosine kinases (e.g. Src, Abl, Ret, and the 

VEGF receptor). To do this, we systematically compared PP121 to six reference compounds 

(Fig. 5a). This panel includes three PI3-K inhibitors (PIK-90, PI7-103, and PP102) and three 

tyrosine kinase inhibitors (PP1, sorafenib, and imatinib (23)) that each inhibit different 

subsets of kinases within these two families.

We first measured the effect of these drugs on signaling through the PI3-K, mTOR, and 

MAPK pathways in two glioblastoma cell lines, U87 and LN229 (Fig. 4a–c). PP121 and 

PP102 potently and dose-dependently blocked the phosphorylation of Akt, p70S6K and S6 

in these cells (Fig. 5b,c). This inhibition was more potent in LN229 cells, which, unlike U87 

cells, express functional PTEN30 (Fig. 5b,c). We have observed a similar dose shift for the 

PI3-K inhibitors PIK-90 and PI-103 in these two cell lines31.

In contrast to their potent blockade of PI3-K/mTOR signaling, PP121 and PP102 had no 

effect on the phosphorylation of Erk at concentrations up to 10 µM (Fig. 5b,c). This suggests 

that PP121 and PP102 block the PI3-K pathway by direct inhibition of PI3-K/mTOR in 

these cells, rather than through inhibition of an upstream tyrosine kinase. This conclusion is 

supported by the fact that the tyrosine kinase inhibitor sorafenib, which shares several 

targets with PP121 (e.g. PDGFR, Ret, and VEGFR2), had no effect on PI3-K/mTOR 

signaling in these cells (Fig. 5b,c).

We next tested the ability of PP121 to block proliferation of a diverse panel of tumor cell 

lines containing mutations in the PI3-K pathway components PIK3CA, PTEN, or RAS. Each 

cell line was assayed at three serum concentrations to explore the possibility that the 

requirement for PI3-K signaling is magnified under conditions of growth factor 

deprivation32.

PP121 potently inhibited the proliferation of a subset of these lines, and the pattern of its 

antiproliferative activity was remarkably similar to the PI3-K/mTOR inhibitor PI-103 (Fig. 

5d, top panel). The parallel activity of these two structurally unrelated molecules strongly 

suggests that they block cell proliferation through inhibition of a common target. By 

contrast, the tyrosine kinase inhibitor sorafenib was largely inactive (Fig. 5d).

We performed cell cycle analysis by flow cytometry to determine the nature of the 

proliferative block caused by these drugs. PP121 induced a G0G1 arrest in most tumor cells 

(Fig. 5e). This arrest was similar to the effect of treatment with PI-103 (Fig. 5e) and is 

characteristic of combined inhibition of PI3-K and mTOR in these cells31. Together, these 

data demonstrate that PP121 blocks the proliferation of tumor cell lines containing PI3-K 

pathway mutations by direct inhibition of PI3-Ks and mTOR.

Direct inhibition of mTOR is likely to be particularly important for the antiproliferative 

activity of PP121. The PI3-K inhibitors PP102 and PIK-90, which are less active against 

mTOR, also displayed less antiproliferative activity in these cells (Fig. 5d, bottom). In 
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addition, we have shown previously that direct mTOR inhibition is required for robust 

blockade of cell proliferation by diverse PI3-K family inhibitors16,31. Nonetheless, the 

molecular basis for this difference remains enigmatic, since PI3-K inhibitors such as PP102 

and PIK-90 potently block the phosphorylation of mTOR substrates (e.g. Akt and p70S6K) 

indirectly via upstream PI3-K inhibition31 (Fig. 5b,c). In this respect, it is noteworthy that 

two of the first PI3-K inhibitors to enter clinical trials, NVP-BEZ235 (24) and XL765 (25), 

are also potent and direct mTOR inhibitors33.

PP121 inhibits oncogenic Src and Ret

PP121 inhibits several tyrosine kinases that are prominent cancer drug targets, including 

Bcr-Abl, Src, Ret, and the VEGF receptor (Fig. 2a). We therefore explored the activity of 

PP121 in cells that express these tyrosine kinases, in order to understand how this activity 

cooperates with inhibition of PI3-Ks and mTOR.

Transformation of fibroblasts by the viral oncogene v-Src results in dysregulated tyrosine 

phosphorylation and cytoskeletal rearrangements. As PP121 potently inhibits Src in vitro 

(IC50 = 14 nM; Fig. 2a), we tested the ability of PP121 to reverse v-Src mediated cellular 

transformation. PP121 blocked tyrosine phosphorylation induced by v-Src and restored actin 

stress fiber staining, and the magnitude of these effects was similar to treatment with the Src 

family kinase inhibitor PP1 (Fig. 6). By contrast, PI-103 inhibited signaling through the PI3-

K/mTOR pathway but had no effect on either phosphotyrosine levels or cell morphology 

(Fig. 6). Thus, PP121 directly inhibits Src in cells and reverses its biochemical and 

morphological effects.

Oncogenic mutations in the Ret receptor tyrosine kinase are frequently found in thyroid 

tumors34 and PP121 potently inhibits the Ret kinase domain in vitro (IC50 < 1 nM). We 

therefore explored the activity of this compound in TT thyroid carcinoma cells that express 

the C634W oncogenic Ret mutant35. PP121 inhibited Ret autophosphorylation in cells at 

low nanomolar concentrations (Fig. 7a). This was similar to the effect of sorafenib (Fig. 7a), 

which is currently in clinical testing for thyroid cancer based in part on its activity against 

Ret kinase34,36. In contrast, the PI3-K/mTOR inhibitor PI-103 blocked the phosphorylation 

of S6 but had no effect on Ret autophosphorylation (Fig. 7a).

We compared the ability of these compounds to block the proliferation of TT thyroid 

carcinoma cells (Fig. 7b). PP121 inhibited proliferation of these cells at low nanomolar 

concentrations (IC50 = 50 nM), whereas the Ret inhibitor sorafenib (IC50 = 780 nM) and 

PI3-K/mTOR inhibitor PI-103 (IC50 ≈ 800 nM) were significantly less potent (Fig. 7b). The 

PI3-K inhibitors PIK-90 (IC50 = 1.4 µM) and PP102 (IC50 = 2.2 µM) were active only at 

micromolar concentrations (Fig. 7b). The unique ability of PP121 to simultaneously inhibit 

Ret, PI3-Ks, and mTOR likely contributes to its exceptional potency in this setting.

PP121 directly inhibits the VEGF receptor

The VEGF receptor (VEGFR2) is a key target of two clinically approved small molecule 

drugs (sunitinib and sorafenib) and PI3-K/mTOR signaling is critical for VEGF mediated 

angiogenesis37,38. As PP121 potently inhibits the VEGFR2 kinase domain in vitro (IC50 = 
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12 nM; Fig. 2a), we tested the ability of PP121 to block VEGF signaling in human umbilical 

vein endothelial cells (HUVECs) that endogenously express VEGFR2. PP121 potently 

blocked VEGF stimulated activation of the PI3-K and MAPK pathways (Supplementary 

Fig. 4 online). In addition, PP121 inhibited VEGFR2 autophosphorylation at low nanomolar 

concentrations, confirming that this molecule directly targets VEGFR2 in cells.

We compared the effects of PP121 with the closely related pyrazolopyrimidine PP102. This 

compound is less potent than PP121 against VEGFR2 in vitro but has similar activity 

against PI3-Ks (Fig. 2a). Consistent with this selectivity profile, PP102 inhibited the 

phosphorylation of Akt and S6 in cells at low nanomolar concentrations but was much less 

potent at blocking the phosphorylation of VEGFR2 and Erk (Supplementary Fig. 4 online). 

We measured the effect of these compounds on the proliferation of endothelial cells 

stimulated with either complete media or VEGF alone. PP121 and PP102 both inhibited 

HUVEC proliferation in complete media at micromolar concentrations, but PP121 displayed 

a selective enhancement in potency against cells stimulated only with VEGF (IC50 = 41 nM; 

Supplementary Fig. 4 online). These data are consistent with more robust inhibition of 

VEGF signaling by PP121 relative to analogs such as PP102 that do not potently target 

VEGFR2.

Angiogenesis is multistep process involving endothelial cell proliferation, migration, and 

extracellular matrix (ECM) remodelling. We therefore tested these compounds in a 

functional angiogenesis assay that measures the ability of HUVECs to form three-

dimensional tubes within a tumor-derived ECM. PP121 potently blocked tube formation in 

this assay (IC50 = 0.31 nM) whereas PI-103 and sorafenib were somewhat less active (IC50 

= 0.60 and 0.59 nM, respectively). The selective PI3-K inhibitors PIK-90 and PP102 

inhibited tube formation only at micromolar concentrations (Supplementary Fig. 4 online). 

This spectrum of activities is consistent with multi-level collaboration between tyrosine 

kinases, PI3-Ks, and mTOR in angiogenic signaling.

PP121 overrides resistance in CML by redundant targeting

Chronic myelogenous leukemia (CML) is caused by a chromosomal translocation that 

generates the Bcr-Abl oncogene39. Three clinically approved drugs target this tyrosine 

kinase, and each of these drugs is sensitive to an overlapping but distinct set of Bcr-Abl 

resistance mutations40,41. PP121 inhibits the Abl kinase in vitro (IC50 = 18 nM; Fig. 2b), 

and PI3-K/mTOR signaling cooperates with Bcr-Abl to drive CML cell proliferation15. We 

therefore measured the activity of PP121 in cellular models of normal and drug-resistant 

CML in order to investigate the interplay between Bcr-Abl, PI3-K, and mTOR in this 

setting.

PP121 inhibited Bcr-Abl induced tyrosine phosphorylation in K562 cells as well as BaF3 

cells that express Bcr-Abl, and the potency of PP121 was similar to the clinically approved 

drug imatinib (Fig. 8a and Supplementary Fig. 5 online). Consistent with this biochemical 

activity, PP121 robustly blocked the proliferation of both cell lines (Fig. 8b and 

Supplementary Fig. 5 online). This was the result of drug-induced apoptosis in K562 cells 

and a combination of apoptosis and cell cycle arrest in Bcr-Abl expressing BaF3 cells (Fig. 

8c,d).
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In contrast to PP121, PI-103 did not block Bcr-Abl mediated tyrosine phosphorylation but 

did inhibit signaling through the mTOR pathway (Fig. 8a). Correspondingly, PI-103 induced 

cell cycle arrest but not apoptosis (Fig. 8c,d). The PI3-K inhibitors PIK-90 and PP102 had 

little effect on cell proliferation (Fig. 8b), consistent with their activity in other settings. 

Together, these data demonstrate that PP121, but not other PI3-K or mTOR inhibitors, 

directly inhibits Bcr-Abl and thereby kills CML cells.

Clinical resistance to Bcr-Abl inhibitor therapy is caused by mutations in the kinase that 

prevent drug binding40,41. The most common resistance mutation is Bcr-Abl T315I, which 

increases the size of the gatekeeper residue from threonine to isoleucine. This mutation 

blocks the binding of all clinically approved kinase inhibitors and also confers resistance to 

inhibition by PP121 (IC50 > 1 µM; Supplementary Table 2 online). We tested PP121 in 

BaF3 cells that express Bcr-Abl T315I and found that this mutation abrogated the ability of 

PP121 to inhibit cellular tyrosine phosphorylation (Fig. 8a) and induce apoptosis (Fig. 8c). 

This confirms that the cytotoxicity of PP121 in CML cells is a consequence of direct Bcr-

Abl inhibition; we obtained similar results with imatinib (Fig. 8a,c).

Unlike imatinib, however, PP121 retained the ability to potently block the proliferation of 

Bcr-Abl T315I expressing cells (Fig. 8b). This proliferative block was due to a G0G1 cell 

cycle arrest that was similar to the effect of PI-103 treatment (Fig. 8d). Consistent with this 

arrest, PP121 potently inhibited the phosphorylation of S6 even in cells expressing Bcr-Abl 

T315I (Fig. 8a). We attribute this residual inhibition of S6 phosphorylation to direct 

inhibition of PI3-K/mTOR by PP121 that is unaffected by Bcr-Abl mutation. Thus, PP121 is 

able to evade drug resistance caused by mutation of a single kinase by redundantly targeting 

two pathways: Bcr-Abl mediated cell survival and PI3-K/mTOR mediated cell proliferation. 

This mechanism of action is complementary to ongoing efforts to identify inhibitors that 

target specific Bcr-Abl mutant alleles42.

DISCUSSION

Effective therapy for many cancers will require the simultaneous inhibition of multiple 

oncogenic kinases9,10,31,42,43. This is because tumor cells rapidly develop resistance to 

inhibitors of individual kinases, either through mutation of the target to prevent drug 

binding40,41, activation of surrogate kinases to substitute for the drug target9, or 

modulation of pathway components to buffer against incomplete inhibition10. Even in the 

absense of acquired resistance, there are few examples of selective kinase inhibitors that 

have substantial anti-tumor activity as monotherapy, indicating that inhibition of additional 

targets will be required1,43.

Multitargeted drugs will be an important tool in meeting this challenge44–46, but it is 

unclear to what extent the selectivity of these molecules can be rationally designed, 

particularly for combinations of targets that are structurally divergent2,20. Progress toward 

this goal will require the discovery of chemical and structural features that link important 

classes of drug targets, and the use of these features to guide the design of promiscuous 

drugs with customized selectivity profiles. The chemical principles that will enable this type 

of targeted polypharmacology remain largely unknown, but the successful pursuit of single-
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targeted kinase inhibitors provides reason for optimism. In that setting, the early 

identification of key selectivity determinants, such as the inactive conformation44,45, 

allosteric sites46, reactive cysteine residues47,48, and the gatekeeper27,28, has now led to 

the systematic design of molecules that target these features.

We asked whether it would be possible to discover molecules that target both tyrosine 

kinases and PI3-Ks. These two protein families are among the most intensely pursued cancer 

drug targets, but they are significantly more divergent than the typical targets of 

multitargeted drugs. We show here that it is possible to identify potent, selective, and drug-

like molecules that target these two families of oncogenic kinases, and we further elucidate 

the structural features that control the unique selectivity of these molecules. This expands 

the landscape of target selectivities that are accessible to rational drug design. As several 

clinically approved kinase inhibitors are believed to act through serendipitous target 

combinations, exploration of such chemical space may be a productive strategy for 

discovering molecules with emergent properties.

METHODS

Chemical Synthesis

All compounds were synthesized from commercially available starting materials and 

purified by RP-HPLC. See Supplementary Methods online for complete details.

In vitro kinase assays

Purified kinase domains were incubated with inhibitors at 2- or 4-fold dilutions over a 

concentration range of 50 - 0.001 µM or with vehicle (0.1% DMSO) in the presence of 10 

µM ATP, 2.5 µCi of γ-32P-ATP and substrate. Reactions were terminated by spotting onto 

nitrocellulose or phosphocellulose membranes, depending on the substrate; this membrane 

was then washed 5–6 times to remove unbound radioactivity and dried. Transferred 

radioactivity was quantitated by phosphorimaging and IC50 values were calculated by fitting 

the data to a sigmoidal doseresponse using Prism software.

X-ray crystallography

p110γ and Src were recombinantly expressed, purified, and crystallized in the presence of 

inhibitors by hanging-drop vapor diffusion. Structures were solved from diffraction data by 

molecular replacement. See Supplementary Methods online for additional details.

Cell culture and western blot analysis

Cells were grown in 12-well plates and treated with inhibitor at the indicated concentrations 

or vehicle (0.1% DMSO). Treated cells were lysed, lysates were resolved by SDS-PAGE, 

transferred to nitrocellulose and blotted. All antibodies were purchased from Cell Signalling 

Technology.

Cell proliferation assays

Cells grown in 96-well plates were treated with inhibitor at 4-fold dilutions (10 µM - 0.040 

μM) or vehicle (0.1% DMSO). After 72 h cells were exposed to Resazurin sodium salt (22 
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µM, Sigma) and fluorescence was quantified. IC50 values were calculated using Prism 

software. For proliferation assays involving single cell counting, non-adherent cells were 

plated at low density (3–5% confluence) and treated with drug (2.5 µM) or vehicle (0.1% 

DMSO). Cells were diluted into trypan blue daily and viable cells counted using a 

hemocytometer.

Apoptosis and cell cycle analysis

Cells were treated with the indicated concentration of inhibitor or vehicle (0.1% DMSO) for 

24–72 h. Cells were either stained live with AnnexinV-FITC or fixed with ethanol and 

stained with propidium iodide. Cell populations were separated using a FacsCalibur flow 

cytometer; data was collected using CellQuest Pro software and analyzed with either ModFit 

or FlowJo Software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Structural and sequence comparison of tyrosine kinases and PI3-Ks
(a) Backbone traces of crystal structures of the kinase domain of c-Src aligned to the kinase 

domain of the Src-family tyrosine kinase Hck (left), the receptor tyrosine kinase VEGFR2 

(center) and the PI3-K p110γ (right). Statistics for the pairwise sequence identity and 

backbone r.m.s.d. are shown below. The number of residues used for each alignment is 

shown in parentheses. (b) Sequence alignment of the kinase domains of the tyrosine kinases 

c-Src, Hck, and VEGFR2 and the PI3-K p110γ. Conserved residues relative to c-Src are 

colored red. The p110γ sequence was manually aligned to c-Src using x-ray structures of the 

two proteins that superimpose key secondary structural elements. The VEGFR2 insert 

comprising residues 944–1001 is omitted.
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Figure 2. Biochemical target selectivity of pyrazolopyrimidine inhibitors
(a) Experimental strategy for the discovery of dual inhibitors, and IC50 values (µM) for eight 

molecules tested against 14 tyrosine and phosphoinositide kinases (10 µM ATP). IC50 

values less than 0.1 µM are shaded red. Pyrazolopyrimidine N4 and N5, which make 

hydrogen bonds to the kinase, are labelled. (b) Percent inhibition of 84 tyrosine kinases 

(right) and 135 serine/threonine kinases (left) by 7 inhibitors from this study (right columns) 

and 5 reference compounds (left columns). PP inhibitors were tested at 1 µM drug and, 

typically, 10 µM ATP. Data from the Invitrogen SelectScreen Assay. (c) Principal 

component analysis of the target selectivity of 172 pyrazolopyrimidine inhibitors and 8 

reference compounds. Key compounds are labelled.
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Figure 3. Crystal structures of S1 and S2 bound to human p110γ

(a) Binding mode of S1 to p110γ, viewed from the entrance to the ATP binding pocket (left) 

and above the ATP binding pocket (right). Dashed lines indicate hydrogen bonds. (b) 

Binding mode of S2 to p110γ.
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Figure 4. Structural comparison of pyrazolopyrimidine binding to tyrosine kinases and PI3-Ks
(a) Correlation between IC50 values for inhibitors against Src (x-axis) and either Hck or the 

gatekeeper mutant Src T338I (y-axis). (b) Binding orientation of S1 relative to ATP in c-Src 

(top) and p110γ (bottom). (c) Overlay of co-crystal structures of inhibitors bound to c-Src 

(protein colored red, drugs orange: S1, PP102, PP121, and PP494) and p110γ (protein blue, 

compounds gray: S1 and S2). The gatekeeper residues Thr338 (c-Src) and Ile879 (p110γ) 

are highlighted. (d) (top) The catalytic lysine (Lys295) makes a hydrogen bond to Glu310 in 

active c-Src. (center) Helix C and Glu310 are disordered in c-Src structures containing 

PP102. (bottom) PP121 makes a hydrogen bond to Glu310 and orders helix C when bound 

to c-Src.
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Figure 5. PP121 directly inhibits p110α/mTOR
(a) Schematic of signaling downstream of tyrosine kinases. Not all arrows represent direct 

physical interactions. Drugs used in this study and their key targets are highlighted. (b) 

LN229 and (c) U87 glioblastoma cells in serum (10%) were treated with PP102 or PP121 

(0.040 to 10 µM). Cells were lysed and phosphorylation of signalling proteins was probed 

by western blotting. pS6 (Ser235/236), pErk (Thr202/Tyr204). (d) Proliferation of tumor 

cells was measured following 72 h treatment with PP102, PP121, PI-103, PIK-90, or 

sorafenib (0.040 to 10 µM). Each cell line was tested at three serum concentrations (0.5%, 

2%, and 10%). (e) Cell cycle analysis by flow cytometry following treatment with PP121 or 

PI-103 (2.5 µM) or vehicle (0.1% DMSO) for 24 h.
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Figure 6. PP121 directly inhibits Src
(a) NIH3T3 cells transformed with v-Src(Thr338) were treated with the indicated 

concentration of each inhibitor (2 h), lysed, and blotted for indicated proteins. Molecular 

weights are indicated adjactent to phosphotyrosine (pTyr) blots. (b) v-Src(Thr338) 

transformed NIH3T3 cells were treated with the indicated inhibitors (2.5 µM, 24 h) and then 

stained with FITC-phalloidin (actin) and DAPI (DNA). The percentage of cells acquiring 

actin stress fibers was quantitated by counting while blinded to sample identity.
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Figure 7. PP121 directly inhibits Ret
(a) TT thyroid carcinoma cells were treated with the indicated concentration of each 

inhibitor (2 h), lysed, and blotted for indicated proteins. pRet (Tyr905). (b) TT cells were 

treated with a dose response of each inhibitor (0.040 to 10 µM) and cell number was 

quantitated after 13 days. Drug was replenished every three days.
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Figure 8. PP121 reduntantly targets Bcr-Abl and PI3-K/mTOR in CML cells
(a) BaF3 cells expressing Bcr-Abl (left column) or Bcr-Abl T315I (right column) were 

treated with PP121, PI-103, or Imatinib (0.080 to 20 µM) for 120 min. Cells were lysed and 

phosphorylation of signaling proteins was probed by western blotting. (b) Proliferation of 

BaF3 Bcr-Abl and BaF3 Bcr-Abl T315I cells in response to selected drugs (2.5 µM). (c) 

Percentage of cells undergoing apoptosis in response to drug treatment. BaF3 Bcr-Abl cells 

(2.5 µM, 36 h), BaF3 Bcr-Abl T315I and K562 cells (5 µM, 72 h). (d) Cell cycle analysis of 

live cells remaining following treatment in panel c.
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