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ABSTRACT: E3 ligases are enzymes that play a critical role in ubiquitin-
mediated protein degradation and are involved in various cellular processes.
Pharmacophore analysis is a useful approach for predicting E3 ligase
binding selectivity, which involves identifying key chemical features
necessary for a ligand to interact with a specific protein target cavity.
While pharmacophore analysis is not always sufficient to accurately predict
ligand binding affinity, it can be a valuable tool for filtering and/or
designing focused libraries for screening campaigns. In this study, we
present a fast and an inexpensive approach using a pharmacophore
fingerprinting scheme known as ErG, which is used in a multi-class machine
learning classification model. This model can assign the correct E3 ligase
binder to its known E3 ligase and predict the probability of each molecule
to bind to different E3 ligases. Practical applications of this approach are
demonstrated on commercial libraries such as Asinex for the rational design
of E3 ligase binders. The scripts and data associated with this study can be found on GitHub at https://github.com/Fraunhofer-
ITMP/E3_binder_Model.

■ INTRODUCTION
E3 ligases are a class of enzymes that are involved in ubiquitin-
mediated protein degradation, and they play a critical role in
many cellular processes, including cell cycle regulation, DNA
repair, and apoptosis. Selective targeting of E3 ligases has
emerged as a promising strategy for developing novel
therapeutics for various diseases, including cancer.1 Thus,
predicting the target binding selectivity for E3 ligases using
molecular fingerprint analysis can be useful in designing
focused libraries for screening campaigns. With the help of this,
we can not only enrich existing libraries with high probability
candidates but, in the long run, also define geometric and
interaction rules for each E3 ligase. Overall, this binding
selectivity will facilitate rational design of future proteolysis
targeting chimera (PROTAC) and novel molecular glues.
Molecular fingerprints are capable of encoding structural

information and physico-chemical properties of molecules at
various dimensions. 2D fingerprints, in particular, have been
used widely in various scenarios and their performances are
reported to outperform 3D fingerprints.2 Their applications
range from the basic task of identification of similar
compounds in a library of molecules to advanced methods in
drug design, such as binding pocket detection,3 protein-ligand
interaction,4 toxicity prediction,5 and drug repurposing.6

Among the four main categories of 2D fingerprints (i.e., key-
based, topological, circular and pharmacophore), the latter
captures detailed properties, such as the number of hydrogen
donors/acceptors, charges, and aromatic/lipophilic moieties

required to interact with a target of interest.7 Therefore, they
are more suited to characterize interaction-selectivity modeling
challenges. This can be done by analyzing the structure of
known X-ray complexes and identifying common chemical
features that are critical for binding.8,9 In the case of E3 ligases,
several key structural features are important for ligand binding
such as the presence of a zinc-binding domain and a substrate-
binding site.10,11 However, it is important to note that
pharmacophore analysis is not always sufficient to accurately
predict ligand binding affinity, as there might be other factors
that influence binding that are not captured by the
pharmacophore model (e.g., excluded volumes).
In this work, we present a fast and inexpensive approach

where ligands of known E3 ligases are described by a simple
and effective pharmacophore fingerprinting scheme, known as
Extended Reduced Graph (ErG).12,13 Each ErG bit forms the
basis for a multi-class classification model where singular E3
ligase target proteins are used as labels. This is the first example
of such a classification approach in the E3 ligase field. The
resultant statistical model showed an accuracy of 93.8% and
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thus is able to assign the correct E3 ligase binder to previously
known E3 ligase. As a result of this, such an approach allows us
to computationally screen and filter large compound libraries
by predicting the probability of each compound to bind to
different E3 ligases. We validated this model on commercial
libraries for the rational design of E3 ligase binders.

■ METHODS
The first step was to gather a dataset of known E3 ligase
ligands (with their respective targets), which would serve as
the training set for the machine learning model. To achieve
this, we merged data from three PROTAC resources, namely,
PROTAC-DB 2.0,14 PROTACpedia,15 and a commercial
subset of Proximity Degraders Database (PDD),16 where the
E3 ligase binding components of original active PROTACs are
structurally identified and assigned. This yielded a total of 643
unique ligands. The merging of PDD to the classic PROTAC
databases enabled the enrichment of ligases mentioned within
patent documents alongside those found in the scientific
literature. Additionally, we expanded the chemical space of E3
ligase binders with 19 ligands specific to DNA damage-binding
protein 1 DDB1 (UniProt: Q16531) and CUL4-associated
factor homolog 1 (DCAF1) (UniProt: Q9M086) which were
not present in PROTAC-derived collections.17 It is essential to
note that only human protein targets were considered while
building this dataset.
The summary of the dataset of unique 662 compounds

alongside the 17 E3 ligases targets is shown in Figure 1. Since

certain target classes (i.e., DDB1 and CUL4 associated factors:
15 (DCAF15) (UniProt: Q66K64), 11 (DCAF11) (UniProt:
Q8TEB1), and 16 (DCAF16) (UniProt: Q9NXF7), MDM2
proto-oncogene (MDM2) (UniProt: Q00987), Aryl hydro-
carbon receptor (AHR) (UniProt: P35869), Baculoviral IAP
repeat-containing 3 (cIAP2/BIRC3) (UniProt: Q13489), Ring
finger proteins 4 (RNF4) (UniProt: Q13489) and 114
(RNF114) (UniProt: Q9Y508), Fem-1 homolog B (FEM1B)
(UniProt: Q9UK73), ubiquitin-protein ligase E3 component

n-recognin 1 (UBR1) (UniProt: Q8IWV7), and Cullin 4A
(CUL4A) (UniProt: Q13619)) had less than 20 compounds
each, we clustered them together in a common class called
“Other.” This grouping was an approach to reduce the effect of
imbalance on the E3 ligase set. As a result, we identified 6
target classes for the resultant 662 E3 ligase ligands i.e.,
Cereblon (CRBN) (UniProt: Q96SW2), Von Hippel−Lindau
tumor suppressor (VHL) (UniProt: P40337), X-linked
inhibitor of apoptosis (XIAP) (UniProt: P98170), Baculoviral
IAP repeat-containing 2 (CIAP1/BIRC2) (UniProt: Q13490),
Islet amyloid polypeptide (IAP) (UniProt: P10997), and
“Other.”
Next, we extracted the candidate pharmacophores for each

ligand with the help of the ErG pharmacophoric fingerprint as
implemented within Molecular Operating Environment
(MOE) (version 2022.02).12,18 ErG follows a reduced graph-
based schema for extraction of pharmacophores from the
compounds, unlike the subgraph schema (Figure S1). Other
fingerprint schemes like the MACCS keys (MACCS),19 RDKit
fingerprint (version of DayLight fingerprint),20 Avalon,21 and
extended connectivity fingerprint, up to four bonds (ECFP4)22

have been utilized for comparisons. Figures S2 and S3 depict
the pharmacophores extracted using fingerprints ECFP4 and
RDKit, respectively.
The pharmacophoric information contained in the ErG bit

names and the connections which can be easily created with
relevant 3D structural biology information are exemplarily
exploited in Figure 2. In this example, CRBN is found to be

complexed with SALL4 and (S)-5-hydroxy thalidomide
(CHEMBL468), generating a map of ligand interactions
(PDB:7BQV). Four interacting atoms of (S)-5-hydroxy
thalidomide can be focused and their relative fingerprint-
related distances are identified. Imposing non-null values for
those interatomic distances could be a straightforward filtering
option.
Following the selection of the dataset and fingerprint, we

visualized the distinct target space for each ligand. To do so,
we used the t-distributed stochastic neighbor embedding (t-
SNE) algorithm, a nonlinear dimensionality reduction
technique.23 This reduction in the vector space will enable

Figure 1. Representation of the E3 ligases and relative percentage of
compound ligands collected. Von Hippel−Lindau tumor suppressor
(VHL) and cereblon (CRBN) are the most studied E3 ligase targets
with 442 and 159 ligands, respectively, in the collected dataset.
Moreover, X-linked inhibitor of apoptosis (XIAP), baculoviral IAP
repeat containing 2 (cIAP1/BIRC2), and islet amyloid polypeptide
(IAP/IAPP) showed a consistent distribution with around 12 ligands
each.

Figure 2. Using the X-ray structure of cereblon-bound ligand
interactions from PDB (PDB:7BQV), non-null ErG bits can be
extracted from four pharmacophoric atoms (circled are: 3 acceptors
[Ac] with arrows directed toward the atoms and one donor [D] with
arrows directed away from the atom). The figure has been generated
using MOE version 2022.02.
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finding patterns between the pharmacophore features of
ligands across the E3 ligase in the nonlinear space.
Machine learning models are generally referred to as “black

boxes” since the reasoning behind the predictions of the model
remains unclear to humans. As a result, a new field of science
called eXplainable AI (XAI) grew attention, allowing humans
to interpret the reasoning behind the prediction made by the
model.24 Thus, considering the importance of the XAI field, we
used “transparent” machine learning models to predict the
specificity of E3 ligases. We particularly used the gradient
boosting model (XGBoost) which, similar to random forests,
follows a bagging-based approach but, unlike the two
aggregates, results in a sequential manner.25 The model has
been optimized through a random search involving different
parameters such as the learning speed (eta range between 0.2
and 1) and the number of epochs [range between 1 and 10],
and the final model has been cross-validated 10 times.
The fingerprint bit vectors have been expanded in single

columns (descriptors/bits), and those showing variance lower
than 0.2 were removed to generate a matrix of 662 rows (i.e.,
the total number of E3 ligands) × N columns based on the
number of bits remaining after variance filtration (Table 1).

We assumed that lower or constant variance columns should
not contribute to the final models.26 Moreover, the dataset was
split in an 80:20 ratio, with 80% used to train the model and
20% for testing. Due to the high variability of ligands across the
different E3 ligases, a stratification strategy was applied such
that a representative set of each class of E3 ligases is present in
the train and test datasets.
It is important to note that the accuracy of the model

depends on many factors coming from different data sources.
First, on the quality and size of the training set; second, on the
choice of descriptors; and third, on the choice of machine
learning algorithm and optimization parameters. Therefore, it
is crucial to carefully evaluate the performances of the model
using multiple and appropriate metrics and cross-validation
techniques before applying them to predictions.
As mentioned previously, model evaluation enables us to

understand the performance of the model. For our purpose, we
use accuracy to compare the performance of each model and
Cohen’s kappa coefficient to compare the performance
between different models.27 Accuracy is an estimate of how
good the model is in predicting the ground truth. It can be
calculated as follows:

= +
+ + +

Accuracy
TP TN

TP TN FP FN (1)

where TP and TN refer to true positive and true negative
predictions, respectively, while FP and FN refer to false
positive and false negative predictions, respectively. Cohen
Kappa coefficient score, also known as the inter-rater reliability

score, represents the agreement score between two compared
entities. We used this score to nominate the best-performing
algorithm. It is defined as follows:

= × × ×
+ × + + + × +

2 (TP TN FN FP)
(TP FP) (FP TN) (TP FN) (FN TN) (2)

where TP and TN refer to true positive and true negative
predictions, respectively, while FP and FN refer to false
positive and false negative predictions, respectively.
In compliance with the XAI concept, we back-projected the

most influential bits in our fingerprints to those in the molecule
using RDKit.28 For ErG, this was not needed due to its
transparent schema enabling identifying the exact atoms
responsible for the feature.

Data Availability. We have used KNIME29 and R
programming30 to train and test the models described in this
manuscript. The source codes and the data generated in this
work are available on GitHub https://github.com/Fraunhofer-
ITMP/E3_binder_Model. The structure information and
representations from PDD have been omitted due to license
restrictions.

■ RESULTS
A multi-class XGBoost classification model was prepared using
the different fingerprints (Table 2). All the models performed

well, demonstrating an accuracy of over 90%. The best model
was trained with ErG fingerprints (showing an accuracy of 94%
and Cohen kappa score of 0.881). Moreover, for each of the
fingerprint-based models, we assessed the most dominant
contributing fingerprint bits in the prediction. ErGs are the
only 2D fingerprinting scheme capable of reducing 3D
pharmacophore content into 2D, where the closest performing
2D fingerprint-based XGBoost model was with MACCS keys
(94% accuracy and 0.877 kappa score). Interestingly, most of
these fingerprint bits are hash ids that are not necessarily
translated into meaningful features unlike the ErG one where
the exact atom type of the contributing bits is identified.
Hence, due to the high accuracy and transparent interpret-
ability of the ErG-based model, we decided to conduct an in-
depth analysis of the model in order to gain insights into the
possible molecular features that may play a role in the E3-ligase
ligand.

Chemical Vector Space Exploration Using ErG Finger-
prints.We started by visualizing the difference in the chemical
space across the known E3 ligands and respective ligases in the
linear and nonlinear space on the ErG-generated chemical

Table 1. Overview of the Total Number of Bits and the
Number of Bits Preserved after Variance Filtering for each
of the Fingerprints Used

fingerprint schema number of bits bits used (postvariance filtering)

MACCS 166 26
ECFP4 1024 78
RDKit 1024 338
Avalon 1024 224
ErG 315 73

Table 2. Summary of the Performances for all the
Fingerprint-Based Model Performancesa

fingerprint accuracy
Cohen
kappa

1st most
influential
bit ID

2nd most
influential
bit ID

3rd most
influential
bit ID

MACCS 0.940 0.877 88 138 81
ECFP4 0.933 0.861 362 577 313
RDKit 0.910 0.810 136 844 33
Avalon 0.932 0.863 177 533 920
ErG 0.940 0.881 Ac_Ac_d4 D_D_d3 Hf_Ar_d9

aHighlighted in bold are the scores with the highest value.
Additionally, columns mentioning the most contributing fingerprint
bit for model prediction are highlighted as the 1st bit information, 2nd
bit information, and 3rd bit information with the most dominant, the
second most dominant, and the third most dominant bit, respectively.
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space. Contrary to the linear space, where no distinctions were
found, a clear distinction between the pharmacophoric features
in the nonlinear space was seen (Figure 3). Clear separation in

the vector space of ligands that bind with VHL and CRBN was
found. A couple of ligands were found to be in interchanged
spaces meaning that CRBN binding ligands were found in

Figure 3. (A) ErG t-SNE plot for the E3 ligands colored with respect to the E3 ligases. A clear separation on the second dimension (Dim2) is
noted between CRBN and some “Other” ligases and VHL, IAP, and XIAP. Interestingly, some VHL ligands are classified within the CRBN vector
space indicating similarities in the respective ligand structures. (B) MACCS-derived t-SNE plot for the same dataset. While VHL and CRBN subset
are pretty well separated, XIAP, CIAP1, IAP, and other groups are closer to each other.
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VHL-ligand space and vice versa. This raised the question of
whether these ligands were mislabeled in publications (i.e.,
false positives) or was the dataset under study too small to
understand this pattern. To answer both these questions, a
larger set of known E3 ligands and their systematic mapping
toward respective E3 ligases is needed. Other E3 ligases such as
CIAP1, XIAP, and IAP surprisingly inhabit the vector space
between the two larger clusters of VHL and CRBN. Given the
low number of ligands identified for these E3 ligases, a clear
difference between the space occupied by these ligands cannot
be found. Using nonpharmacophoric fingerprint schemes like
MACCS, the chemical space described is indeed more granular
concerning the most populated labels (CRBN and VHL) but
not for the less populated ones. This was another reason
supporting our decision to stick with the ErG pharmacophoric
description for the final model.

Insights into the Influential ErG Fingerprints. To
understand the important properties of the molecule structure
(i.e., the 3D pharmacophore properties), we extracted the most
relevant ten ErG bits, as reported in Figure 4. Only two out of
those relate to distances more than 6, suggesting that close
localized pharmacophores are more important than wider ones.
Six out of ten relate to distances between hydrophobic groups
(Hf) and acceptor (Ac) or donor atoms (D). In the ErG
scheme, every group of three or more contiguous carbon atoms
are generating Hf groups, even when located in aliphatic rings.
Hf_Ac_d2 is present, among others, in succinimide-like rings,
but not in maleimide analogues. Interestingly, there are only
two relevant ErG bits dealing with aromatic (Ar) groups, even
if almost all the E3 ligands so far collected have at least one
aromatic group in them. Besides this, Ar is involved in one of
the only two bits dealing with higher distances (d9). This
might suggest that aromatic rings can be located away from the
core group of hydrogen-bond-mediated interactions. More-

over, the first two ErG bits are almost 10 times more important
than the others, meaning that these two first features dictate
the vast majority of selectivity recognition: indeed, between
CRBN and VHL, we cover almost 91% of any training or test
dataset (as seen in Figure 1).
Indeed, using just these two ErG bits (i.e., Hf-Ac_d4 and

Hf-D_d3) as filters and selecting non-null values for them in
the ErG description of ligands, we ended up with 92% of the
entire dataset. The remaining ligands with null values with any
of the two selected ErG bits are not involved with CRBN or
VHL but only with the “Other” class of E3 ligases. In the
confusion matrix, we report the XGBoost accuracy of the six
classes of E3 ligases used (Table S1). Additionally, from our
previous analysis (Figure 3), we know that some E3 ligases
appear within areas where an E3 ligase label is dominant (VHL
and CRBN). These ligands were found to be of the mixed
nature with respect to their structures and were usually
sampled from the patent description, where molecules with
different scaffolds are mixed (Figure S4).

Influential ErG Fingerprints from the Ligase Perspec-
tive. Diving deeper into the ErG bits space, we tried to
evaluate the statistical relevance of what has been found as the
top ten relevant features and how their differences are
distributed across the six ligand classes. Indeed, not all the
distributions found around these ErG bits are statistically
significant, but some are pretty informative (Figure 5). While
Hf_Ar_d9 is clearly a footprint for VHL only and Hf_Ac_d2 is
a marker for CRBN, another selective CRBN pharmacophoric
point is Ac_Ac_d4 which is related to the distance between the
two carbonyl oxygens in the succinimide ring and the mono or
di carbonyl oxygens positioned in the attached phthalimide
ring. Hf_Ar_d9 and Hf_D_d7 seem to mark CIAP1, IAP, and
XIAP ligands as they are contained in hydrophobic aliphatic
amino acids and amino acids, respectively. Both are well

Figure 4. Top ten descriptors (ErG bits) contributing to the XGBoost model for E3 ligase selectivity predictions.
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represented in these three groups. CIAP1, IAP, and XIAP only
have the largest mean count of Hf_D_d7, while Hf_Ac_d6 has

the least significant contribution according to its distribution in
the six groups.

Figure 5. Box plot distribution of the top ten most influential ErG bit values according to the XGBoost model presented. While certain
comparisons (t.test) are not significant (NS), some are according to calculate p-value labels (***p-value <0.001, **p-value <0.01, *p-value <0.1).
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Influence of the Data Source in the ErG-Based
XGBoost Model. PDD’s subset with compounds manually
selected from patents surely enriched the general dataset of E3
Ligase binders we used. Some molecule examples from the
same E3 ligase selectivity but different chemical space is given
in Figure 6.

Applicability of the ErG-Based XGBoost Model.
Assuming that our XGBoost can precisely predict the binding
of an E3 ligase with a small molecule with the highest
probability, we applied it to predict potential novel E3 ligands
from commercial libraries. There is an enormous interest in
filtering the most promising molecules from commercial
databases.31,32 On one side, E3 ligase pockets have been
described in ELIOT,33 a platform containing the E3 ligase
pocketome to enable navigation and selection of new E3
ligases and new ligands for the design of new PROTACs, while
on the other are large AI-based models like AlphaFold
database,34 so far untapped, for E3 ligase cavity detection.
To demonstrate the applicability of the model to known

degrader libraries, we used the Asinex molecular degrader
collection which contained about 1257 compounds.35 Upon
running our ErG-based XGBoost model on these compounds,
it was revealed that this commercial collection was heavily
skewed toward probable CRBN binders (66%) and with only
2% possibly selecting VHL. Surprisingly, a good 32% is
addressing the mixed “other” E3 ligase class. To assess the
applicability of the prediction, we had to compare the training
set chemical space with the predicted library space. In case the
library molecules would have not been similar (Tanimoto
similarity accepted >0.5) to those in training, the relative
predictions should be taken with very less confidence. We
found eight exactly identical compounds in the commercial
dataset while other 74 compounds showed a Tanimoto
similarity higher than 0.5. A complete experimental validation
would require specific biophysical binding assays with the E3
ligase predicted. Important for us was to show that commercial
libraries have the potential to deliver novel candidates but that,
even with lower level of applicability, these potentialities are
confined if the selection is oriented toward specific E3 ligases.
For what concerns the possibility of enriching publicly

known datasets with E3 ligase binders, i.e., the possibility to
find specific E3 ligase binders within chemical biology
collections or even within repurposing libraries, we repeated
the prediction experiment using one of the major sources of

repurposing compounds, the compounds from the Broad
Institute’s Drug Repurposing Hub.36 Assuming again, of course
wrongly, that all compounds could be E3 ligase binders, we
wanted to check which ligases could be eventually predicted as
more probable for those compounds and found that 24% of the
molecules collected there could be indeed a CRBN binder.
Here as well, we checked how far these molecules lied from the
model training set and found a comfortable set of about 650
compounds with a Tanimoto similarity higher than 0.5. For
this promising reason, we explored experimentally this
collection to find possible degraders (J. Reinshagen et al.,
manuscript in preparation).

■ DISCUSSION
As hydroxy proline is a key residue for interactions with VHL
protein, and as succinimide ring plays a key interaction role
with CRBN protein cavity, we have demonstrated that the ErG
bits are well designed to drive selectivity of E3 ligase binders by
showing that the most relevant bits for the model are indeed
essential in known ligase-ligand interactions. Not surprisingly,
the ErG pharmacophore scheme resulted sufficiently general to
be applied across different classes of ligands.
While it is true that the dataset used for training our

machine learning models could be biased and not structurally
homogeneous enough, we took several steps to address this
potential issue. First, we carefully curated the dataset to include
only high-quality experimental data with well-established and
accepted literature sources. Second, we performed rigorous
cross-validation to evaluate the generalizability of the model to
unseen data. Third, we used feature selection techniques to
identify the most informative features that contribute to
binders’ probability and selectivity toward specific E3 ligases.
Finally, we validated the model on an independent test set and
observed convincing performances, indicating that our model
was not simply memorizing the training data. We are aware of
the dynamic nature of the field: each novel ligase ligand should
be added to the training set to improve generality of the model,
so we are constantly keeping track of changes to enrich the
training set and to provide the community with novel tools.
We are well aware that the current modeling approach is

limited only to known E3 ligase binders. However, the
definition and the inclusion of the nonbinder dataset together
with experimental validation of the multi-class predictions
needs to be considered as a large extension of this study and
will be published in due course. Moreover, as a future prospect,
a classification of E3 ligases through their druggable cavities
extracted, for instance, either from the cited ELIOT database
or from the Alpha Fold collection of ligase 3D models that will
also be considered as a natural playground to apply our
predictions.
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Example of pharmacophore information extraction using
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Figure 6. Four examples of E3 ligase binders with the relative source
and E3 ligase specificity.
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