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Abstract: This mini-review summarizes the syntheses and functionalizations of dithieno[1,4]thiazines
and bis[1]benzothieno[1,4]thiazines, both electron density-enriched congeners of phenothiazines
with remarkable electronic properties. Diversity-oriented, straightforward, and efficient syntheses,
including versatile one-pot processes, have been developed for the anellated 1,4-thiazines as well
as various functionalization for the expansion of the π-systems. Thereby, syntheses of different
regioisomers depending on the (benzo)thieno-thiazine anellation are discussed, which exert a deep
impact on the electronic properties. The tunable photophysical and electrochemical properties of
dithieno[1,4]thiazines and bis[1]benzothieno[1,4]thiazines outscore phenothiazines on many points
and promise an enormous potential in molecular electronics and applications beyond.

Keywords: bis[1]benzothieno[1,4]thiazine; cross-coupling; dithieno[1,4]thiazine; heterocycles;
Organolithium compounds; phenothiazine

1. Introduction

Optimization of the properties or even the generation of new possible applications is one of the
major challenges in molecular electronics [1]. Applications of electroactive materials, such as organic
light-emitting diodes (OLEDs) [2], organic field-effect transistors [3,4] or photovoltaics [5,6], have
continuously garnered increasing interest in the last decade. As the devices’ properties ultimately
originate from the molecular properties, careful and rational design of molecular structures is crucial.
Organic molecules are particularly suitable since they can be very efficiently synthesized and flexibly
modified by combinatorial approaches [1,7,8]. Especially, electron-rich heterocycles adopt a pivotal
role in the design concept of structures conceivable for organic electronics. Several structural motifs,
including phenothiazine [9–12] and thiophene [13,14], have been extensively developed due to their
favorable intrinsic electronic properties and accessibility. Phenothiazines exhibit, despite pronounced
biological activity [15], fully reversible one-electron oxidations at low potentials [16], extraordinarily
stable radical cations [17,18], and simultaneously luminescence, which is rather uncommon but
nevertheless quite valuable for numerous applications. For instance, OLEDs [19–21] as well as
redox switchable luminophores [10,22] have been developed based on phenothiazines. Moreover,
phenothiazines are promising candidates for photovoltaics in efficient bulk-heterojunction solar
cells and Grätzel-type solar cells (DSSC) [23–27]. Advantageously, the electronic properties can be
fine-tuned by functionalization of the phenothiazine moiety, clarifying the flexible nature of organic
compounds [28,29]. In addition, thiophenes, electron-rich heterocycles with tunable redox potentials,
favor charge transport due to high polarizability [14]. Consequently, electron-enriched and thus highly
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polarizable phenothiazine analogues with promising electronic properties with regard to molecular
electronics can be conceptualized upon merging phenothiazine and thiophene. The topological
benzo-thieno exchange results in dithieno[1,4]thiazines 2.

However, in contrast to benzene, thiophene can be anellated with the 1,4-thiazine in three
different ways, thus leading to six dithieno[1,4]thiazine regioisomers 2 (Figure 1). For simplification,
the anellation mode is abbreviated by the prefixes syn (2,3-b anellation), anti (3,2-b anellation) and exo
(3,4-b anellation), depending on the orientation of the thiophene and thiazine sulfur atoms [30].
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The first synthesis of a dithieno[1,4]thiazine was reported by Grol in 1970 [31]. Since the 
phenothiazine moiety had been implemented in pharmaceutically active compounds, 
dithieno[1,4]thiazines were considered with regard to the optimization of the pharmacological 
properties and for expansion of the structural space. The functionalized syn-anti isomer 2d-a was 
accessed in a five-step synthesis. In the first step the syn-anti orientation of the thiophene and thiazine 
sulfur atoms (highlighted in yellow) was introduced by nucleophilic aromatic substitution forming a 
2,3’-dithienyl sulfide. Control of the regioselective nucleophilic aromatic substitution as well as 
introduction of the thiazine-nitrogen atom (highlighted in green) are orchestrated by a nitro group. 
The reduction of the latter yielded an amino dithienyl sulfide, which finally terminated in the 1,4-
thiazine ring closure by an intramolecular Ullmann-type coupling after acylation and bromination 
(Scheme 1). Similarly, thieno[1,4]benzothiazines have been synthesized. 

Figure 1. The six regioisomers 2 of the dithieno[1,4]thiazines derived from phenothiazine 1 by
benzo-thieno exchange [30].

To gain access to these pronounced electron-rich congeners of phenothiazines, robust and efficient
syntheses are highly desirable. This review mostly focuses on the synthesis of dithieno[1,4]thiazines and
also briefly presents first insights into the electronic structure and possible applications. Furthermore,
π-expanded variants of the dithieno[1,4]thiazines, bis[1]benzo-thieno[1,4]thiazines, are presented
and discussed.

2. Early Syntheses of Dithieno[1,4]thiazines Based on Ullmann-Type Coupling

The first synthesis of a dithieno[1,4]thiazine was reported by Grol in 1970 [31]. Since
the phenothiazine moiety had been implemented in pharmaceutically active compounds,
dithieno[1,4]thiazines were considered with regard to the optimization of the pharmacological
properties and for expansion of the structural space. The functionalized syn-anti isomer 2d-a was
accessed in a five-step synthesis. In the first step the syn-anti orientation of the thiophene and
thiazine sulfur atoms (highlighted in yellow) was introduced by nucleophilic aromatic substitution
forming a 2,3′-dithienyl sulfide. Control of the regioselective nucleophilic aromatic substitution as
well as introduction of the thiazine-nitrogen atom (highlighted in green) are orchestrated by a nitro
group. The reduction of the latter yielded an amino dithienyl sulfide, which finally terminated in the
1,4-thiazine ring closure by an intramolecular Ullmann-type coupling after acylation and bromination
(Scheme 1). Similarly, thieno[1,4]benzothiazines have been synthesized.
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Scheme 1. The first synthesis of a dithieno[1,4]thiazine by Grol et al.: Preparation of the syn-anti 
isomer 2d-a [31]. 

An analogous procedure also provided the first synthesis of the functionalized syn-syn 
regioisomer 2a-a [32]. As for the syn-anti isomer 2d-a, the final anellation mode is predetermined by 
the position of the nitro group. With regard to further functionalization for applications as 
psychotropic drugs, a -chloropropionic acid amide was introduced instead of the acyl group. 
However, due to elimination during the base-mediated Ullmann coupling, the corresponding 
acrylamide was formed (Scheme 2). 

 
Scheme 2. Synthesis of the syn-syn isomer 2a-a [32]. 

In addition, by this methodology three further N-acryl dithieno[1,4]thiazines 2a-b, 2d-b and 2d-
c were synthesized, which were further functionalized by a Michael addition of N-methylpiperazine 
(Figure 2). However, reducing the carbonyl group was not successful, so that according to Grol the 
intended pharmacological activity could not be achieved [32]. 

 
 

Scheme 1. The first synthesis of a dithieno[1,4]thiazine by Grol et al.: Preparation of the syn-anti isomer
2d-a [31].

An analogous procedure also provided the first synthesis of the functionalized syn-syn regioisomer
2a-a [32]. As for the syn-anti isomer 2d-a, the final anellation mode is predetermined by the position
of the nitro group. With regard to further functionalization for applications as psychotropic drugs, a
β-chloropropionic acid amide was introduced instead of the acyl group. However, due to elimination
during the base-mediated Ullmann coupling, the corresponding acrylamide was formed (Scheme 2).
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In addition, by this methodology three further N-acryl dithieno[1,4]thiazines 2a-b, 2d-b and 2d-c
were synthesized, which were further functionalized by a Michael addition of N-methylpiperazine
(Figure 2). However, reducing the carbonyl group was not successful, so that according to Grol the
intended pharmacological activity could not be achieved [32].

In the case of syn-syn isomers 2a the rather time-consuming synthesis according to Grol (Scheme 2)
was cut short by an alternative strategy for generating the 1,4-thiazine ring. At first, introducing
the thiazine nitrogen bridge by an Ullmann-type coupling and then closing the thiazine ring by
cyclizing electrophilic aromatic substitution with sulfur dichloride gave dithieno[1,4]thiazine 2a-c
(Scheme 3) [33]. Cleavage of the acyl-group, setting the stage for further N-functionalization by both
acidic and basic hydrolysis, was not successful.
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3. Syntheses of Dithieno[1,4]thiazines by Cyclizing Buchwald–Hartwig Coupling

Inspired by Jørgensen’s phenothiazine synthesis (palladium-catalyzed formation of the sulfur
and nitrogen bridge) [34], a more diversity-oriented and straightforward synthesis of N-functionalized
syn-syn dithieno[1,4]thiazines 2a via cyclizing Buchwald–Hartwig coupling was conceived and
developed by Dostert (Scheme 4) [35]. For the synthesis of the syn-syn dithieno[1,4]thiazines, sodium
tert-butoxide as a base and dibenzylidenepalladium(0) and 1,1′-bis(diphenylphosphano)ferrocene
(dppf) as a catalyst in toluene were used by default.
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In contrast to earlier syntheses, the 1,4-thiazine-precursor, the dithienyl sulfide 3a, is conveniently
generated starting from commercially available 3-bromo thiophene [38]. The efficient introduction of
the sulfur bridge was achieved by double nucleophilic substitution at bis(phenylsulfonyl)sulfide 4,
which was synthesized from sulfur dichloride (Scheme 5) [39].
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By palladium-catalyzed inter- and intramolecular Buchwald–Hartwig coupling a broad spectrum
of N-functionalized syn-syn dithieno[1,4]thiazines 2a is accessible, which was illustrated by 18 examples.
Electron-withdrawing (e.g., 2a-n) or electron-donating (e.g., 2a-h) N-aryl substituents and also N-benzyl
(2a-e) and N-alkyl substituents (e.g., 2a-d) were implemented with mostly good to very good yields
(20%–94%). The yield of dithieno[1,4]thiazines bearing strong acceptor substituents like cyano groups
can be raised by dielectric heating at 160 ◦C. Ortho- and meta-chloro substituents can be present as well.
It should be particularly emphasized that p-bromophenyl was introduced with a moderate yield of
20%, which could, for example, serve as a starting point for further cross-coupling [35].

This diversity-oriented, robust and therefore efficient synthesis allowed a detailed characterization
of the electronic properties and structure of the N-functionalized syn-syn dithieno[1,4]thiazines in
comparison to phenothiazines. While the structure of dithieno[1,4]thiazines expectedly corresponds to
that of phenothiazines, the electronic properties differ quite remarkably in some points. For example,
the oxidation potential of N-phenyl syn-syn dithieno[1,4]thiazine (2a-i) is strongly shifted cathodically
by about 320 mV compared to N-phenyl phenothiazine, so that syn-syn dithieno[1,4]thiazines 2a
could actually be verified as electron-rich phenothiazine analogues with respect to the electronic
properties. In addition, the oxidation potentials of syn-syn isomers 2a can be widely tuned by
the electron-withdrawing or electron-donating character of the N-substituents [35]. Moreover, the
outstanding stabilization of the radical cations formed by oxidation, typical for phenothiazines [17] but
even more pronounced for syn-syn dithieno[1,4]thiazines 2a, allows the isolation and characterization
of mono- and dioxidized syn-syn dithieno[1,4]thiazines. The radical cation 2a-o+ and the dication
2a-o2+ were prepared by oxidation with antimony(V)chloride (Scheme 6) [40].
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EPR (electron paramagnetic resonance) measurements of 2a-o+ suggest a high spin density on the
thiazine nitrogen atom but also a noticeable delocalization on the dithieno[1,4]thiazine system, whereas
the dication 2a-o2+ is EPR silent but NMR active suggesting an Hückel-aromatic singlet state [40].

To access further dithieno[1,4]thiazine isomers 2, the synthesis of appropriate dithienyl sulfides 3
was a prerequisite. Symmetric 2,2′- and 3,3′-dithienyl sulfides like 3a, 3e, or 3f have been synthesized
using bis(phenylsulfonyl)sulfide 4 [38,41]. However, more complex multistep syntheses (Scheme 7)
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were required for unsymmetrically substituted dithienyl sulfides, such as 3b [41]. This was a major
disadvantage, in particular with regard to the preparation time and atom economy.
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Scheme 7. Multi-step synthesis of the unsymmetrical 2,3-dithienyl sulfide 3b. The key step is the use of
a symmetrically substituted dithienyl disulfide, which reacts as a sulfur monoelectrophile with thienyl
lithium and, thus, desymmetrizes [41].

A synthetic approach towards dithienyl sulfides 3 based on a multicomponent reaction [7]
tackled this issue. Chen et al. presented a consecutive three-component reaction for the synthesis of
dithieno[2,3-b:3′,2′-d]thiophenes with good yields in a one-pot fashion [42]. In this process, elemental
sulfur itself acts as an electrophile, which renders the use of 4 as unnecessary, and thus raised
the atom economy and reduced the preparation time drastically. Moreover, in contrast to earlier
syntheses, the use of elemental sulfur as well (Scheme 7), further oxidations and isolation steps
are circumvented. Modifying this one-pot sequence opened new avenues for the synthesis of both
symmetrically and unsymmetrically substituted dithienyl sulfides in a divergent one-pot fashion.
Starting from commercially available bromo thiophenes, three isomeric dithienyl sulfides (3b, 3e, and
3f) were synthesized in addition to the syn,syn-dithienyl sulfide 3a with good to very good yields
(Scheme 8) [30].
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Scheme 8. One-pot synthesis of 3a, 3b, 3e, and 3f: (i) 1.0 equiv n-BuLi, Et2O, −78 ◦C; then: 1.0 equiv S8,
−78 to 0 ◦C; then: 1.0 equiv p-TsCl, 0 to 40 ◦C; (ii) 1.2 equivs thienyllithium derivative, −78 ◦C; (iii) 1.0
equiv LDA, Et2O, −78 ◦C; then: 1.0 equiv S8, −78 to 0 ◦C; then: 1.0 equiv p-TsCl, 0 to 40 ◦C [30].

The yields of this one-pot sequence were on the same scale as the overall yields of the stepwise
processes (Scheme 7) and the desired dithienyl sulfides were provided in just one step [30,35,41].
Only in the case of 3,3′-dithienyl sulfide 3e an additional iodination (86% yield of 3e′; for the structure,
see Figure 3) has to be performed. The syn-exo, exo-exo and anti-anti dithieno[1,4]thiazine isomers 2b-a,
2f-a, and 2e-a bearing a N-phenyl substituent were analogously synthesized to the syn-syn isomers 2a
(Scheme 4) by Buchwald–Hartwig coupling. However, the yields dropped compared to the syn-syn
isomers (Figure 3) [30,35].

According to the DFT (density functional theory) calculations and X-ray analysis (X-ray only
for 2-i) the dithieno[1,4]thiazines 2 are folded along the S,N-axis resulting in an phenothiazine-like
butterfly structure [30,35]. The electronic properties are highly dependent on the anellation mode. For
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example, the oxidation potential of the anti-anti isomer 2e-a is even more cathodically shifted than for
the syn-syn isomer 2a-i. In contrast, the oxidation potential of the exo-exo isomer 2f-a is more anodically
shifted than for 2a-i because of a less efficient delocalization of the π-electron density. Whereas the
syn-syn isomers 2a fluoresce very weakly [35], which is atypical for comparable phenothiazines [43],
the anti-anti isomer 2e-a fluoresces rather phenothiazine-like [30].
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4. 2,6-Functionalization of Dithieno[1,4]thiazines: Expanding the π-Systems

Functionalization of the dithieno[1,4]thiazine moiety can be directly achieved by straightforward
lithiation-electrophile trapping sequences and does not require a preceding halogenation in contrast to
phenothiazines (Scheme 9). α-Lithiation of thiophenes using n-butyllithium sets the stage for various
2,6-functionalization. Thereby, di- as well as monofunctionalizations are readily realized [36,44,45].

Important dithieno[1,4]thiazine building blocks 5, for example, aldehydes, iodides, or alcohols, are
accessible with mostly good yields using dimethylformamide (DMF), iodine, or acetone as electrophiles,
respectively [36,37].

These building blocks set the stage for a diverse range of follow-up chemistry. For example,
starting from aldehyde 5b, expanded π-conjugated systems are conceivable via Wittig reactions in
good yields. Moreover, the Wittig reaction could be implemented in a one-pot sequence starting from
2,6-unsubstituted dithieno[1,4]thiazine 2a-f, circumventing the isolation of the intermediary aldehyde.
This pseudo-five-component reaction is clearly superior to the stepwise synthesis due to the shortened
preparation time and increased yield (Scheme 10) [36].
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Concatenating formylation with the Wittig reaction was inspired by a method reported by
Schlosser [46]. The basic milieu initially originating from the organo lithium is transferred across the
formylation and is finally further exploited in the Wittig reaction, so that no additional base has to be
added for the generation of the ylide (Scheme 11).
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Scheme 11. Concatenation of formylation and Wittig reaction by exploiting the basicity generated
during the preceding formylation [46].

Other one-pot sequences, similarly based on a lithiation-formylation sequence, focus on the
use of dimethyl amine, which is present in equilibrium after the formylation, as an organocatalyst
for subsequent Knoevenagel condensations [47]. Hence, dithieno[1,4]thiazines were also efficiently
functionalized via a lithiation-formylation-Knoevenagel sequence in a one-pot fashion (Scheme 12) [45].

The dithieno[1,4]thiazine-acceptor conjugates 6 exhibit anodically shifted redox potentials and
strongly bathochromically shifted UV/vis absorption bands with a charge transfer character, which are
accompanied by intense colors. By eyesight, the aldehydes already appear deep red, and with the
stronger acceptors as implemented via Knoevenagel condensation, deep blue chromophores are formed.
In contrast to syn-syn isomers, the fluorescence quantum yields ΦF of anti-anti isomers are remarkably
high and in the order of the corresponding phenothiazines (λmax,em = 639 nm,ΦF = 57%). Besides even
more bathochromically and furthermore hyperchromically shifted absorption bands, the emission of
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the acceptor-substituted anti-anti isomers is intensified compared to the syn-syn isomers. Ultimately,
dithieno[1,4]thiazine 6b exhibited an outstanding intense NIR fluorescence at λmax,em = 719 nm
(ΦF = 52%), whereas 6a fluoresces significantly less intensively (λmax,em = 750 nm, ΦF = 1%). [45].Molecules 2020, 25, x FOR PEER REVIEW 9 of 16 
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Scheme 12. Pseudo five-component one-pot synthesis of 2,6-diacceptor substituted syn-syn and anti-anti
dithieno[1,4]thiazines 6a and 6b via lithiation-formylation-Knoevenagel sequence [45].

In addition, borylation of lithiated dithieno[1,4]thiazines can be carried out with trimethylborate
as an electrophile, whereby pinacol-boronic acid esters, versatile substrates for Suzuki couplings, were
obtained after subsequent esterification (Scheme 13) [37].
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Scheme 13. Synthesis of dithieno[1,4]thiazine-based boronic acid esters [37].

Suzuki coupling of the borylated and halogenated dithieno[1,4]thiazine building-blocks 5g and 5e
furnish dithieno[1,4]thiazine trimers 7a (Scheme 14A). For the synthesis of dimers 7b, another one-pot
sequence, namely a borylation-Suzuki coupling sequence, was developed circumventing the isolation
of borylated intermediates (Scheme 14B). In contrast to the monomers 2a-f, these oligomers fluoresce
redshifted and more intensively [37].

Moreover, Negishi coupling is also perfectly suited for direct arylations of syn-syn
dithieno[1,4]thiazines 2a [44] and can be alternatively employed for the synthesis of dimer 7b [37].
Using zinc dibromide as a trapping electrophile for the lithiated dithieno[1,4]thiazine species, the
resulting organozinc intermediate can be reacted with various arylhalides in the sense of a Negishi
coupling. With aryliodides, the reaction already proceeds smoothly at room temperature with
good to very good yields. Besides electron-donating (hetero)aryl substituents, electron-withdrawing
substituents can be introduced and ortho-substituents are also tolerated (Scheme 15) [37]. In addition,
monoarylations and the diarylation of the anti-anti dithieno[1,4]thiazines 2e proceed similarly [44,45].
Polymerization of syn-syn dithieno[1,4]thiazines was accomplished by polymer analogous Negishi
couplings using a diiodide as the dihalogen substrate. The polymer reaches a degree of polymerization
of 37 (Mw/Mn = 1.32) and a significantly lower band gap than oligophenothiazines can be determined
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by spectroscopy and computations. Therefore, dithieno[1,4]thiazine oligomers and polymers are
potentially interesting as p-type semiconductors in organic electronics, similar to phenothiazines [48].
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Similar to substituents in the N-position, the substituents in 2,6-positions can exert a great
influence on the photophysical and electrochemical properties. However, 2,6-substituted syn-syn
dithieno[1,4]thiazines mostly do not fluorescence intensely, whereas the anti-anti isomers do indeed.
Furthermore, the π-system of the anti-anti isomers interacts with the π-system of the substituents by
full conjugation more efficiently than in syn-syn isomers triggering the different electronic properties of
the isomers [45]. Substituents in the 2,6-positions have a stronger influence on the redox potentials than
the substituents in the N-position, which was demonstrated for syn-syn isomers by a different response
to the substituent effects (correlation with Hammett parameters) [35,36]. With donor substituents,
the oxidation potential of the 2,6-diarylated dithieno[1,4]thiazines 8 decreases, whereas acceptor
substituents cause an increase. However, diarylation seems to reduce the stabilization of the radical
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cations formed by oxidation [44,45], but they still remain at a relatively high level compared to
other redox active π-systems [17]. In addition, the lowest energy absorption bands strongly shift
bathochromically with an increasing acceptor strength [44,45].

5. Expansion of the π-System by Anellation: Bis[1]benzothieno[1,4]thiazines

Thieno expansion rather than benzo-thieno replacement in phenothiazines formally
lead to bis[1]benzothieno[1,4]thiazines 9, which can also be considered as benzo anellated
dithieno[1,4]thiazines. There are three regioisomers, the syn-syn, the syn-anti and the anti-anti isomer
(Scheme 16). Their synthesis is generally in accordance with the synthesis of the dithieno[1,4]thiazines
2 (Scheme 4) [49,50]. A broad spectrum of N-functionalization, including electron-withdrawing and
electron-donating N-aryl substituents, is also accessible. Ortho substituents on the N-aryl components
are generally introduced with a slight drop in yield. The yields are mostly moderate but are lower for
syn-syn isomers, presumably due to steric hindrance.
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were obtained as side products in the synthesis of syn-syn isomers 9a) [49,50].

The benzo-anellated 2,2′- and 3,3′-dithienyl sulfides 10 have been similarly synthesized to the
dithienyl sulfides by introducing the sulfide bridge using bis(phenylsulfonyl)sulfide 4 (Scheme 5).
However, the 2,3-dithienyl sulfide 10c has been prepared via an Ullmann-type CS-coupling
(Scheme 17) [50].
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Scheme 17. Synthesis of the benzo-anellated 2,3-dithienyl sulfide 10c. In preparation of the
Buchwald–Hartwig coupling towards the syn-anti bis[1]benzothieno[1,4]thiazines 9c, a bromination
had to be included [50].

The choice of ligand was crucial for obtaining selectivity. In some cases, an isomerization
occurred during Buchwald–Hartwig coupling using dppf as a ligand. For example, starting from
syn-syn bis(3-bromobenzo[b]thiophen-2-yl)sulfane (10a), a 3:1 mixture of the syn-syn and the syn-anti
bis[1]benzothieno[1,4]thiazines 9a and 9b was obtained using dppf [49]. Bulkier ferrocene ligands
like 1,1′-bis-(dicyclohexylphosphano)ferrocene (dcpf) or 1,1′-bis(di-tert-butylphosphano)ferrocene
(dtbpf) decreased the isomerization significantly. In addition, the increased donor strength of dcpf
and dtbpf compared to dppf seemed to be beneficial in terms of selectivity. For the syn-syn and
the syn-anti isomers, dcpf gave the highest yields and a selective coupling without isomerization,
while for the anti-anti isomers, dppf already gave reasonable results. Based on the evidence of
an intermediate, namely the product of the intermolecular Buchwald–Hartwig coupling 11, and a
kinetic study on the formation of intermediates a mechanistic rationale for the syn-anti isomerization
was derived (Scheme 18). The keystep is the site-selective oxidative addition into either the CBr- or
the CS-bond of intermediate 11, which then follows a usual Buchwald–Hartwig-type mechanism
(path A) or an alternate isomerizing reaction cascade (path B), respectively. The influence of the
bulkiness of the ligand on the product distribution suggests a kinetically favored generation of
syn-syn isomers, whereas syn-anti isomers seem to be thermodynamically favored according to the
influence of the reaction temperature. Similarly to dithieno[1,4]thiazines 2, the photophysical and
electrochemical properties of bis[1]benzothieno[1,4]thiazines 9 strongly depend on the anellation
mode and can thereby be tuned and in addition by N-substitution. On the one hand, the oxidation
potentials are slightly increased compared to the dithieno[1,4]thiazines; nevertheless they are still
below phenothiazines. However, on the other hand, the fluorescence quantum yields are increased.
Bis[1]benzothieno[1,4]thiazines 9 not only fluoresce in solution but also in the solid state, depending
on their conformation, which, in turn, can be controlled by the anellation mode and the substitution.
Ultimately, a rather unique flattened conformation of the 1,4-thiazine ring is adopted in the solid
state, for example, for bis[1]benzothieno[1,4]thiazine 9c (R = t-Bu) [49,50]. In addition, the electronic
properties in the solid state (redshifted fluorescence) and NICS (nucleus-independent chemical shift)
calculation strongly support the antiaromaticity of the fully planarized conformation of anti-anti
bis[1]benzo-thieno[1,4]thiazines 9c prevalent in the solid state.
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Scheme 18. Condensed plausible mechanistic rationale of the syn-anti isomerization. Pathways A
and B generate the syn-syn or the syn-anti isomer respectively. a) Oxidative addition of Pd into the
CBr-bond, coordination and deprotonation of the amine; b) Oxidative addition of Pd into the CS-bond
and coordination of the amine; c) Reductive elimination of Pd forming CN-bond; d1) Deprotonation of
the amine and sulfide dissociation from Pd; d2) Reductive elimination of Pd forming CN-bond, then
oxidative addition of Pd into the CBr-bond, coordination of the sulfide; d3) Reductive elimination of Pd
forming CS-bond [49].

6. Conclusions

Dithieno[1,4]thiazines and their benzo anellated congeners, bis[1]benzothieno[1,4]thiazines, can
be synthesized by straightforward and efficient Buchwald–Hartwig coupling starting from primary
amines and dithienyl sulfides or the corresponding benzo-anellated dithienyl sulfides. In addition,
these sulfide precursors are efficiently accessible from commercially available bromo thiophenes,
eventually in a one-pot fashion, also furnishing unsymmetrically substituted dithienyl sulfides in just a
single operation. Unlike phenothiazines, there are several regioisomers depending on the (benzo)thieno
anellation. All these isomers have been synthesized for bis[1]benzothieno[1,4]thiazines and most of
them for dithieno[1,4]thiazines by applying cyclizing Buchwald–Hartwig coupling. Only the syn-anti
isomer has been exclusively synthesized via a multistep route completed by an Ullmann-type coupling.
The electronic properties decisively depend on the anellation mode and oxidation potentials are varied
in a broad range by just altering the (benzo)thieno anellation. Hence, dithieno[1,4]thiazines and
bis[1]benzothieno[1,4]thiazines exhibit broad intrinsic electronic diversity, which is almost completely
addressable by the preparation. Moreover, dithieno[1,4]thiazines and bis[1]benzothieno[1,4]thiazines
generally outscore by electron enrichment the oxidation potentials of phenothiazines.

Besides the choice of isomer itself, functionalization significantly controls the electronic
properties. Various implemented N-functionalizations not only tune the oxidation potentials or
the molecular geometry but also the photophysical properties. For instance, planarized, stable
antiaromatic bis[1]benzothieno[1,4]thiazines become accessible by variation of N-substituents.
Especially, functionalization of the α-positions of dithieno[1,4thiazines exerts an enormous impact
on the photophysical properties, as indicated by the remarkably intense NIR fluorescence of a
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2,6-acceptor-substituted anti-anti dithieno[1,4]thiazine. Manifold functionalization of the α-positions
relies on lithiation-electrophile-trapping one-pot methodology providing useful building blocks,
eventually also opening by transmetalation access to novel consecutive multicomponent reactions.
Most interestingly, dithieno[1,4]thiazines and bis[1]benzothieno[1,4]thiazines solicit themselves as
phenothiazine substitutes. The tunable intense absorption realized on a relatively small molecular
dimension by the enhanced strong donor properties of dithieno[1,4]thiazines suggest an application as
absorbers in the active layer of organic solar cells, where phenothiazines have already been applied [24].
Furthermore, electroactive emitters like the presented dithieno[1,4]thiazines appear as potential
candidates for efficient OLEDs [45], as already shown for phenothiazines.[21] In particular, intense
NIR emission is increasingly interesting for biomedical imaging [51]. Oligomers and polymers of
the dithieno[1,4]thiazines fulfill critical requirements as p-type semiconductors [37]. In conclusion,
(benzo)thieno-anellated 1,4-thiazines as electron-richer congeners of phenothiazines have opened new
avenues for novel functional π-electron systems with exciting properties both for fundamental and
applied research.
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