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Abstract

Copy number variations (CNVs), a common genomic mutation associated with various diseases, are important in research
and clinical applications. Whole genome amplification (WGA) and massively parallel sequencing have been applied to single
cell CNVs analysis, which provides new insight for the fields of biology and medicine. However, the WGA-induced bias
significantly limits sensitivity and specificity for CNVs detection. Addressing these limitations, we developed a practical
bioinformatic methodology for CNVs detection at the single cell level using low coverage massively parallel sequencing.
This method consists of GC correction for WGA-induced bias removal, binary segmentation algorithm for locating CNVs
breakpoints, and dynamic threshold determination for final signals filtering. Afterwards, we evaluated our method with
seven test samples using low coverage sequencing (4,9.5%). Four single-cell samples from peripheral blood, whose
karyotypes were confirmed by whole genome sequencing analysis, were acquired. Three other test samples derived from
blastocysts whose karyotypes were confirmed by SNP-array analysis were also recruited. The detection results for CNVs of
larger than 1 Mb were highly consistent with confirmed results reaching 99.63% sensitivity and 97.71% specificity at base-
pair level. Our study demonstrates the potential to overcome WGA-bias and to detect CNVs (.1 Mb) at the single cell level
through low coverage massively parallel sequencing. It highlights the potential for CNVs research on single cells or limited
DNA samples and may prove as a promising tool for research and clinical applications, such as pre-implantation genetic
diagnosis/screening, fetal nucleated red blood cells research and cancer heterogeneity analysis.
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Introduction

Copy number variations (CNVs) are known to be associated

with various diseases, such as 22q11.2 deletion/duplication

syndrome [1,2,3], Cri-du-Chat (5p deletion) [4] and even cancers

[5]. Rather than cell-population research, single cell analysis

provides insights into research of disease aetiology and diagnosis. It

is especially useful for cancer heterogeneity research, since it has

been shown to detect a single-nucleotide mutation that could result

in a kidney tumor [6]. It is also useful for conducting evolution

research since it has proven that CNVs plays an important role on

cell evolution [7,8]. In addition, for the clinical purposes, pre-

implantation genetic diagnosis/screening (PGD/PGS) was used

for disease scanning since 1990s [9,10,11]. This application allows

CNVs analysis of single cell isolated from polar body, blastomere

or blastocyst. Single-cell analysis may also open up new

opportunities for noninvasive prenatal genetic diagnosis by only

needing a single fetal nucleated red blood cell (NRBC) [12,13].

Whole genome amplification (WGA) and array comparative

genomic hybridization (aCGH) technology have been widely used

in CNVs analysis of single cells [14,15]. aCGH technology is based

on the differential labels of test sample and reference DNA with

fluorophores. These samples are then hybridized to array

containing oligonucleotide probes and subsequently analyzed for

fluorometric signal ratios, which allows for the calling of the copy
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number profile of discrete genomic intervals. However, there are

several limitations of WGA-based aCGH. WGA-induced biases

have been observed in previous studies [16,17,18,19,20] and can

hinder the sensitivity and specificity of CNV detection, since it has

been associated with sequence repeats, proximity to chromosome

ends [18,19,20] and GC content [18,20]. In the procedure of

WGA, GC content, in particular, can influence polymerase

processivity and DNA priming so as to lead to false CNVs signal.

This can be caused by over-amplification or under-amplification

on GC-poor or GC-rich regions [18,20]. Nowadays, massively

parallel sequencing (MPS) has become an advanced approach for

genomics research [21]. The power of whole genome sequencing

(WGS) in profiling genome copy number landscapes makes it

notably more advantageous over aCGH, as reported in previous

studies [22,23].

In this study, we developed a WGA-induced bias correction

strategy based on GC bias description using two single cells

isolated from the peripheral blood (PB) of YH, a healthy Chinese

individual with a normal karyotype. We then established a

practical bioinformatics pipeline, which detected CNVs at the

single cell level through low coverage whole genome sequencing.

GC correction to lessen WGA-induced bias, a binary segmenta-

tion algorithm for CNVs breakpoint location, and dynamic

threshold determination for final CNV signals filtering constituted

the core of this pipeline. Seven single cells isolated from PB or

blastocysts with confirmed CNV results were recruited to examine

the performance of this pipeline. Our method explores CNVs in

single cells or limited DNA, which provides a practical approach

for CNVs detection in the clinic.

Results

WGA-induced GC bias correction and pipeline
establishment

In order to observe and correct GC biases in WGA, we isolated,

amplified, and sequenced two single cells from the PB of YH, a

healthy Chinese individual with normal karyotype [24], generating

an average of 13.04 million single-end (SE) 50 bp reads of each

cell (Table 1).We defined the quotient between the reads number

of each observation window and the average reads number as

relative read number (RRN), which ideally would be equal to one

in diploid genome. By comparing the GC content and RRN, we

discovered that the RRN tended to be less than average in

genomic GC-poor (,40%) and GC-enriched (.48%) regions

(Figure 1A), implying significant amplification bias of these

regions.

Based on this discovery, we developed a weighted correction

strategy to remove the GC bias. RRN would be adjusted by a GC-

related weighting coefficient, calculated using RRN in windows

that shared same GC content (Methods and materials). After re-

normalization, the corrected relative reads number (CRN) showed

a much better uniformity of GC content, indicating a high efficacy

of the correction (Figure 1B). Also, the self-defined GC-bias index

proved that more than 99.90% of the GC biases were removed by

our strategy. (Materials and Methods, Table S1)

After GC bias correction, we employed a binary segmentation

algorithm to access higher accuracy of the localization of the

CNVs breakpoints on the chromosome. Candidate breakpoints

were obtained after initialization and the adjacent windows were

merged to localize the optimized breakpoints. Considering the

influence of different GC content on CNVs detection, we

developed a dynamic threshold determination algorithm for the

final signal filtering, which would improve the general sensitivity

and specificity of CNVs detection. Finally, we established a

comprehensive bioinformatics pipeline (Figure 2), which included

sequencing reads alignment, GC bias correction, a binary

segmentation algorithm and dynamic threshold determination

for signals filtering.

Evaluation of sensitivity and specificity
To examine our method, we isolated seven single cells from PB

and blastocysts whose karyotypes were already confirmed by

whole genome sequencing analysis or SNP-array analysis,

respectively. These karyotypes were normal, had CNVs, or had

aneuploidies. An average of about 10.92 million SE 50 bp reads

were obtained for each single-cell samples and mapped to the

human reference genome (HG18, NCBI Build36) using SOAP2

[25] (Table 1). The coverage of those sequencing reads in the

genome ranged from 4.0% to 9.5%. All these single cell samples

had received CNV analysis using the standard pipeline described

above (Figure 2), and were used to evaluate the sensitivity and

specificity of the method.

In total, six out of seven test single cell samples were identified

with CNVs over 1 Mb or aneuploidies, including seven events of

CNVs from five samples and three events of aneuploidies from two

samples. Generally, the CNV results detected by our method were

highly consistent with confirmed CNV results (Table 2). For the

single-cell samples from PB or blastocysts, we successfully detected

the CNVs and aneuploidies using our method (Figure 3 & Table 2).

Especially, two smaller CNVs were also identified correctly in

samples SC 6 and SC 7 (Figure 4 & Table 2). The two CNVs were

a duplication of 3.94 Mb on chromosome 20 and a duplication of

Table 1. Sequencing data statistics.

Sample GC content (%) Reads number (M) Map rate (%) Coverage (%) Depth (X)

SC 1 39.47 14.64 62.69 4.20 0.15

SC 2 40.74 14.64 80.66 7.60 0.19

SC 3 39.43 7.13 79.16 4.00 0.09

SC 4 41.53 9.65 84.80 6.60 0.13

SC 5 40.93 8.69 82.39 6.10 0.12

SC 6 43.40 16.69 74.44 9.50 0.20

SC 7 43.69 15.50 72.95 7.70 0.18

YH-1 41.75 11.75 78.13 6.80 0.15

YH-2 41.59 14.32 77.18 5.90 0.18

doi:10.1371/journal.pone.0054236.t001

Copy Number Variation Analysis for Single Cell

PLOS ONE | www.plosone.org 2 January 2013 | Volume 8 | Issue 1 | e54236



5.47 Mb on chromosome 1. It indicates our method can identify

CNVs (.1 Mb) correctly and the detection results can reach

99.63% sensitivity and 97.71% specificity (Table 3).

To further estimate the sensitivity and specificity of our method

for CNVs detection on call level, we performed simulation in silico

to depict the relationship between CNVs size and its performance

(Materials and Methods). We first simulated CNVs, ranging from

500 kb to 5 Mb, on YH genome. Then, we applied our method to

evaluate the sensitivity and specificity of our method. Overall, the

sensitivity increased with the CNV size, and achieved about 94%

for CNV over 3 Mb could be detected successfully (Figure 5). Also

our method showed a high efficiency on decreasing the false

positive rate, for example, the specificity of 750 kb CNV was as

high as 95% (Figure 5). Additionally, we also studied our ability to

map breakpoints accurately by this simulation. For this purpose,

we calculated the minimum distance between the segmentation

algorithm (using about 10M simulated reads) predicted breakpoint

and the real breakpoint. The CNVs breakpoint precision analysis

indicated that we could localize the CNV breakpoints within about

70 kb (median), which was associated with the size of observation

windows.

Comparison with comparative genomic strategy
We also compared the methodology and practical performance

of our method with SegSeq [22,26], a well-recognized CNVs

detection method using short reads generated by massively parallel

sequencing. Different strategies were conducted to reduce the

significant influence of bias from WGA or sequencing procedure

in both methods. We removed GC bias by a weighted strategy

between observation (sequencing data) and expectation (the

average). To contrast, SegSeq used a comparative genomic

strategy to decrease the experimental variance between the case

and control, which is similar to the principle of array-CGH.

Another difference between two methods was the threshold

determination for final signals filtering, which is dynamic in our

method and fixed in SegSeq (Table 3).

We employed SegSeq to detect the CNVs in the seven test

samples with suggested parameters (-W 400 –a 1000 –b 10), using

the YH samples (YH-1 and YH-2) as control. A total of 16 CNVs

events were identified in seven samples, and also three additional

aneuploidies in two samples (Table 2). Almost all CNVs over

1 Mb were correctly detected in both methods, corresponding

99.63% and 92.75% of sensitivity for our method and SegSeq,

respectively. However, the specificity for SegSeq was only 16.49%

on CNVs larger than 1 Mb, which was far less than 97.71% of our

method (Table 3). Most of the false positive signals of SegSeq were

Figure 2. The comprehensive pipeline. This figure shows the
structure of the method in this study for CNVs identification, composed
of a sequencing reads alignment, GC bias correction, a binary
segmentation algorithm and dynamic threshold determination for
signals filtering.
doi:10.1371/journal.pone.0054236.g002

Figure 1. The distribution between RRN and Sequencing GC
content before and after GC correction. The distribution of relative
reads number (RRN, y-axis) and the corrected relative reads number
(CRN, y-axis) were exposed as boxplot maps respectively with their
sequencing GC content (x-axis).
doi:10.1371/journal.pone.0054236.g001
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common in GC-poor chromosomes (such as chromosome 13) and

GC-rich chromosomes (such as chromosome 19) (Figure S1),

which simply could not be filtered by a fixed threshold. These

signals could be explained by the significant GC bias in WGA

described above. Moreover, in the case of single cells with smaller

CNVs (Figure 4), our method showed a higher specificity for CNV

detection than SegSeq. For example, on chromosome 1 of SC 7, a

duplication of about 3 Mb on the cytogenetic band of p36

(24,736,617–27,719,432) was detected by SegSeq, but verified as a

false signal (Figure 4B).

In brief, our method based on a weighted strategy had more

efficient than the comparative genomics strategy to analyze CNVs

using WGA data, only for detection of CNVs over 1 Mb.

Figure 3. Performance of this method for test samples. This circular map shows the performance of our method on five single-cell samples
with CNVs and aneuploidies. The outermost circle depicts the bands of chromosomes 1, 2, 5, 11, 12, 13, 21. The inner circles represent the samples
SC1, SC2, SC3, SC4, and SC5. The color-coded dots represent the distribution of CRN, of which green and red show duplication and deletion,
respectively. The dark grey lines show the CNVs after segmentation.
doi:10.1371/journal.pone.0054236.g003

Table 2. Detected results of different methods for test single-cell samples.

sample Our method SegSeq WGS/SNP-Array

SC 1 46, XY, del(5)(p14.2Rpter), dup(12)(p13.1Rpter) 46,XY, del(1)(p36.11Rpter), del(5)(p14.3Rpter),
dup(12)(p13.1Rpter), dup(13)(q21.1 q32.1), del(19)(p13)

46, XY, del(5)(p14.2Rpter),
dup(12)(p13.1Rpter)

SC 2 47, XX, +21 47, XX, +21 47, XX, +21

SC 3 46, XY, dup(1)(q41Rqter), del(2)(q21.1Rqter) 46,XY, dup(1)(q41Rqter), del(2)(q14.3Rqter), del(19)(p13),
del(19)(q13.2 q13.33)

46,XY, dup(1)(q41Rqter),
del(2)(q14.3Rqter)

SC 4 46, XX, del(11)(q13.1 q25), 213, +21 46, XX, del(11)(q12.2Rqter), dup(19)(p13), 213, +21 46, XX, del(11)(q13Rqter), 213, +21

SC 5 46,XX 46,XX, dup(19)(p13) 46,XX

SC 6 46, XX, dup(20)(q13) 46, XX, dup(20)(q13), dup(19)(p13) 46, XX, dup(20)(q13)

SC 7 46, XX, dup(1)(p36.3) 46, XX, dup(1)(p36.3), dup(1)(p36.11) 46, XX, dup(1)(p36)

CNVs larger than 1 Mb in test samples were showed in this table.
doi:10.1371/journal.pone.0054236.t002
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Discussion

In this study, we developed a practical bioinformatics method to

detect CNVs at the single cell level through low coverage

massively parallel sequencing. The method consists of GC

correction, a binary segmentation algorithm and dynamic

threshold determination. With our correction strategy, more than

99.90% of WGA-induced GC biases, which hinders single-cell

CNVs analysis [18,20], were removed (Table S1), indicating a

high efficacy of GC correction. Finally, using the low coverage

sequencing (4,9.5%) data of test samples, our results were highly

consistent with confirmed results with 99.63% sensitivity and

97.71% specificity (Table 3).

However, several improvements are still necessary for further

studies. Firstly, our method shows a high false negative rate (FNR)

on smaller CNVs (,1 Mb) (Figure 5). Also, the simulation results

indicated that our sensitivity on smaller CNVs was strongly related

to the number of observation windows (Figure S2). Using smaller

observation windows could increase the sensitivity and improve

the resolution of our method. In addition, false positive signal in

smaller observation windows could be caused by the lack of data

from low coverage of whole genome sequencing. Therefore, it is

important for appropriate observation windows selection accord-

ing to data production and the sensitivity and resolution of our

method can also be improved by increasing the sequencing reads

or target sequencing [27] using smaller observation windows.

Secondly, except GC content, several factors, including chromo-

somal structure, repeat regions [18,19,20] etc., can also induce

WGA-bias. Ideally, these biases would mostly relate to specific

regions in human genome. Therefore, a population-scale normal-

ization strategy, comparing the same observation window with

data generated from the same batch, will be powerful for WGA-

induced bias removal.

Our method can be utilized for research on somatic CNVs to

explore cell evolution in cancers. Furthermore, it provides a

potential solution for CNVs detection in clinical applications of

single cell technology, such as PGD/PGS, using fetal nucleated

red blood cell for non-invasive prenatal diagnosis [12,13], or using

PB for identifying circulating tumor cells for fast and convenient

noninvasive cancer screening [28]. To meet these clinical needs,

more samples are necessary to improve the sensitivity and

specificity of our method. In conclusion, our method for CNVs

detection using WGA and MPS data highlights that CNVs

research at the single cell level and explores a potential solution for

single cell applications in clinic.

Materials and Methods

Overall design and concept
To develop an effective bioinformatics strategy for CNVs

detection at the single cell level through massively parallel

sequencing, we generated sequencing data using single cells

isolated from peripheral blood (PB) or blastocysts. The single cells

received a standard degenerate oligonucleotide primer PCR

(DOP-PCR) and Illumina sequencing at BGI-Shenzhen. After a

short read alignment, we first tried to describe the WGA-induced

bias. Considering the influence of the unique differences in the

human reference genome sequence, windows selection was

performed and well-selected windows were employed as the

minimum observation unit. We described the WGA-induced bias

using a relative reads number (RRN) and a newly defined statistic,

the GC-bias index (DRGC
2). Based on this significant discovery, we

developed a weighted correction strategy to lessen the influence of

WGA-induced bias. Finally, a bioinformatics pipeline, which

included GC correction for WGA-induced bias removal, a binary

segmentation algorithm for CNV breakpoints identification, and

dynamic threshold determination for a final signal filtering, was

established to access more accurate CNVs.

Table 3. Comparison between our method and SegSeq.

Methods Our method SegSeq

The core of methods Need a control (normal) sample No Yes

Correction or Normalization GC correction Normalization based on control sample

Segmentation algorithm Yes Yes

Final signals filtering by specific
method

Dynamic threshold determination
for final signals filtering

No

CNV identification for test samples * Sensitivity 99.63% 92.75%

Specificity 97.71% 16.49%

*CNVs larger than 1 Mb in test samples were used to calculate the sensitivity and specificity.
doi:10.1371/journal.pone.0054236.t003

Figure 4. Comparison between this method and SegSeq for
test samples. The figure below shows a comparison of our method’s
performance of CNVs identification and that of SegSeq’s. Figure A
shows the karyotype of chromosome 20 in single-cell sample SC 6 and
figure B shows the karyotype of part of chromosome 1 in single-cell
sample SC 7. The karyotypes were produced by our CNV identification
method (left), SegSeq (middle), and WGS (right). The color red, green,
dark gray and light gray represent deletion, duplication, N regions on
the genome, and normal regions, respectively.
doi:10.1371/journal.pone.0054236.g004
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Sample recruitment, sample processing and single cell
isolation

A total of nine single cell samples from eight individuals were

collected at BGI-Shenzhen, CITIC Xiangya Reproductive &

Genetic Hospital, and Nanjing Maternal and Child Health

Hospital, including two from PB of YH with normal karyotype,

one from PB of an individual with Down’s syndrome, one from PB

of an individual with Cri-du-Chat (CDC) Syndrome, two from PB

of an individual with 1p duplication and 20q duplication, and

three trophectoderm cell samples from blastocysts. All those

samples were karyotyped by G-banding or FISH in local hospitals

before this study.

Each participant was recruited with informed written consent

and approval of the Institutional Review Board of BGI-Shenzhen,

for those trophectoderm samples the parents were also provided

informed consent under the protocol approved by the Ethics

Committee of the CITIC Xiangya Reproductive & Genetic

Hospital. For three of the participants less than five years old,

informed written consent was obtained from their guardians. All

the potential participants or their guardian were provided with the

detailed information of this study, including the benefits and risks

of our technology development in written information consent

form, and also were informed of the rights to privacy. The results

of this study would not feedback to the participants or their

guardian; therefore all potential participants or their guardian who

declined to participate or otherwise did not participate were

eligible for treatment and were not disadvantaged in any other

way by not participating in this study.

5–10 mL of PB was collected in EDTA-coated tubes at BGI.

10 ul blood samples for single cell isolation were frozen in 220uC.

The blood was thawed and washed with 500 ul of PBS with

centrifuged at 1,000 rpm for 10 minutes at room temperature.

The supernatant was discarded, and the nucleated cells were re-

suspended in PBS.

PBS with 5% BSA was used for droplet preparation in culture

dishes. We used mouth-controlled pipettes to transfer and dilute

the nucleated cells suspension in droplets under a microscope, and

isolated a single nucleated cell into 200 ul tubes containing 1.5 ul

of alkaline lysis buffer. The tubes with single cells were frozen in

280uC until further processing.

For blastocyst biopsies, the embryos expanded trophectoderm

(TE) protruding through the opened zona on day 5 or 6 were

chosen. Three to eight herniating TE cells were aspirated into the

lumen of a pipette (internal diameter: 30 mm) and detached from

the blastocyst by firing a laser at the area of constriction. They

were then washed several times in wash buffer and preserved in

200 ul PCR tubes.

Data generation and basic process
The single cells were amplified with the GenomePlex Single

Cell Whole Genome Amplification Kit (Sigma Aldrich) according

to the manufacturer’s instructions. The cell WGA was quality

controlled by PCR with primers for housekeeping genes including

PRDX6, RPL37a, ADD1, PSMD7, and ATP5O.

In total, two YH cells (YH-1 & YH-2), one T21 cell (SC 1), one

CDC cell (SC 2), two micro-duplication cells (SC 6 & SC 7) and

three single-cells from blastocysts (SC 3, SC 4, SC 5) were qualified

for further process in this study. After WGA, the products were

used to prepare a library of 350 bp insert size, and received whole

genome sequencing in Hiseq2000 platform with single-end (SE)

50 bp. All the raw sequencing data had submitted to NCBI SRA

(http://www.ncbi.nlm.nih.gov/sra) and the Submission ID is

SRA060638.

In the basic data process, reads after WGA-adapter removal

were mapped to the reference human genome (Hg18, Build36)

using SOAP2 [25] with maximum two mismatches [2v 2].

Afterwards, we removed low quality alignments, such as PCR

duplications (i.e. the identical reads) and non-unique alignments.

SNP array and Whole genome sequencing (WGS) analysis
To evaluate the performance of our method, we used two

different methods as gold standard, SNP array for single-cell

samples and WGS for peripheral blood (PB) samples.

Van et al. reported the SNP array analysis can identify CNVs as

small as 150 kb (.5 SNPs) for single cell [29]. Therefore, it is an

appropriate gold standard to compare the accuracy of detecting

CNV larger than 1-Mb in this study. For three single-cell samples

Figure 5. Evaluation of specificity and sensitivity for this method in silico. This figure shows the correlation between CNV size (x-axis) and
specificity and sensitivity (y-axis) of this method. The color-code lines represent the sensitivity (red) and specificity (blue), respectively.
doi:10.1371/journal.pone.0054236.g005
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(sample SC3 to SC5), SNP array analysis was conducted according

to the manufacturer’s instructions. Each DNA sample was

hybridized to the Gene Chip Mapping Nsp I 262K microarray

(Affymetrix Inc., Santa Clara, CA). Approximately 260,000 SNP

signal intensities for each test samples were compared computa-

tionally with averaged signals from 30 previously evaluated normal

female reference samples. Copy number analysis was performed

by Gene Chip Genotyping Analysis Software (GTYPE) with

default parameters to minimize the noise hybrid signals.

Derek et al. showed that WGS method can achieve a sensitivity

of approximately 100% when detected CNVs larger than 200-kb

using ,10M reads [22]. Thus, we employed WGS methods as

gold standards for PB samples to detect CNV larger than 1-Mb.

The rest six PB samples, including YH and the individuals with

Down’s syndrome, Cri-du-chat syndrome and two individuals with

micro duplication syndrome, were used for DNA extraction and

whole genome sequencing analysis with 350 bp insert size library

and single-end 50 bp sequencing in Illumina HiSeq2000 platform,

generating average 10M reads for each sample. The sequencing

data was mapped into the reference genome (Hg18, Build 36.3)

and non-unique mapped reads and PCR duplication were

removed. Then, we recruited these two YH samples as controls

to perform copy number analysis for the other four samples by

SegSeq (parameters: -W 400 –a 1000 –b 10) [22,26].

Windows selection
To lessen uncertain factors caused by data volume and

characteristics of the human reference genome, such as GC

content and uniqueness, we performed an optimized dynamic

observation windows selection. First, the average size of the

windows was determined by considering the GC content that is

characteristic of the human reference genome and our low

coverage sequencing strategy. Since it had been reported that long

DNA segments (.300 kb) have relatively homogeneous GC

content [30], the average size should be less than 300 kb to

access vivid GC content distribution for observation or correction.

However, the low coverage sequencing strategy (about 10 million

reads per sample) would lay more uncertain influence in smaller

genomic regions. Therefore, we decided to divide the human

genome into non-overlapping observation windows with an

average size of about 150 kb. Second, after considering unique-

ness, we performed a simulation to obtain the dynamic

observation windows. We divided the reference genome (HG18,

Build 36) into sliding SE50 simulated reads and mapped them to

the genome with a maximum of two mismatches and reserved

unique mapped reads. When constructing these windows, we

allowed the windows to share the same simulated reads numbers

instead of the same window size to achieve higher comparability of

suitable expected sequencing reads number among windows.

Finally, we got 18,743 observation windows, each sharing 140,000

simulated reads (Figure S3).

WGA GC bias description and correction
To describe the GC bias in WGA, we defined several statistics,

including the average sequencing GC content (gs), average

reference GC content (gr) and unique mapped reads (ri,j ) in each

window. Subscript i and j represent the different windows and

samples, respectively. The windows with no reads and zero GC

percent are ignored. Let Ri,j represents the relative reads number

(RRN), which is calculated by Ri,j~ri,j=M, where M is the global

average number of sequencing reads in each window on

autosomes. The effect of GC bias on the RRN was defined as

DRGC
2, which implied the average deviation between the

observed RRN to its expected, where DRGC
2 is calculated by

the following formula: DRGC
2~1{

sL
2

s2
,s2~

1

n

Xn

i~1

(Ri{M)2,

sL
2~

1

n

Xn

i~1

(Ri{RL)2, and RL represents the optimal prediction,

which was obtained via a loess regression fit of the relative reads

number (RRN) against the GC content, rounded to the nearest

0.5% increment. [22].

Based on this discovery, we developed a weighted correction

strategy in the following way. The sequencing reads within the

window i with GC content (gs and gr) were assigned with a weight

w~M= �MM, where �MM is the average number of sequencing reads in

each window which is calculated for every 1% GC content in

sequencing data (gs) and every 1% GC content in reference

genome (gr). Then, the corrected reads number (~rri,j ) in each

window was achieved with the following formula, ~rri,j~ri,j|w.

Afterwards, we defined the correction relative reads number

(CRN, ~RRi,j~~rri,j=M ’, where M ’ is the global average CRN) as the

normalized statistics for the following analysis.

Binary segmentation algorithm for CNVs breakpoints
identification

After removing the WGA-induced bias, we developed a binary

segmentation algorithm to detect CNVs breakpoints with low

coverage massively parallel sequencing. The binary segmentation

algorithm consisted of initialization and iterative merging between

adjacent segments.

Initialization. We calculated the significance of differences

between the two sides of each window with a run-test. Moreover,

100 CRNs were employed in the left and right side of each

window for difference significance statistics and each window was

assigned a p-value. Then, the 3,000 windows with minimal p-value

were selected as ordered initialized candidate breakpoints

(B~fb1,b2,b3,:::,bng).
Iterative merging between adjacent segments. Each

breakpoint bk was associated with a left segment from bk{1 to

bk, and a right segment from bk to bkz1 [22]. We estimated the

difference between the left and right segment of each window with

a run-test, where the p-value was denoted as pk. The candidate

breakpoint with the most insignificant difference (the largest p-

value) would be removed from B, indicating that segments of the

two sides of this breakpoint were merged. The iteration calculation

was performed until the p-value of each breakpoint was less than

the final p-value cutoff (pkvpcutoff ), where we choose the final p-

value cutoff (pcutoff ) from a control by the methods described

below.

Dynamic threshold determination for final signal filtering
To minimize the false signals and misdiagnosis of CNVs, we

defined a cutoff threshold for the average CRN between two

breakpoints after segmentation. Since the regions with same

sequencing GC content had similar variation trends in WGA,

based on central-limit theorem, we calculated the lower and upper

quantile (alpha = 0.05) of CRNs with the same sequencing GC

content as the deletion and duplication cutoff threshold respec-

tively.

Evaluation of sensitivity and specificity for test samples
To assess the efficacy of this method for CNVs detection, we

calculated the sensitivity and specificity through seven test samples

in the following way:
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sensitivity~LT=LC ; specificity~LT=L,

where L represents the total length of CNVs detected by this

method, LT represents the length of true CNVs detected by this

method, and LC represents the length of CNVs confirmed by

SNP-array or whole genome sequencing analysis.

Simulations and breakpoint precision analysis in silico
To get the overall sensitivity and specificity of our method on

call level, we performed a simulation on YH genome in silico. (I)

Candidate genomics region selection. We first filtered the N regions on

YH genome. Then we randomly selected regions as candidate

regions for further CNV simulation. To mimic the influence of YH

‘‘true CNVs’’ in further simulation, we analyzed these candidate

regions using WGS data of YH PB with SegSeq and excluded

those regions overlapped with ‘‘true CNVs’’ on YH genome. The

remained candidate regions would be used to CNVs simulation.

(II) CNV simulation. We then randomly simulated CNVs ranging

from 500 kb to 5 Mb based the candidate regions above on YH-1

and YH-2. We simulated totally 100 CNVs for each size. Under

the consideration of sequence volume, we extract 10M sequence

reads from YH-1 and YH-2 respectively. RRNs on selected

regions would multiply by 0.5 (deletion) or 1.5 (duplication)

directly. Standard GC correction, binary segmentation and

dynamic threshold determination were performed to detect these

simulated CNVs. (III) Sensitivity/specificity statistics and breakpoint

precision analysis. The sensitivity and specificity were calculated by

the following formula:

sensitivity~NT=N; specificity~NT=(NTzNF ),

where N , NT , NF represent the number of simulated CNVs (100),

true signals of CNVs and false signals of CNVs, respectively. Also,

we calculated the minimum distance between the predicted and

simulated CNV breakpoints to reveal the breakpoint precision of

our method.

Supporting Information

Figure S1 Comparison between this method and SegSeq
for test samples. The figure below shows a comparison of our

method’s performance of CNVs identification and that of SegSeq’s

and the distribution of RRNs and CRNs against GC content. The

part A & B show the karyotype of part of chromosome 5 and 19

and the part C & D show the distribution of RRNs and CRNs

against GC content in single-cell sample SC 1. The part E & F

show the karyotype of part of chromosome 1 and 13 and the part

G & H show the distribution of RRNs and CRNs against GC

content in single-cell sample SC 3. The karyotypes were produced

by our CNV identification method (left), SegSeq (right). The color

red, green, dark gray and light gray represent deletion,

duplication, N regions on the genome, and normal regions,

respectively. The black dots and green triangles on right figures

show the distribution of RRNs and CRNs against GC content on

genome and false positive region (on the chromosome 19 of SC 1

and the chromosome 13 of SC 3).

(TIF)

Figure S2 Evaluation of specificity and sensitivity for
this method by simulation. This figure shows the correlation

between CNV size (x-axis), the number of observation windows

(color-code lines) and performance (y-axis) of this method.

(TIF)

Figure S3 The distribution of observation window size.
This histogram shows the distribution of observation window size

using in this study. The x-axis and y-axis represent the window size

(bp) and frequency of the same window size, respectively.

(TIF)

Table S1 Effect of GC bias on the relative reads number (RRN).

(DOC)

Acknowledgments

We sincerely thank our colleagues at the BGI-Shenzhen for sequencing.

We thank Annie Yang and Lotte Andreasen for excellent advice and revise

of the manuscript.

Author Contributions

Conceived and designed the experiments: Chunlei Zhang SC XY.

Performed the experiments: Chunlei Zhang Chunsheng Zhang XP.

Analyzed the data: Chunlei Zhang Chunsheng Zhang. Contributed

reagents/materials/analysis tools: GL YT KT ZX PH. Wrote the paper:

Chunlei Zhang Chunsheng Zhang SC XY XL FC HJ. Supplied the

direction for this study: FC HJ XX YL XZ WW.

References

1. Carlson C, Sirotkin H, Pandita R, Goldberg R, McKie J, et al. (1997) Molecular

definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients.

Am J Hum Genet 61: 620–629.

2. Ben-Shachar S, Ou Z, Shaw CA, Belmont JW, Patel MS, et al. (2008) 22q11.2

distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome

and velocardiofacial syndrome. Am J Hum Genet 82: 214–221.

3. Edelmann L, Pandita RK, Spiteri E, Funke B, Goldberg R, et al. (1999) A

common molecular basis for rearrangement disorders on chromosome 22q11.

Hum Mol Genet 8: 1157–1167.

4. Lejeune J, Lafourcade J, Berger R, Vialatte J, Boeswillwald M, et al. (1963) [3

Cases of Partial Deletion of the Short Arm of a 5 Chromosome]. C R Hebd

Seances Acad Sci 257: 3098–3102.

5. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, et al. (2010) The

landscape of somatic copy-number alteration across human cancers. Nature 463:

899–905.

6. Xu X, Hou Y, Yin X, Bao L, Tang A, et al. (2012) Single-cell exome sequencing

reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:

886–895.

7. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, et al. (2011) Tumour

evolution inferred by single-cell sequencing. Nature 472: 90–94.

8. Hou Y, Song L, Zhu P, Zhang B, Tao Y, et al. (2012) Single-cell exome

sequencing and monoclonal evolution of a JAK2-negative myeloproliferative

neoplasm. Cell 148: 873–885.

9. Dokras A, Sargent IL, Ross C, Gardner RL, Barlow DH (1990) Trophectoderm

biopsy in human blastocysts. Hum Reprod 5: 821–825.

10. Strom CM, Verlinsky Y, Milayeva S, Evsikov S, Cieslak J, et al. (1990)

Preconception genetic diagnosis of cystic fibrosis. Lancet 336: 306–307.

11. Griffin DK, Handyside AH, Penketh RJ, Winston RM, Delhanty JD (1991)

Fluorescent in-situ hybridization to interphase nuclei of human preimplantation

embryos with X and Y chromosome specific probes. Hum Reprod 6: 101–105.

12. Bianchi DW, Flint AF, Pizzimenti MF, Knoll JH, Latt SA (1990) Isolation of

fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad

Sci U S A 87: 3279–3283.

13. Huang R, Barber TA, Schmidt MA, Tompkins RG, Toner M, et al. (2008) A

microfluidics approach for the isolation of nucleated red blood cells (NRBCs)

from the peripheral blood of pregnant women. Prenat Diagn 28: 892–899.

14. Gutierrez-Mateo C, Colls P, Sanchez-Garcia J, Escudero T, Prates R, et al.

(2011) Validation of microarray comparative genomic hybridization for

comprehensive chromosome analysis of embryos. Fertil Steril 95: 953–958.

15. Bi W, Breman A, Shaw CA, Stankiewicz P, Gambin T, et al. (2012) Detection of

./ = 1 Mb microdeletions and microduplications in a single cell using custom

oligonucleotide arrays. Prenat Diagn 32: 10–20.

16. Corneveaux JJ, Kruer MC, Hu-Lince D, Ramsey KE, Zismann VL, et al. (2007)

SNP-based chromosomal copy number ascertainment following multiple

displacement whole-genome amplification. Biotechniques 42: 77–83.

Copy Number Variation Analysis for Single Cell

PLOS ONE | www.plosone.org 8 January 2013 | Volume 8 | Issue 1 | e54236



17. Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, et al. (2004) Genome coverage

and sequence fidelity of phi29 polymerase-based multiple strand displacement

whole genome amplification. Nucleic Acids Res 32: e71.

18. Arriola E, Lambros MB, Jones C, Dexter T, Mackay A, et al. (2007) Evaluation

of Phi29-based whole-genome amplification for microarray-based comparative

genomic hybridisation. Lab Invest 87: 75–83.

19. Lage JM, Leamon JH, Pejovic T, Hamann S, Lacey M, et al. (2003) Whole

genome analysis of genetic alterations in small DNA samples using hyper-

branched strand displacement amplification and array-CGH. Genome Res 13:

294–307.

20. Bredel M, Bredel C, Juric D, Kim Y, Vogel H, et al. (2005) Amplification of

whole tumor genomes and gene-by-gene mapping of genomic aberrations from

limited sources of fresh-frozen and paraffin-embedded DNA. J Mol Diagn 7:

171–182.

21. Mardis ER (2008) The impact of next-generation sequencing technology on

genetics. Trends Genet 24: 133–141.

22. Chiang DY, Getz G, Jaffe DB, O’Kelly MJ, Zhao X, et al. (2009) High-

resolution mapping of copy-number alterations with massively parallel

sequencing. Nat Methods 6: 99–103.

23. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, et al. (2009)

Personalized copy number and segmental duplication maps using next-
generation sequencing. Nat Genet 41: 1061–1067.

24. Wang J, Wang W, Li R, Li Y, Tian G, et al. (2008) The diploid genome

sequence of an Asian individual. Nature 456: 60–65.
25. Li R, Yu C, Li Y, Lam TW, Yiu SM, et al. (2009) SOAP2: an improved ultrafast

tool for short read alignment. Bioinformatics 25: 1966–1967.
26. Dan S, Chen F, Choy KW, Jiang F, Lin J, et al. (2012) Prenatal detection of

aneuploidy and imbalanced chromosomal arrangements by massively parallel

sequencing. PLoS One 7: e27835.
27. Krumm N, Sudmant PH, Ko A, O’Roak BJ, Malig M, et al. (2012) Copy

number variation detection and genotyping from exome sequence data. Genome
Res.

28. Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor
cells: approaches to isolation and characterization. J Cell Biol 192: 373–382.

29. Uum van CMJ, Stevens SJC, Dreesen JCFM, Drusedau M, Smeets HJM, et al.

(2010) Session 42: Preimplantation Genetic Diagnosis. Human Reproduction
25: i61–i63.

30. Oliver JL, Carpena P, Roman-Roldan R, Mata-Balaguer T, Mejias-Romero A,
et al. (2002) Isochore chromosome maps of the human genome. Gene 300: 117–

127.

Copy Number Variation Analysis for Single Cell

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e54236


