
Zhang et al. Journal of Cheminformatics  (2015) 7:5 
DOI 10.1186/s13321-015-0052-z
RESEARCH ARTICLE Open Access
When drug discovery meets web search: Learning
to Rank for ligand-based virtual screening
Wei Zhang1, Lijuan Ji2, Yanan Chen1, Kailin Tang1, Haiping Wang1,4, Ruixin Zhu1, Wei Jia3, Zhiwei Cao1 and Qi Liu1*
Abstract

Background: The rapid increase in the emergence of novel chemical substances presents a substantial demands
for more sophisticated computational methodologies for drug discovery. In this study, the idea of Learning to Rank
in web search was presented in drug virtual screening, which has the following unique capabilities of 1). Applicable
of identifying compounds on novel targets when there is not enough training data available for these targets, and
2). Integration of heterogeneous data when compound affinities are measured in different platforms.

Results: A standard pipeline was designed to carry out Learning to Rank in virtual screening. Six Learning to Rank
algorithms were investigated based on two public datasets collected from Binding Database and the newly-
published Community Structure-Activity Resource benchmark dataset. The results have demonstrated that Learning
to rank is an efficient computational strategy for drug virtual screening, particularly due to its novel use in cross-
target virtual screening and heterogeneous data integration.

Conclusions: To the best of our knowledge, we have introduced here the first application of Learning to Rank in
virtual screening. The experiment workflow and algorithm assessment designed in this study will provide a
standard protocol for other similar studies. All the datasets as well as the implementations of Learning to Rank
algorithms are available at http://www.tongji.edu.cn/~qiliu/lor_vs.html.
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Background
The cost of developing a new drug today is estimated to
be over several billions with around more than ten years’
efforts. While a large portion of this cost results from
the failed molecules, where the candidate chemical com-
pounds are proven to be unsuitable for further develop-
ment in preclinical and clinical testing [1]. With millions
chemical structures available in the public library
(Figure 1), more sophisticated and accurate computa-
tional screening approaches are highly demanded. Par-
ticularly, computational methods that “rank” chemical
structures based on their likelihood of clinical success
are useful for large-scale compounds screening. Such
technologies, often termed as Virtual Screening (VS)
[2,3] are used to focus on a small set of highly promising
candidates for further experimental testing, leading to
potentially huge time and cost savings.
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Generally, the task of ligand-based VS is to output a
ranking list of a set of molecules in terms of their bind-
ing affinities for a given drug target, so that the top-k
molecules can be further examined through in-vivo or
in-vitro test. The most basic technique utilized in VS is
similarity search, which can be performed by firstly set-
ting the target compound and then calculate the similar-
ity between each compound and the target one. For this
step, many different strategies of similarity measure-
ments have been developed, including Cosine Coeffi-
cient, Euclidean Distance, Soergel Distance, Dice
coefficient and Tanimoto coefficient [4]. Based on the
similarity scores, the candidate compounds will be
ranked and the top-k compounds can be selected for
further investigation. Specially, VS can also be formu-
lated as to learn a function f : Structure→ Activity (Rd →
R) based on a set of training compounds with known af-
finities for the target. The learned function can be used
to predict the label (compound affinity) for any given
molecules according to their structural features. Trad-
itionally, this function can be learned as a regression or
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Figure 1 Amount of CAS registry records of chemical substance.
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classification form, similar to the procedure of Quantitatively
Structure Activity Relationship (QSAR) study [5].
Recently, a new emerging computational strategy

called Learning to Rank (LOR) [6,7] that was firstly uti-
lized in information retrieval field especially for the web
search, has gained much attention. Web search and VS
can be treated as a similar problem, seeking an analo-
gous result where higher candidates (webs or com-
pounds) should have higher relevance to the underlying
target (query or protein). Taking this fundamental simi-
larities into consideration, LOR should be a promising
technique for solving VS problem; however, very few
studies were performed in this area.
The basic idea of LOR is to “learn” a rank function in-

stead of traditional regression or classification function
to predict the activity of candidate compounds for the
query target. We see from limited literatures where LOR
has been slightly touched on in drug discovery research.
For examples, in 2009, Anne Mai Wassermann et al. uti-
lized a Support Vector Machine (SVM)-based ranking
method to distinguish compounds [8]; in 2010, Shivani
Agarwal et al. introduced a bipartite ranking method on
a relative small set of drug affinity data [1]; in the follow-
ing year, Fabian Rathke et al. presented StructRank [9]
which has shown competitive performance with trad-
itional VS methods. Other applications of ranking in
drug discovery include drug target fishing [10], drug de-
scriptors selection [11] and chemical entity order ana-
lysis [12,13] etc. Although these works applied ranking
techniques in VS, there is no systematic and benchmark
study established for LOR in drug discovery so far, and
the current methods were not generalized to cross-
target screening. Basically, the goal of VS approaches is
to learn a general ranking function which could be used
for cross-target compound screening. It should focus on
molecules with high binding affinities to the target while
the predictive accuracy for the exact affinity labels is
only of secondary interest [9]. Noted that traditional re-
gression or classification model can also predict the dif-
ferent levels of the molecules of interest, this may not
capture the intrinsic ranking order of the molecules [9].
As an illustration, for the traditional classification-based
QSAR models, they are trained based on a set of mole-
cules with known classification labels for a given target.
It is clearly that the learned models only categorize the
molecule activity into different known groups rather
than ranking the molecule individually. For the trad-
itional regression-based QSAR models, they are gener-
ally trained to minimize the squared error-based loss
function for a given group of molecules, while equal
models in terms of their mean squared error could give
rise to completely different ranking results [9]. There-
fore, the question arises whether the detour via regres-
sion or classification is necessary and whether the task
can be addressed in a more straightforward way to dir-
ectly derive the ranking function in VS (Figure 2) [9].
Given the aforementioned consideration, we proposed in
this study the novel LOR model through learning a rank-
ing function that focuses on the ranking relationship
among all compounds rather than the exact activity or
classification of each individual compound, which is in-
herently suitable in the identification of top-k-ranked
compounds in VS.
Compared with traditional statistical learning based

VS methods, Learning to Rank has the following two
unique capabilities of (1). Applicable of extension to
screen compounds on novel targets when there is not
enough data available for these targets, and (2). Integra-
tion of heterogeneous data when compound affinities
are measured in different platforms. Here, we have de-
veloped an integrated framework, which includes (1) a
standard pipeline for LOR analysis in virtual drug



Figure 2 Different computational schemas in virtual screening.
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screening, (2) comprehensive performance assessment
for different LOR algorithms, and (3) public available
testing benchmark data. In particular, the experimental
workflow and algorithm assessments designed in this
study will provide a standard protocol for other similar
studies in drug discovery.
Results and discussion
Results of different testing strategies
LOR in VS aims to create a ranking function which could
return the input compounds with a relevance descending
order. In this study, six specific LOR models were compre-
hensively tested and compared for virtual drug screening.
They are PRank [14], RankNet [15,16]_ENREF_13, Rank-
Boost [15,17]_ENREF_15, SVMRank [18,19], AdaRank
[15,20]_ENREF_18 and ListNet [15,21]_ENREF_19, which
covers the three main categories of LOR (See Methods).
Support Vector Regression (SVR) was set as the baseline
Table 1 Curated bingding database dataset

Target Ligand number Target

ADORA3 240 EPHX2

BDKRB2 155 FBPase

CB1 680 HMGCR

CTSK 780 Itgαvβ3

CCK1 430 JAK2

CHRM1 360 KIF11

CHRM3 430 LXR-beta

TOP1 190 mTOR
VS method, and it was implemented and optimized with
LibSVM [22]. A comprehensive testing pipeline was de-
signed to compare the performance of six LOR models on
the curated molecule affinity datasets. The testing datasets
(Table 1 and 2) were collected from two public data
sources, the Binding Database (BDB) and the 2012 bench-
mark dataset published by Community Structure-Activity
Resource (CSAR). Four specific testing strategies were de-
signed to achieve a comprehensive quantitatively perform-
ance evaluation of the models from different perspectives
(See Experimental). Noted that there are various QSAR
modeling based screening techniques while essentially
they are learning based, thus only the typical SVR method
was selected for comparison. The main purpose of this
study is not to show the superiority of LOR to traditional
methods, rather to present that LOR is an alternative op-
tion in VS and has its advantages to be extended for
screening molecules on novel target as well as its utility in
data integration. In the following section we will show the
Ligand number Target Ligand number

525 MK2 405

255 MMP-8 465

165 ORL1 270

220 PDE5 955

455 EP3 205

295 SGLT2 515

355 CYP17 205

585 ASC 190



Table 2 Curated CSAR dataset

Target CDK2 CDK2-CyclinA LPXC Chk1 Erk2 Urokinase

Ligand number 25 25 - 110 52 35

Activity measurement Kd Kd - pIC50 pKi pKi

Used No No No YES YES YES

In the original CSAR dataset, LPXC has no compound affinity information, and the compound affinity associated with CDK2 and CDK2-CyclinA were measured with
Kd value, which is a rough way to measure the affinity of combination rather than the exactly activity. These three targets were not selected in the final
curated dataset.
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investigation results of different testing strategies and
make the corresponding summaries respectively.
It should be noted that in the following testing strat-

egies Normalized Discounted Cumulative Gain (NDCG)
was applied for the quantitatively comparison of differ-
ent VS methods. NDCG was originally presented in in-
formation retrieval community to quantitatively measure
the ranking results of instances based on its position in
the ranking list. Basically in the ranking performance
evaluation, we keep a grand-truth ranking list which is
the molecule ranking for a given target based on their
known efficacy. Then for different VS methods we ob-
tain different predicted ranking lists based on different
prediction models. These predicted ranking lists can be
compared to the ground-truth ranking list to evaluate
the VS performances respectively, as measured by the
value of NDCG. Detailed information to calculate
NDCG can be seen in Methods.

Strategy I
This strategy was designed to compare LOR with the
traditional SVR based VS techniques, and mimic the
scenario that for a given target, there exited compounds
with known affinities and they are trained to screen
novel compounds. In this strategy, each protein target
among the 24 curated targets from BDB and its associ-
ated compounds was treated as a task respectively. For
each task, 5-fold cross validation was performed on six
LOR models compared with SVR based method. The 5
times averaged NDCG value for each target among the
24 ones were calculated for quantitatively performance
evaluation. As a result (Figure 3, Table 3), RankBoost
and SVMRank performed the best among the six LOR
models, and they are slightly better than SVR based
method.
As a summary, SVMRank was the most efficient one

among others. The superiority of SVMRank probably
due to that such a ranking method inherits the
maximum-margin characteristics of SVM. It transfers
the ranking problem into a partial order pair classifica-
tion problem, and utilizes the maximum margin
optimization in SVM to derive the optimal ranking
order. Therefore SVMRank obtains a robust and satis-
fied performance in LOR [6,7]. This result indicates that
given proper optimization, the pair-wise based LOR
model may serve as a suitable option for VS. Compared
to traditional SVR-based VS, LOR could be served as an
alternative option and achieves the acceptable perform-
ance in VS.
Taking accuracy and efficiency into consideration,

SVMRank was selected for comparison in the following
testing. It should be noted that in the following strat-
egies, traditional SVR based method does not make
sense, since there are either no training data existed for
the specific target or the training data are combined
from different measurements.

Strategy II
This strategy was designed to investigate the perform-
ance of LOR to screen compounds on novel targets
when there is no or few ligand affinity data available for
these targets. In this case, traditional learning based VS
techniques are not suitable here, since there are no or
few available training datasets for the specific target.
Specially, for the 24 protein curated from BDB, every 23
protein targets and their associated ligands data were
combined together to act as the training dataset, and
then tested on the left one target among the 24 ones.
The testing procedure was also performed for 5 times
on the 5 random divided parts of the compounds associ-
ated with the left target, respectively. Based on this strat-
egy, the testing datasets in the strategy I and II were
made to be identical for equally comparison purpose.
The 5 times averaged NDCG value for each target
among the 24 ones were calculated for quantitatively
performance evaluation.
In this test, SVMRank performed differently for differ-

ent targets in this strategy (Figure 4). Generally, the per-
formance is not as good as that in Strategy I but it is
still acceptable, since this test was performed in a cross-
target scenario. It can be seen that SVMRank made sat-
isfied prediction on several specific targets, such as
mTOR, HMGCR, MMP-8. Nevertheless, the unsatisfac-
tory performance on other targets inspired us to investi-
gate whether selecting phylogenetically related training
target will benefit the testing results, which leads to the
next strategy.
As a summary, SVMRank can be served as an efficient

method for cross-target VS, and the performance can be
improved when much more biological and pharmaceutical



Figure 3 NDCG@10 in Strategy I.
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information are taking into considerations, as shown in
the following.

Strategy III
Compared to strategy II, in this test the training dataset
was formed as the compounds data associated with the
targets that belongs to the same family of the test pro-
tein target, to test the influence of protein phylogenetic
feature in the prediction. In this strategy, among the ori-
ginal 24 targets, PDE5 and CTSK belong to two big pro-
tein families respectively. For each of these two targets,
their remaining family members and the corresponding
compound data in BDB were selected to form the train-
ing dataset (Table 4 and 5). This strategy was designed
to check whether the training set formed from the same
protein family would benefit the screening results on
novel target under the LOR schema, since they are
phylogenetically related. The testing datasets in the strat-
egy II and III on proteins PDE5 and CTSK are made to
be identical for equally comparison purpose. The NDCG
value for the two targets PDE5 and CTSK were calcu-
lated for quantitatively performance evaluation. As
shown in Figure 5, the final predictions for these two
targets were improved substantially compared to those
in Strategy II.
As a summary, the results in this strategy supported

that, at least in our dataset, the selection of phylogenet-
ically related targets and their associated compound
affinity data in the training process may benefit the
cross-target prediction to a certain extent. Serving as an
efficient cross-target VS method, LOR still has the po-
tential to improve its performance when extended useful
information are considered.

Strategy IV
By using SVMRank, this strategy was designed to test
the performance of LOR to integrate heterogeneous data
in VS. The rationale to design this strategy is to mimic
the scenario that the compound affinity data maybe
measured in different platforms or in different affinity
criteria. For example, in the following test, the curated
CSAR dataset was used and the compound affinities for
different targets were measured in different affinity indi-
cators as pIC50 or pKi respectively. Traditional virtual



Figure 4 NDCG@10 in Strategy II.

Table 3 NDCG@10 of strategy I

AdaRank RankNet ListNet PRank RankBoost SVMRank SVR

ADORA3 0.4463 0.5885 0.5119 0.4032 0.6543 0.6446 0.6815

BDKRB2 0.5549 0.6186 0.4208 0.6242 0.5564 0.5917 0.5935

CB1 0.5913 0.4983 0.4586 0.6052 0.6993 0.7026 0.6921

CTSK 0.4225 0.3850 0.4741 0.4673 0.6545 0.5253 0.5199

CCK1 0.4122 0.5110 0.5704 0.7661 0.8523 0.7673 0.7136

CHRM1 0.1254 0.2978 0.1825 0.5366 0.6341 0.7076 0.7068

CHRM3 0.3295 0.5366 0.4880 0.7282 0.9019 0.8738 0.7277

TOP1 0.2076 0.3441 0.5005 0.6284 0.7746 0.8101 0.7387

EPHX2 0.4749 0.5997 0.5481 0.5506 0.6604 0.6102 0.5913

FBPase 0.5476 0.5420 0.5328 0.6281 0.8081 0.7810 0.7710

HMGCR 0.4078 0.5584 0.5475 0.6169 0.8089 0.7956 0.7660

Itgαvβ3 0.4168 0.3436 0.3555 0.4605 0.5837 0.5399 0.5360

JAK2 0.4208 0.3270 0.4184 0.5256 0.6804 0.6653 0.6548

KIF11 0.4682 0.4684 0.5724 0.5172 0.6912 0.7267 0.7163

LXR-beta 0.5828 0.5293 0.5009 0.6288 0.7260 0.7104 0.6899

mTOR 0.5204 0.5169 0.4038 0.6657 0.8334 0.8357 0.8517

MK2 0.5860 0.4398 0.4510 0.5909 0.7299 0.6945 0.7272

MMP-8 0.5792 0.4819 0.4843 0.5758 0.6699 0.6841 0.6815

ORL1 0.6082 0.3600 0.6024 0.6530 0.7270 0.7656 0.7430

PDE5 0.4877 0.6042 0.4628 0.5718 0.7368 0.7237 0.7117

EP3 0.4489 0.4484 0.5028 0.4054 0.6504 0.6292 0.6306

SGLT2 0.4619 0.3547 0.4285 0.5053 0.7047 0.6826 0.6843

CYP17 0.4829 0.4057 0.4001 0.4823 0.5637 0.4887 0.5231

ASC 0.4251 0.3584 0.4199 0.5630 0.6243 0.5629 0.5813

The bold number among each row indicates the best performance among all the methods in this row.
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Table 4 PDE family

PDE PDE 1a PDE 1b PDE 1c PDE 2a PDE 3a PDE 3b PDE 4a

Ligand number 8 16 46 238 157 61 530

PDE PDE 4b PDE 4c PDE 6a PDE 6c PDE 9a PDE 10 PDE 11a

Ligand number 595 93 46 6 61 553 107

Zhang et al. Journal of Cheminformatics  (2015) 7:5 Page 7 of 13
screening method cannot integrate such heterogeneous
data directly. In this dataset, the compound affinity for tar-
get Chk1 is measured in pIC50, and that for targets Erk2
and Urokinase are measured in pKi. To test the perform-
ance of LOR for these targets, every 2 targets and their as-
sociated compound affinity data were taken as training
data. The trained models were tested on the left one
respectively and the corresponding NDCG values were
calculated. It can be seen that the affinity measurement
for training data and testing data in this procedure are in-
consistent thus they are heterogeneous. As a results, per-
formance on target Chk1 and Erk2 is fairly well, but it is
unsatisfied on target Urokinase (Table 6). As it is reported
that the directly combining of target and compound fea-
ture may lead to limited biological representation meaning
[23], a different feature mapping was introduced, i.e., the
cross-term [23], which was calculated as: T147⊗C32 (the
Kronecker product of the two feature vector for target and
compound, see Feature representations of targets and
proteins in Methods), resulted into a new 4074 dimen-
sional feature vector. Such a feature representation is re-
ported to be more representative with enhanced
prediction ability in protein-ligand interaction analysis
[23]. From Table 6 it can be seen that SVMRank improved
the prediction performances on the Top-10 candidates for
all the 3 targets by using such new feature representation,
even though the training data are heterogeneous and of
limited amount. Particularly, the utility of cross-term fea-
ture mapping promoted the testing result on target
Urokinase.
As a summary, the test results indicate that LOR may

serve as a good choice for integration of various heteroge-
neous compound affinity data in VS, and the design of
proper feature mapping in LOR will also influence the final
ranking result. While the design of the efficient feature
mapping method remains an open question in this field.

Discussion on various VS methods based on multiple
target information
Basically all the traditional regression or classification
based models require that the training and testing data
are i.i.d, and they cannot handle cross-target or cross-
Table 5 Cathepsin family

CTS CTS B CTS D CTS E CTS F

Ligand number 519 847 40 28
platform data integration. Although these methods can
be directly performed, the results are not comparable
since these methods are theoretically not suitable for
cross-target or cross-platform scenario in VS. While for
LOR, it is theoretically applicable for cross-target screen-
ing for the following reasons (1). In LOR model, it
treated the target-compound pair as a whole instance. It
does not require the distribution of the training com-
pound data and testing compound data to be identical,
thus it is inherently suitable for cross-target situations,
and (2). It only considers the ranking orders of the in-
stances for a specific target rather than their exact affin-
ity values. In LOR for a specific target, especial in the
use of the pair-wise LOR, it transfers the compound af-
finity data to the pair-wise partially order pairs and
treats these new order pairs as the instances. Therefore
although the compound affinities associated with the
target may be measured in different platforms, it will
have no influence on their transferred order pairs. While
for traditional regression or classification based model it
commonly treats all the compound data associated with
different targets as a mixture dataset, thus their cross-
platform effect should be taken into considerations.
LOR can be categorized to the idea of multi-targets

based QSAR modeling for VS. Our group has previous
tested other three multiple targets based QSAR schemas
[24,25] such as multi-task learning based QSAR model-
ing [26], collaborative filtering based QSAR modeling
[27] and Proteochemometric Modeling (PCM) [28,29].
Compared to traditional VS methods, essentially all
these methods can be used to integrate multiple target
information rather than the single one. All these models
are constructed on both ligand and target similarity, and
it can be regarded as an extension of conventional
QSAR modeling to model the relationship between mul-
tiple compounds and targets simultaneously. For the
multi-task learning based QSAR modeling and collab-
orative filtering based QSAR modeling, the target infor-
mation is implicitly embedded in one computational
schema and the target descriptor is not required to be
calculated, while for LOR and PCM, they explicitly re-
quire the target information. From this point of view,
CTS G CTS H CTS L CTS S CTS Z

228 17 651 1,206 6



Figure 5 NDCG@10 of CTSK and PDE5 in Strategy II and
Strategy III.

Figure 6 Proteochemometric Modeling.
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PCM is intrinsically the most similar to LOR in QSAR
modeling among others (Figure 6). However, in theory
LOR directly aims at minimizing a ranking loss function
rather than a classification or regression loss, thus inher-
ently suitable for VS and integration of cross-platform
data.
Another important issue for LOR is the proper design

of feature function ∅( ) (See Methods). In current study
we just combine the two feature vector for protein and
compound in two sides directly to form the new feature
vector or use the cross-term feature mapping. Compared
to the directly feature combination from two sides, the
cross-term feature mapping is more efficient. Although
these two representations have their advantages of sim-
plicity while their biological meanings are waiting to be
elucidated. Another possible way to generate the feature
is to define the target-compound interaction fingerprint
as applied in our previous work [30]. Such kind of
fingerprint is biologically much more meaningful while
they are often not applicable for large-scale data since
the generation of the fingerprint is time-consuming. We
hoped that in the coming future more efficient and
meaningful feature functions can be investigated.

Experimental
Testing pipeline
A comprehensive testing pipeline was designed to com-
pare the performance of six LOR models on the curated
molecule affinity datasets. There are mainly three points
need to be addressed in this pipeline: (1). What is the
performance of LOR compared with traditional SVR
method, (2). What is the performance of LOR when it is
extended to screen compounds on novel targets if there
is no or few compound affinity data available for these
targets, and (3). What is the performance of LOR to in-
tegrate heterogeneous data in VS when the compound
affinities are measured in different platforms. The gen-
eral pipeline designed in this study is shown in Figure 7.
The brief introduction of the data and testing strategies
are presented below the figure.

Benchmark datasets generation
The testing datasets were collected from two public data
sources, the Binding Database and the 2012 benchmark
dataset published by CSAR. To make a relatively object-
ive and balanced dataset, for the BDB, protein targets
and their associated compound affinities data were se-
lected based on the following criteria: (1). Only human
protein targets are considered; (2) The redundancy of
protein targets are eliminated; (3) The protein targets
are selected to cover as many protein families as pos-
sible, and the proteins from the same family are avoid to
be selected again as much as possible once other mem-
bers in this family were selected; (4) To keep the data
balanced, only targets with non-redundant ligands rec-
ord number between 500 and 1,500 are considered; and
(5) The affinity distribution of the compounds associated
with a given target should be even. Taking pIC50 value



Table 6 NDCG@10 in strategy IV

Chk1 Erk2 Urokinase

NDCG@10 of normal feature mapping 0.6562 0.7726 0.4876

NDCG@10 of cross-term feature mapping 0.6821 0.7754 0.5967
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as the affinity measurement, normally a compound is
considered to be active if its pIC50 value is higher than
6 (pIC50 ≥ 6) [27], and inactive vise verse. The affinity
was roughly graded into 5 categories as 0 (pIC50 < 6), 1
(6 ≤ pIC50 < 7), 2 (7 ≤ pIC50 < 8), 3 (8 ≤ pIC50 < 9), 4
(9 ≤ pIC50) according to reported literatures and we re-
quired that the associated compound affinity value
should cover these 5 grades evenly. Those targets with
associated compound affinities only have 0-grade and
1-grade, or the percentage of their highest grade data is
Figure 7 Research workflow for LOR. The datasets used in this study we
rules. The compounds and targets are represented in a specific feature vec
compound-target pair as a whole is transferred to a new feature vector. Ba
VS algorithms are presented and evaluated quantitatively with NDCG@10. T
investigated in the specific test strategies.
fewer than 5% were also deleted. Based on these criteria,
finally 24 proteins associated with 9,330 compounds
were curated (Table 1). These data will be used in the
former three testing strategies in the pipeline.
The second dataset is curated from the published 2012

CSAR benchmark dataset, which includes six protein
targets and several of them have associated compound
affinity information, while measured in different stan-
dards, including pIC50 and pKi value. In this dataset,
only target Chk1, Erk2 and Urokinase with associated
re curated from Binding Database and CSAR by well-designed filtering
tor respectively. With certain feature mapping function, the
sed on four different testing strategies, the testing results on different
he color bars in the test frame indicate the corresponding algorithms



Figure 8 Illustration of training and testing in LOR.
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compound affinity data were tested in the fourth strategy
in the pipeline (Table 2).

Conclusions
In this work, a comprehensive investigation on LOR was
performed on benchmark datasets and the experiment
workflow and algorithm assessment was presented. The
results indicate that LOR, especially the pair-wise
methods like SVMRank, can be served as an alternative
option for VS compared with traditional methods. Fur-
thermore, LOR has its inherent advantages to be
extended for screening molecules of novel target as well
as its utility in data integration. For a certain novel pro-
tein target, no matter whether its associated known
ligand affinity information existed or not, LOR can
Table 7 6 LOR algorithms

Approach Algorithm Reference

Point-wise PRank [14]

Pair-wise RankNet [16]

RankBoost [17]

SVMRank [18,19]

List-wis AdaRank [20]

ListNet [21]
return a satisfied ranking result. It is also theoretically
suitable to rank the compounds based on the training
data measured in different platforms. In addition, several
future work directions on LOR would be: (1) The inte-
gration of multiple feature representations of the target
as well as the compound using other descriptors or pro-
files. The high-dimensional pharmoco-genomics infor-
mation from CMAP [31,32]_ENREF_30 and PubChem
BioAssay data [33,34] can be extensively investigated.
The multi-view learning [35] based methodology can be
investigated to integrate different representations to
present the comprehensive target and compound de-
scription and similarity calculation; (2) The transfer
learning [36] based methodology is needed in VS for the
study of “cross-target knowledge transfer” to leverage
the information of large-scale of target and compound
data.

Methods
LOR model in VS
LOR in VS aims to create a ranking function which
could return the input compounds with a relevance de-
scending affinity order for the target. Traditionally, the
similarity based ranking model in VS is constructed by
purely similarity-based or regression/classification-based



Zhang et al. Journal of Cheminformatics  (2015) 7:5 Page 11 of 13
model. In LOR framework, we often learn a ranking
function f(T,C), which is trained by minimize a ranking
loss function on a set of compound Cij (i = 1,2, …, m) for
a given set of targets (T1, T2,… Tm) [37]. Different from
the traditional machine learning model for single target,
the learned function has the generalized ability for novel
data prediction. This means that for a novel target Tm + 1

that is not seen in the previous training dataset, as long
as it can be explicitly represented in the correspondence
feature space, the system can also rank the compounds
on this target.
The specific LOR procedure is analogue to the trad-

itional training and testing procedure in QSAR model-
ing. In LOR, the training data contains given targets and
compounds. Each target is associated with a number of
compounds. While the difference between LOR and
traditional QSAR model lies that the LOR model often
involve multiple targets rather than one single target.
The relevance of the compounds with respect to the tar-
get is known, measured as the compound affinity either
in a categorical label (High, medium, low etc.) or in a
numerical value (IC50, EC50). Supposing that for a given
target Ti, (Ti, Cij) is used to represent the target and its
associated compound information, then a feature vector
xij =∅(Ti, Cij) is created for each target-compound pair
(Ti, Cij), where ∅ ( ) denotes the feature function. In the
training procedure, the aim of LOR is to train a local
ranking model f(T,C) = f(x) that can assign a ranking
score to a given target-compound pair T and C, with the
Figure 9 Three different approaches of LOR.
feature vector x representing the whole target-
compound pair [37]. In the procedure of testing, given a
novel target Tm + 1 which is not seen in the previous
screening, the ranking function f can assign scores to the
compounds. This can be achieved by taken the novel
target Tm + 1 with its associated compound Cm + 1,j as a
pair (Tm + 1, Cm + 1,j). And then the pair can also be repre-
sented in a feature vector based on the feature mapping
function xij =∅(Tm + 1, Cm + 1,j). Using the trained model
based other target pairs, the ranking position of Cm + 1,j

to Tm + 1 can be predicted, finally the molecule ranking
list for this novel target can be obtained (Figure 8).
Compared to traditional QSAR modeling, LOR is dif-

ferent in that it focus on multiple targets rather than sin-
gle target. LOR uses a bunch of targets with their
associated compounds to train a generalized prediction
model and makes prediction on the other targets
(Figure 8). Therefore LOR is suitable for the cross-target
screening. Such an extended ranking ability for the new
target cannot be achieved with the traditional classifica-
tion or regression model in VS [9].
Based on the distinct forms of input instance

organization, generally there are three different ap-
proaches to realize LOR, and can be categorized into
three types: point-wise, pair-wise and list-wise (Table 7,
Figure 9). The point-wise and pair-wise approaches
transform the ranking problem into classification, re-
gression, or ordinal classification. The list-wise approach
takes ranking lists of objects as instances in learning and



Zhang et al. Journal of Cheminformatics  (2015) 7:5 Page 12 of 13
learns the ranking model based on ranking lists. Detailed
information can be referred in the literature [38].

Feature representations of targets and proteins
As aforementioned, in LOR framework, for a given
target-compound pair (Ti, Cij) a feature vector Cij =∅
(Ti, Cij) should be defined, where ∅( ) denotes the fea-
ture function. In this study, for ligands, the widely used
General Descriptor (GD, 32 bit) is employed to represent
the ligand in a 32-dimensional feature vector. GD mea-
sures a compound through four aspects, van der Waals
surface area, log P (octanol/water), molar refractivity
and partial charge [39]. For protein targets, they
were depicted through CTD (Composition, Transition,
Distribution) feature, which represents the amino acid dis-
tribution patterns of a specific structural or physicochemi-
cal property along a protein or peptide sequence. The
protein target is represented in 147-dimension vector by
the CTD feature. In this study, GD was calculated through
the software Molecular Operating Environment (MOE, C.
C.G., Inc. Molecular Operation Environment, 2008.10;
Montreal, Quebec, Canada, 2008) and protein CTD
feature was calculated by PROFEAT [40].
After representing target and compound respectively,

the chosen of ∅( ) is important for the performance of
LOR. In strategy I, II and III, the protein feature and
compound feature were combined in two sides directly
to form the new feature vector (totally 179-dimension).
In strategy IV, the cross-term feature mapping function
was also used to generate the new feature vector for
target-compound pair representation. While the possibil-
ity of defining other forms of ∅( ) was discussed in
Results and Discussion.

Performance measurement
In order to quantitatively evaluate the VS performance
under the LOR schema, Normalized Discounted
Cumulative Gain (NDCG) was applied in evaluation.
NDCG was originally presented in information re-
trieval community to measure the ranking results of
instances based on its position in the ranking list.
Specifically, assuming �y is ideal ranking and ŷ is the
predicted ranking, for the top-k in the predicted
ranking list, NDCG [8] is calculated as following:

NDCG@k ¼ DCG@k ŷð Þ
DCG@k �yð Þ ð1Þ

DCG@k ¼
Xk

r¼1

2y rð Þ−1
log2 1þ rð Þ ð2Þ

Where y(r) is the rank label of the compound at r-th
position in the ranking list.
Noted that if the predicted ranking is exactly the same
as the ground truth, the NDCG value will be 1.0. This
measurement can be used for the evaluation of LOR re-
sults compared to traditional regression or classification
based performance measurements such as RMSE and
accuracy etc. Also we noticed that there are some other
ranking performance evaluations like ERR [41], MAP
[42] etc., while they are not intuitionistic as NDCG does.
It also be noted that in this study, only the top-10

ranking results were evaluated with NDCG value, de-
noted as NDCG@10. This is a very strict evaluation cri-
teria since the ideal ranking list can only be achieved
when the top-10 known candidates were successfully
predicted.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceived and designed the experiments: QL and WZ. Performed the
experiments: WZ, YNC, LJJ, HPW, KLT, JW., Analyzed the data: WZ, HPW and
RXZ. Wrote the paper: QL,WZ, ZWC and JW. All authors discussed the results
and commented on the manuscript. All authors have given approval to the
final version of the manuscript.

Acknowledgments
All the datasets as well as the LOR algorithm packages are available at http://
www.tongji.edu.cn/~qiliu/lor_vs.html. This work was supported by the
Young Teachers for the Doctoral Program of Ministry of Education, China
(Grant No. 20110072120048), Innovation Program of Shanghai Municipal
Education Commission (Grant No. 20002360059), the Fundamental Research
Funds for the Central Universities (Grant No. 2000219084), National Natural
Science Foundation of China (Grant No.31100956 and Grant No. 61173117),
National 863 Funding (Grant No. 2012AA020405) and Zhejiang Open
Foundation of the Most Important Subjects.

Author details
1Department of Central Laboratory, Shanghai Tenth People’s Hospital, School
of Life Sciences and Technology, Tongji University, Shanghai, China. 2Huai’an
Second People’s Hospital affiliated to Xuzhou Medical College, Huai’an,
China. 3R & D Information, AstraZeneca, Shanghai, China. 4Department of
Computer Science, Hefei University of Technology, Hefei 230009, China.

Received: 24 September 2014 Accepted: 7 January 2015

References
1. Agarwal S, Dugar D, Sengupta S. Ranking Chemical Structures for Drug

Discovery: A New Machine Learning Approach. J Chem Inf Model.
2010;50(5):716–31.

2. Shoichet BK. Virtual screening of chemical libraries. Nature. 2004;432
(7019):862–5.

3. Walters WP, Stahl MT, Murcko MA. Virtual screening–an overview. Drug
Discov Today. 1998;3(4):160–78.

4. Fechner U, Schneider G. Evaluation of Distance Metrics for Ligand‐Based
Similarity Searching. Chem BioChem. 2004;5(4):538–40.

5. Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul V. A
practical overview of quantitative structure-activity relationship. EXCLI J.
2009;8:74–88.

6. Trotman A. Learning to rank. Inf Retr. 2005;8(3):359–81.
7. Liu T-Y. Learning to rank for information retrieval. Foundations and Trends

in Information Retrieval. 2009;3(3):225–331.
8. Wassermann AM, Geppert H, Bajorath JR. Searching for target-selective

compounds using different combinations of multiclass support vector
machine ranking methods, kernel functions, and fingerprint descriptors.
J Chem Inf Model. 2009;49(3):582–92.

http://www.tongji.edu.cn/~qiliu/lor_vs.html
http://www.tongji.edu.cn/~qiliu/lor_vs.html


Zhang et al. Journal of Cheminformatics  (2015) 7:5 Page 13 of 13
9. Rathke F, Hansen K, Brefeld U, Muller KR. StructRank: A New Approach for
Ligand-Based Virtual Screening. J Chem Inf Model. 2011;51(1):83–92.

10. Wale N, Karypis G. Target Fishing for Chemical Compounds Using Target-
Ligand Activity Data and Ranking Based Methods. J Chem Inf Model.
2009;49(10):2190–201.

11. Li S, Leihong W, Xiaohui F, Yiyu C. Consensus Ranking Approach to
Understanding the Underlying Mechanism With QSAR. J Chem Inf Model.
2010;50(11):1941–8.

12. Al-Sharrah G. Ranking Using the Copeland Score: A Comparison with the
Hasse Diagram. J Chem Inf Model. 2010;50(5):785–91.

13. Lerche D, Sørensen PB, Brüggemann R. Improved Estimation of the Ranking
Probabilities in Partial Orders Using Random Linear Extensions by
Approximation of the Mutual Ranking Probability. J Chem Inf Model.
2003;43(5):1471–80.

14. Crammer K, Singer Y. Pranking with ranking. Adv Neur In. 2002;14:641–7.
15. Van Dang: RankLib [http://people.cs.umass.edu/~vdang/ranklib.html]
16. Burges CJ. From ranknet to lambdarank to lambdamart: An overview.

Learning. 2010;11:23–581.
17. Freund Y, Iyer R, Schapire RE, Singer Y. An efficient boosting algorithm for

combining preferences. J Mach Learn Res. 2004;4(6):933–69.
18. Joachims T. Optimizing search engines using clickthrough data. In

Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM; 2002: 133–142.

19. Joachims T. Training linear SVMs in linear time. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM; 2006: 217–226.

20. Xu J, Li H. Adarank: a boosting algorithm for information retrieval. In
Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, ACM; 2007: 391–398.

21. Cao Z, Qin T, Liu T-Y, Tsai M-F, Li H. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international
conference on Machine learning, ACM; 2007: 129–136.

22. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST). 2011;2(3):27.

23. Jacob L, Vert J-P. Protein-ligand interaction prediction: an improved
chemogenomics approach. Bioinformatics. 2008;24(19):2149–56.

24. Liu Q, Che D, Huang Q, Cao Z, Zhu R. Multi‐target QSAR Study in the
Analysis and Design of HIV‐1 Inhibitors. Chin J Chem. 2010;28(9):1587–92.

25. Liu Q, Zhou H, Liu L, Chen X, Zhu R, Cao Z. Multi-target QSAR modelling in
the analysis and design of HIV-HCV co-inhibitors: an in-silico study. BMC
Bioinformatics. 2011;12(1):294.

26. Liu Q, Xu Q, Zheng VW, Xue H, Cao Z, Yang Q. Multi-task learning for cross-
platform siRNA efficacy prediction: an in-silico study. BMC Bioinformatics.
2010;11(1):181.

27. Gao J, Che D, Zheng VW, Zhu R, Liu Q. Integrated QSAR study for inhibitors
of hedgehog signal pathway against multiple cell lines: a collaborative
filtering method. BMC Bioinformatics. 2012;13(1):186.

28. Gao J, Huang Q, Wu D, Zhang Q, Zhang Y, Chen T, et al. Study on human
GPCR–inhibitor interactions by proteochemometric modeling. Gene.
2013;518(1):124–31.

29. Wu D, Huang Q, Zhang Y, Zhang Q, Liu Q, Gao J, et al. Screening of
selective histone deacetylase inhibitors by proteochemometric modeling.
BMC Bioinformatics. 2012;13(1):212.

30. Shen Z, Huang Q, Kang H, Liu Q, Cao Z, Zhu R. A new fingerprint of
chemical compounds and its application for virtual drug screens. ACTA
CHIMICA SINICA. 2011;69(1):1845–50.

31. Huang S. Genomics, complexity and drug discovery: insights from Boolean
network models of cellular regulation. Pharmacogenomics. 2001;2(3):203–22.

32. Adkins DE, Åberg K, McClay JL, Bukszár J, Zhao Z, Jia P, et al. Genomewide
pharmacogenomic study of metabolic side effects to antipsychotic drugs.
Mol Psychiatry. 2011;16(3):321–32.

33. Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO, et al.
An overview of the PubChem BioAssay resource. Nucleic Acids Res. 2010;38
suppl 1:255–66.

34. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Zhou Z, et al. PubChem's
BioAssay database. Nucleic Acids Res. 2012;40(D1):D400–12.

35. Muslea I, Minton S, Knoblock CA. Active + semi-supervised learning = robust
multi-view learning. ICML. 2002;2:435–42.

36. Pan SJ, Yang Q. A survey on transfer learning. Knowledge and Data
Engineering, IEEE Transactions on. 2010;22(10):1345–59.
37. Li H. Learning to rank for information retrieval and natural language
processing. Synthesis Lectures Human Language Technol. 2011;4(1):1–113.

38. Chang K.-Y. A Survey on Learning to Rank. 2010
39. Labute P. A widely applicable set of descriptors. J Mol Graph Model. 2000;18

(4):464–77.
40. Li Z-R, Lin HH, Han L, Jiang L, Chen X, Chen YZ. PROFEAT: a web server for

computing structural and physicochemical features of proteins and
peptides from amino acid sequence. Nucleic Acids Res.
2006;34 suppl 2:32–7.

41. Chapelle O, Metlzer D, Zhang Y, Grinspan P. Expected reciprocal rank for
graded relevance. In Proceedings of the 18th ACM conference on
Information and knowledge management, ACM; 2009: 621–630.

42. Yue Y, Finley T, Radlinski F, Joachims T. A support vector method for
optimizing average precision. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in
information retrieval, ACM; 2007: 271–278.
Open access provides opportunities to our 
colleagues in other parts of the globe, by allowing 

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours     you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

http://people.cs.umass.edu/~vdang/ranklib.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Results of different testing strategies
	Strategy I
	Strategy II
	Strategy III
	Strategy IV
	Discussion on various VS methods based on multiple target information

	Experimental
	Testing pipeline
	Benchmark datasets generation

	Conclusions
	Methods
	LOR model in VS
	Feature representations of targets and proteins
	Performance measurement

	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

