
Based on these perhaps unexpected
results, Mishra and colleagues further
explored whether the distinct structural
constraints placed on Hsp90 N-terminal
domain function by GR and v-Src relate
to the requirement for Hsp90 to support
yeast viability. To accomplish this, they
assessed client activity under two condi-
tions: (i) when native amino acids in
Hsp90 were replaced with amino acids that
caused large physical changes but small
fitness defects, and (ii) when native amino
acids were replaced with amino acids that
caused small physical changes but large
fitness defects. Almost half of the N-terminal
domain mutants isolated in this panel exhib-
ited strong client-specific effects (Figure 1).
Mutants with little impact on fitness sup-
ported efficient GR activity, but many of
these same mutants were deficient in
chaperoning v-Src. Hsp90 mutants that
caused large fitness defects universally
were unable to properly chaperone v-Src,
but many retained the ability to chaperone
GR. These data suggest that GR places
relatively few constraints on Hsp90 ATPase
domain activity or sequence, while v-Src, by
contrast, appears to be much more
demanding relative to the Hsp90 clients in
yeast (still unidentified) that are necessary
for yeast viability. In fact, mutations that
severely impacted on v-Src had variable
effects on the yeast client kinase Ste11,
demonstrating that even clients of the
same class (e.g., kinases) place distinct
constraints on Hsp90 ATPase domain
function.

The involvement of many Hsp90 clients in
disease continues to provide a rationale for
pursuing Hsp90 as a drug target. However,
this endeavor is hampered by the growing
realization that current Hsp90 inhibitors are
generally not able to take advantage of the
highly variable chaperone-dependence of
the large and diverse Hsp90 clientele, mak-
ing it difficult to inhibit the maturation of
specific clients while minimally impacting
on others. By helping to further clarify the
distinct structural and functional constraints
that individual clients place on Hsp90, the
approach provided by Mishra and
564 Trends in Biochemical Sciences, July 2016, Vol. 41, N
colleagues will facilitate the possibility of
generating client-specific inhibitors of this
medically important molecular chaperone.
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Forum
Blind Evaluation of
Hybrid Protein
Structure Analysis
Methods based on
Cross-Linking
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Michael Schneider,2
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Hybrid methods combine experi-
mental data and computational
modeling to analyze protein struc-
tures that are elusive to structure
determination. To spur the devel-
opment of hybrid methods, we pro-
pose to test them in the context of
the CASP experiment and would
like to invite experimental groups
to participate in this initiative.
o. 7
Determination of protein structure is an
important prerequisite for understanding
protein function, yet it remains one of the
great scientific challenges of our time. One
question: what are the tools that we would
like to use? Light microscopes have been
used for centuries to look at cellular struc-
tures, but we have not yet been able to
develop a microscope powerful enough to
observe or film a protein structure. How-
ever, we have been able to observe pro-
tein structure by interpreting physical
measurements from X-ray diffraction,
nuclear magnetic resonance (NMR) spec-
troscopy, and electron microscopy. These
methods have provided us with most of
the more than 110 000 structures in the
Protein Data Bank (www.pdb.org) [1].

As we aim to chart the protein structural
universe more widely and in more detail,
established methods face some rough
seas and potentially crippling challenges.
Many proteins and complexes seem out of
reach for existing methods, because they
cannot be purified, are unstable, or their
nature is intrinsically dynamic [2]. So-called
‘hybrid’ methods (methods that combine
sparse and low-resolution experimental
data and also high-resolution yet sparse
structures, with computational structure
modeling methods) could have the poten-
tial to overcome some of these limitations.
The sparse, low-resolution data used in
hybrid methods are by themselves insuffi-
cient to determine protein structure. How-
ever, their combination with computational
structure modeling methods has been
shown to enable the determination of com-
plex model structures [3].

For hybrid methods to realize their poten-
tial, we must advance both the experimen-
tal methods and the corresponding
computational methods. This development
must occur in tandem so as to be able to
achieve the most effective synergies
between the strengths of both sides:
the nature of the experimental data must
determine what the most appropriate
computational methods are, and the chal-
lenges of computational methods can
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guide the development of experimental
methods.

One promising type of low-resolution
experimental data exploitable by hybrid
methods is obtained by cross-linking/
mass spectrometry. Cross-linking/mass
spectrometry is so promising because it
appears to complement existing compu-
tational approaches very well [4]. Also,
cross-linking/mass spectrometry is well
established in the structural biology lexi-
con. It has been accepted and proven (by
numerous successes) to elucidate the
architecture of large protein complexes
[5]. This has involved exogenous, homo-
bifunctional cross-linkers that predomi-
nantly link lysine residues. Nevertheless,
this robust and popular application has
been limited in terms of the extent of detail
that it reveals, which is largely a conse-
quence of using selective cross-linkers.
Solving entire structures appears to be
out of reach. However, using a promiscu-
ous and photoactivatable cross-linker
instead may provide a fundamental
change, at least for individual proteins.
We validated the combination of high-
density cross-linking data with controlled
false discovery rates (FDR) and a confor-
mational space search, because it
enabled the determination of the structure
of human serum albumin (HSA) domains
with an RMSD to the X-ray structure of up
to 2.5 Å, or 3.4 Å in the context of blood
serum [4]. The generation and conjunction
of high-density cross-linking/mass spec-
trometry data with computational struc-
ture modeling for ab initio structure
prediction is very new and, consequently,

we need to establish evaluation standards
for hybrid methods to test their ability for
structure determination on a highly rigor-
ous but even playing field. Many hybrid
approaches (and component methods)
have been developed in the context of
specific proteins and complexes and it
is often not clear whether an approach
will work for other proteins. To reach
our two goals, we are proposing to now
bring the two communities (experimental
groups and protein-modeling experts)
together in the context of the commu-
nity-wide experiment, Critical Assessment
of protein Structure Prediction (CASP)
[6–8]. We propose the use of CASP as
a platform to facilitate progress in hybrid
method development. To accomplish this
goal, we are soliciting the participation of
experimentalists to provide protein struc-
ture data for the upcoming CASP12, held
in May–August 2016.

CASP has taken place every 2 years since
1994 and provides a stringent assess-
ment platform of structure prediction
methods. The organizers release protein
sequences with known but unpublished
structures to modeling groups, who can
then test their ability to predict structures.
The predicted structures are then evalu-
ated by independent evaluation groups,
with the goal of determining the most
promising approaches and research
directions. Importantly, this experiment
is double blind to prediction groups,
who do not know the protein structures,
and evaluation groups, who do not know
the origin of the predictions. Thus, CASP
has established a rigorous assessment
needs to be questioned, tested, and
developed further.

If we are going to spark the rapid devel-
opment of both hybrid and component
methods within hybrid methods, we need
to target two important goals. First, we
need to bring the experimental and
computational communities together. This
is important to allow cross-fertilization of
ideas and to ensure that the latest devel-
opments in both fields are used. Second,
standard in the field of structure prediction
that is unmatched in many areas of sci-
ence and is considered to be one of the
hallmark accomplishments of structural
bioinformatics [9]. CASP was the platform
for demonstrating the effectiveness of
modern structure prediction methods,
such as assembly from structural frag-
ments, the detection of remote homologs,
and, most recently, the use of evolutionary
contacts [8,10,11]. This rigorous testing of
structure prediction methods spurred
Trend
their development into a technology that
is now routinely applied in protein engi-
neering and drug design [12]. CASP also
inspired similar efforts for docking of pro-
teins into complexes (CAPRI [13]) and the
automated testing of prediction servers
(CAMEO [14]).

Following 20 years of purely computa-
tional work, in 2014 (CASP11) experimen-
tal data was made available to modeling
groups to assist predictions for the first
time [15]. Cross-linking/mass spectrome-
try succeeded in providing distance con-
straints for four proteins with a turnaround
time of 2 weeks per protein. Here,
CASP11 allowed us to test the readiness
of the approach in a blind study and, at the
same time, test the current value of cross-
link data for structure prediction.

We identified between 201 and 381 unique
residue pairs at an estimated 5% FDR, for
the four proteins for which we provided
data (Figure 1). This equates to between
0.63 and 1.20 cross-links per residue,
which is comparable to that obtained in
the HSA study (0.85 links per residue at
5% FDR). Initial results of CASP11 have
suggested that improvements in ab initio
structure prediction using cross-link data
are slight [15]. Most significantly, however,
CASP11 revealed some of the current lim-
itations of cross-linking, defining areas in
which the method must develop in the
future. The observed cross-links were
spread unevenly over the sequence. In
addition, beta sheets had both a lack of
links and weak definition of observed links
over the structure. These cross-linking/
mass spectrometry methodology limita-
tions, identified during the course of
CASP11, were not specific to this experi-
ment; rather they are limitations that will be
present for the whole field. By exposing
these limitations, we hope that science is
now better able to find the necessary sol-
utions. Blind testing under the auspices of
CASP, or a similar structure, allows method
developers to clearly identify the most
promising approaches as well as areas
for future development and, perhaps more
s in Biochemical Sciences, July 2016, Vol. 41, No. 7 565
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fundamentally, allows scientists at large to
see the current maturity of the approaches
as general methods.

Call for Participation
We would like to open a call to all cross-
linking/mass spectrometry groups who are
interested in the further development of
cross-linking/mass spectrometry technol-
ogy and its ties to structure elucidation to
consider participation in the next round of
CASP. In addition, we would like to wel-
come all experimentalists who are able to
produce low-resolution data for the devel-
opment of hybrid structure determination.
This could be heralded as a stepping-stone
towards joining all experimental methods
that provide some information on protein
structures with the modeling community.
Participation of experimental groups is a
crucial element for successfully leveraging
the full potential of this initiative. We should
embrace this great opportunity to drive
development of all aspects of protein struc-
ture modeling, whether it is the develop-
ment of hybrid methods, modeling
algorithms, or experimental data provision.
We look forward to the development of
novel tools in our toolbox, and the unprec-
edented discoveries in the protein universe
that they will lead to.
For further details on how to participate in
CASP12 as an experimentalist and to sign
up, please contact: http://predictioncenter.
org/casp12/registration.cgi.
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