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Abstract 

Hypermutated proviruses, which arise in a single Human Immunodeficiency Virus (HIV) replication cycle when host antiviral APOBEC3 
proteins introduce extensive guanine to adenine mutations throughout the viral genome, persist in all people living with HIV receiving 
antiretroviral therapy (ART). However, hypermutated sequences are routinely excluded from phylogenetic trees because their extensive 
mutations complicate phylogenetic inference, and as a result, we know relatively little about their within-host evolutionary origins 
and dynamics. Using >1400 longitudinal single-genome-amplified HIV env-gp120 sequences isolated from six women over a median 
of 18 years of follow-up—including plasma HIV RNA sequences collected over a median of 9 years between seroconversion and ART 
initiation, and >500 proviruses isolated over a median of 9 years on ART—we evaluated three approaches for masking hypermutation 
in nucleotide alignments. Our goals were to (i) reconstruct phylogenies that can be used for molecular dating and (ii) phylogenetically 
infer the integration dates of hypermutated proviruses persisting during ART. Two of the approaches (stripping all positions containing 
putative APOBEC3 mutations from the alignment or replacing individual putative APOBEC3 mutations in hypermutated sequences 
with the ambiguous base R) consistently normalized tree topologies, eliminated erroneous clustering of hypermutated proviruses, and 
brought env-intact and hypermutated proviruses into comparable ranges with respect to multiple tree-based metrics. Importantly, these 
corrected trees produced integration date estimates for env-intact proviruses that were highly concordant with those from benchmark 
trees that excluded hypermutated sequences, supporting the use of these corrected trees for molecular dating. Subsequent molecular 
dating of hypermutated proviruses revealed that these sequences spanned a wide within-host age range, with the oldest ones dating 
to shortly after infection. This indicates that hypermutated proviruses, like other provirus types, begin to be seeded into the proviral 
pool immediately following infection and can persist for decades. In two of the six participants, hypermutated proviruses differed from 
env-intact ones in terms of their age distributions, suggesting that different provirus types decay at heterogeneous rates in some hosts. 
These simple approaches to reconstruct hypermutated provirus’ evolutionary histories reveal insights into their in vivo origins and 
longevity toward a more comprehensive understanding of HIV persistence during ART.
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Introduction
Antiretroviral therapy (ART) is not curative because Human 
Immunodeficiency Virus (HIV) persists as an integrated provirus 
within infected cell reservoirs (Finzi et al. 1997, 1999). Entry 
of HIV sequences into these reservoirs begins immediately fol-
lowing infection (Whitney et al. 2014, Gantner et al. 2023) and 
continues until viral suppression is achieved on ART, yielding a 
genetically diverse pool of persisting HIV sequences (Brodin et al. 
2016, Jones et al. 2018, Brooks et al. 2020, Pankau et al. 2020, Nico-
las et al. 2022, Kinloch et al. 2023). Only a minority (∼2%–5%) of 
integrated proviruses persisting on ART, however, are genetically 
intact and potentially capable of producing replication-competent 
HIV (Sanchez et al. 1997, Ho et al. 2013, Bruner et al. 2016, 
Imamichi et al. 2016). The remainder are genetically defective and 
cannot produce infectious viruses, although some can produce 
viral proteins (Imamichi et al. 2016, 2020, Pollack et al. 2017) that 
contribute to chronic immune activation and associated comor-
bidities (Deeks et al. 2013). Large deletions, which occur during the 
minus-strand synthesis step of reverse transcription, are typically 
the most common proviral defects, followed by hypermutation (Ho 
et al. 2013, Bruner et al. 2016, Hiener et al. 2017, Lee et al. 2017, 
Kinloch et al. 2023).

Hypermutated proviruses arise in a single HIV replication 
cycle when host antiviral APOBEC3 proteins catalyze widespread 
cytidine-to-uridine deamination within the minus-strand HIV 
DNA genome that is produced during reverse transcription, yield-
ing extensive guanine to adenine (G-to-A) mutations during plus-
strand synthesis (Goodenow et al. 1989, Vartanian et al. 1991, 
Fitzgibbon et al. 1993). Hypermutation is normally deleterious, 
yielding nonsense and/or missense mutations that render viral 
proteins (or regulatory genetic elements) nonfunctional, thereby 
inhibiting viral replication (Harris and Liddament 2004, Armitage 
et al. 2012, Waldron 2015). As a result, hypermutated proviruses do 
not generally yield evolutionary descendants (Sheehy et al. 2002, 
Kieffer et al. 2005). Nevertheless, hypermutated sequences read-
ily persist, typically representing 15% (though as much as >50%) 
of all proviruses during long-term ART (Ho et al. 2013, Bruner 
et al. 2016, Hiener et al. 2017, Lee et al. 2017, Kinloch et al.
2023).

Hypermutated HIV sequences pose challenges for phyloge-
netic inference. In general, trees inferred directly from sequence 
alignments containing hypermutated proviruses will inaccurately 
reflect the ancestor–descendant relationships of these sequences: 
the terminal branch lengths (TBL) of hypermutated sequences 
will typically be extended due to their large number of G-to-A 
mutations, and they will also often cluster together due to a type 
of phylogenetic error known as long-branch attraction, whereby 
divergent sequences are grouped together simply because they 
have undergone a large amount of change, not because they 
share recent ancestry (Bergsten 2005). These errors occur in part 
because phylogenetic algorithms assume that mutations gradu-
ally accumulate over generations, not all at once in a single round 
of replication (Gorbalenya 2017), and also because identical and 
widespread G-to-A mutations occurring at specific APOBEC3 tar-
get sites will cause otherwise unrelated genomes to have many 
mutations in common. Although hypermutated sequences can be 

included in phylogenies simply as a way to visualize complete 
datasets (Kearney et al. 2016, Patro et al. 2019, Halvas et al. 2020), 
such trees should not be used for formal hypothesis testing.

Because of these challenges, hypermutated sequences are typ-
ically removed from HIV alignments prior to phylogenetic infer-
ence (Brodin et al. 2016, Jones et al. 2018, 2023, Bozzi et al. 
2019, Pinzone et al. 2019, Brooks et al. 2020). However, this is a 
shame because they carry mutations from prior rounds of replica-
tion that could aid phylogenetic reconstruction by increasing the 
overall sample size and mutational depth of the sampled popu-
lation. Their routine exclusion from phylogenies also means that 
we understand relatively little about their within-host origins and 
longevity.

To address this, we used longitudinal within-host HIV env-
gp120 sequence datasets from six participants of the Women’s 
Interagency HIV Study (WIHS) (Shahid et al. 2024) to evaluate the 
ability of three simple nucleotide alignment modification strate-
gies to normalize the topologies of trees containing hypermutated 
proviruses. Using these corrected trees, we then estimated the 
integration dates of env-intact and hypermutated proviruses per-
sisting during ART, in order to better understand the within-host 
evolutionary dynamics of these different proviral types.

Results
Within-host HIV sequence datasets

We analyzed 1408 single-genome-amplified HIV env-gp120
sequences collected longitudinally from six WIHS participants 
who experienced HIV seroconversion (a seventh participant from 
the original study was not included here, as no hypermutated 
proviruses were isolated from their samples) (Shahid et al. 2024) 
(Table 1). The data included 865 distinct HIV RNA env-gp120
sequences (median 157 per participant) isolated from plasma over 
a median of 9 time points spanning a median of 7 years between 
seroconversion and ART initiation. The data also included 542 dis-
tinct env-gp120 proviral sequences, including 449 env-intact ones 
(median 62 per participant) and 93 hypermutated ones (median 
19 per participant) isolated from peripheral blood at a minimum 
of 3 time points over a median of 8.7 years during ART (Table 1). 
All participants had HIV subtype B, with no evidence of dual or 
super-infection.

Identifying hypermutation, modifying 
alignments and evaluating tree metrics
Hypermutated HIV sequences were identified using Hypermut 
2.0 (Rose and Korber 2000) (see methods for additional details). 
Between 6% and 30% of participants’ proviral sequences were 
hypermutated (although hypermutation was not observed in any 
plasma HIV RNA sequences, as expected). In a given within-host 
alignment, between 9% and 11% of env-gp120 nucleotide posi-
tions had a putative APOBEC3-driven A in at least one sequence 
(Table 2). Hypermutated proviruses harbored an overall range 
of 9–83 putative APOBEC3 mutations per env-gp120 sequence 
(representing 6%–61% of all possible target sites and 0.6%–5% of 
all env-gp120 nucleotides), with a grand median of 45 (representing 
31% of all possible target sites and 3% of all env-gp120 nucleotides). 
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Table 1. Participant information, HIV sampling, and sequencing details.

IDa

Estimated 
date of 
infection

Duration of 
uncontrolled 
infection 
(years)

No. of pre-
ART plasma 
HIV RNA time 
points

Distinct pre-
ART plasma 
HIV
env-gp120
sequences

ART ini-
tiation 
date

Years of 
ART until 
last
proviral 
sampling

No. of
on-ART 
proviral
time points

Distinct on-ART HIV
env-gp120 proviral 
sequences
(hypermutated n; %)

WIHS-P2 January 2003 9 10 227 January 2012 6.8 3 75 (22; 28%)
WIHS-P4b July 1995 10.9 9 182 June 2006 12.3 4 155 (23; 15%)
WIHS-P1 December 

1995
12 13 207 January 2008 10.3 4 85 (15; 13%)

WIHS-P3 July 2002 5.5 9 132 January 2008 8.8 3 59 (5; 8%)
WIHS-P5 March 2008 1.9 2 44 February 2010 8.7 3 74 (22; 30%)
WIHS-P6 August 2006 3.9 6 73 July 2010 8.3 4 94 (6; 6%)

aParticipants are numbered in the same order as the original manuscript (Shahid et al. 2024). That is, WIHS-P2 in the present study is Participant 2 in Shahid et al. 
2024.
bThe MWCCS database indicated that Participant 4 initiated ART in 2003, but no reductions in plasma viral load were observed until June 2006. For this reason, we 
considered June 2006 as this participant’s effective ART start date.

Table 2. Hypermutated sequence details.

ID
Hypermutated 
proviruses

Aligned HIV env-gp120
sequence length (bp)

Putative hypermutated 
nucleotide positions in the 
alignmenta

Hypermutated sites identified per 
sequence, median (range)b

WIHS-P2 22 1515 140 43 (20–68)
WIHS-P4 23 1541 176 55 (34–83)
WIHS-P1 15 1483 141 41 (10–75)
WIHS-P3 5 1486 127 40 (36–64)
WIHS-P5 22 1500 152 57 (9–78)
WIHS-P6 6 1523 122 47 (35–75)

aThe total number of nucleotide positions that harbored an A base at an APOBEC3 target site in at least one hypermutated sequence in the participant’s sequence 
alignment. These positions were stripped out of the alignment in the HM-Stripped approach.
bStatistics summarizing the overall number of A bases at APOBEC3 target sites in the participant’s hypermutated sequences. These A bases were changed to R or 
G, respectively, in the HM-Replacedw/R and HM-Replacedw/G approaches.

For context, the grand median of putative APOBEC3 mutations in 
env-intact (non-hypermutated) proviruses was 5. As described in 
the methods, we prepared five within-host env-gp120 sequence 
alignments for each participant. The first alignment, which we 
called “env-intact only”, contained all pre-ART env-gp120 plasma 
HIV RNA sequences plus the env-intact proviruses sampled dur-
ing ART (i.e., hypermutated (HM) proviruses were excluded). The 
second alignment, which we called “HM-Unaltered”, contained 
all pre-ART plasma HIV RNA sequences plus all proviruses (i.e., 
both env-intact and hypermutated) sampled during ART. The next 
three alignments used different strategies to mask hypermuta-
tion: “HM-Stripped” removed all positions in the alignment that 
harbored an A at an APOBEC3 target site in at least one hypermu-
tated sequence, “HM-Replacedw/R” replaced all individual A bases 
at APOBEC3 target sites within hypermutated sequences with R 
(denoting A or G), while the “HM-Replacedw/G” strategy replaced 
these with G. Visualizations of the HM-Unaltered, HM-Stripped 
and HM-Replacedw/R alignments are provided in Supplementary 
Figure S1.

After inferring phylogenies from these alignments, we then 
applied a variety of metrics to these trees, as described in the 
methods and in Fig. 1. These metrics allowed us to evaluate the 
extent to which the alignment modification strategies normal-
ized the position of hypermutated proviruses in the tree, and the 
overall tree topology. 

Assessing how alignment modification 
strategies normalized tree topology and metrics
Participant WIHS-P2’s dataset included 227 plasma HIV RNA env-
gp120 sequences sampled over 9 years during untreated infection 
and 75 proviruses (53 env-intact, 22 hypermutated) sampled over 
∼7 years during ART (Fig. 2a). WIHS-P2’s unmodified nucleotide 
alignment yielded a phylogeny that placed nearly all hypermu-
tated proviruses into a single clade (Fig. 2b), consistent with long-
branch attraction. Notably, this erroneous clustering was falsely 
well supported, with >50% of nodes in this clade having high 
(≥90%) bootstrap support (see larger version of this tree in Supple-
mentary Fig. S2), illustrating the pitfalls of inferring phylogenies 
directly from such alignments. Moreover, hypermutated provirus 
terminal branch lengths (TBL) in this tree were on average four 
times longer than env-intact ones (P < .0001; Fig. 2c), although their 
root-to-tip (RTT) distances were not significantly inflated (P = .2, 
Supplementary Fig. S3a). Hypermutated proviruses also exhib-
ited significantly higher evolutionary distinctiveness (ED) than 
env-intact ones in this tree (P < .0001 for both fair proportion ED 
and equal splits ED); Fig. 2d and Supplementary Fig. S4A). Also 
reflecting the erroneous clustering of hypermutated sequences 
in this tree, the median number of nodes separating hypermu-
tated sequences from one another [i.e. topological distance (TD)] 
was on average only half of that separating env-intact proviruses 
(P < .0001; Fig. 2e). A Slatkin–Maddison (SM) test also returned 
significant evidence of genetic population structure (i.e. “compart-
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mentalization”) between hypermutated and env-intact proviruses 
in this tree (three inferred migrations; estimated P = 0; Fig. 2b, 
inset), as did the Simmonds Association Index (AI; estimated P = 0; 
Supplementary Table S1).

By contrast, the tree inferred from WIHS-P2’s HM-Stripped 
alignment, in which 140 (of 1515) env-gp120 positions harbor-
ing putative APOBEC3 mutations had been removed, exhibited a 
substantially normalized topology (Fig. 2f). The same was true for 
the tree inferred from the HM-Replacedw/R alignment, where a 
median of 43 putative APOBEC3-driven A bases in hypermutated 
sequences had been replaced with R (Fig. 2g; larger trees in Sup-
plementary Fig. S2). In both trees, hypermutated proviruses were 
now comparable to env-intact ones in terms of TBLs (both P > .1; 
Fig. 2h and i), ED (all P > .1; Fig. 2j and k; Supplementary Fig. S4b 
and c), and TD (both P > .1, Fig. 2l and m). Genetic compartmen-
talization between env-intact and hypermutated proviruses was 
also markedly reduced (15 inferred migrations compared to the 
original 3 using the SM test), although the P-values computed 
using the SM and Simmonds AI tests remained statistically sig-
nificant (all P ≤ .01; Fig. 2f and g, insets, and Supplementary Fig. 
S2). Of note, RTT distances of hypermutated proviruses in these 
two trees were now shorter than those of env-intact ones (both 
P < .001; Supplementary Fig. S3b and c). In contrast, while the 
tree inferred from participant WIHS-P2’s HM-Replacedw/G align-
ment (where putative APOBEC3-driven A bases in hypermutated 
sequences were replaced with G) appeared broadly normalized, 
env-intact and hypermutated sequences remained highly signifi-
cantly compartmentalized in this tree (estimated P = 0 using the 
SM test; Supplementary Fig. S5).

As our second example, participant WIHS-P4’s dataset included 
182 plasma HIV RNA env-gp120 sequences sampled over ∼11 years 
pre-ART, and 155 proviruses (132 env-intact; 23 hypermutated) 
sampled during 12 years of ART (Fig. 3a). The unaltered align-
ment produced a phylogeny (Fig. 3b; larger tree in Supplemen-
tary Fig. S6) where hypermutated sequences exhibited signifi-
cantly inflated branch lengths, RTT distances and ED (all P < .0001; 
Fig. 3c and d, Supplementary Figs 3d and 4d), erroneous clus-
tering (P < .0001 Fig. 3e), and significant compartmentalization 
(estimated P = 0 using the SM test; Fig. 3b, inset). By contrast, 
the HM-Stripped and HM-Replacedw/R alignments produced sub-
stantially normalized trees (Fig. 3f and g, respectively; larger trees 
in Supplementary Fig. S6) with no genetic compartmentalization 
between env-intact and hypermutated sequences (22 migrations 
compared to the original 6; both P > .1; Fig. 3f and g, insets). The 
ranges of TBLs, RTT distance measurements, ED measures, and 
TDs were now also comparable between env-intact and hypermu-
tated proviruses, although the latter remained modestly yet sta-
tistically significantly different from env-intact sequences by most 
measures (P-values from .001 to .039, Fig. 3h–m; Supplementary 
Fig. S3e and f; Supplementary Fig. S4e and f). In contrast, hyper-
mutated sequences remained highly compartmentalized in the 
phylogeny inferred from WIHS-P4’s HM-Replacedw/G alignment 
(Supplementary Fig. S7).

The same analyses were applied to participants WIHS-P1, 
WIHS-P3, WIHS-P5, and WIHS-P6 (small trees and select metrics 
in Supplementary Figs S8–S11; large trees in Supplementary Figs 
S12–S15; and remaining metrics in Supplementary Figs S3 and 
S4). Broadly, the trees inferred from the HM-Stripped and HM-
Replacedw/R alignments were markedly normalized and yielded 
metric values for env-intact and hypermutated proviruses that 
spanned comparable ranges. For some participants, these met-
rics normalized such that env-intact and hypermutated viruses 

became statistically comparable (e.g. WIHS-P5; Supplemen-
tary Fig. S10). For others, hypermutated sequences remained 
somewhat distinctive (e.g. hypermutated provirus TBLs and ED 
remained slightly elevated for WIHS-P6; Supplementary Figs S4 
and S11), but in all cases, these differences were far smaller in 
magnitude than those from the trees inferred from unaltered 
alignments. Indeed, the P-values derived from comparing env-
intact and hypermutated proviruses in the HM-Stripped and HM-
Replacedw/R trees were an average >3 logs higher than those 
from the HM-Unaltered trees, with 56% of comparisons yielding 
P-values >.05 (Fig. 4).

By contrast, the HM-Replacedw/G approach did not reliably
normalize all trees. In particular, WIHS-P5’s HM-
Replacedw/G phylogeny maintained obvious clustering of hyper-
mutated sequences and very strong compartmentalization, while 
TBL, FP-ED, and TD also remained highly skewed for one or more 
participants (Fig. 4, and data not shown). As such, only the HM-
Stripped and HM-Replacedw/R trees were advanced for further 
evaluation.

Of note, for all participants, maximum likelihood (ML) 
scores for tree topologies inferred under the HM-Stripped and 
HM-Replacedw/R strategies were substantially better than the 
topologies inferred using unaltered alignments as judged by 
Shimodaira–Hasegawa tests (Supplementary Table S2).

Inferring proviral integration dates from 
corrected trees: a validation
We next investigated whether accurate evolutionary information 
can be extracted from these corrected trees, by phylogenetically 
inferring the integration dates of proviruses sampled during ART. 
Figure 5 illustrates how this is done. Briefly, we first root the phy-
logeny at the location that maximizes the correlation between 
the RTT distances of the pre-ART plasma HIV RNA sequences 
and their sampling dates (proviruses sampled during ART, though 
included in the tree, are not considered in this correlation; Fig. 5b). 
This root represents the most recent common ancestor (MRCA) 
of the dataset (i.e. the estimated founder virus). We then fit a 
linear model relating the RTT genetic distances of the pre-ART 
plasma sequences to their sampling dates (Fig. 5c). This model is 
then used to convert the RTT distance of each on-ART provirus 
into its inferred integration date (plus 95% confidence interval;
Fig. 5d).

Application of this approach to WIHS-P2’s unaltered and cor-
rected trees yielded estimated root dates that were consistent 
with the clinically estimated infection date (Table 1) and compa-
rable to the root date inferred from the benchmark (env-intact 
only) tree (Supplementary Table S3; the likely reason that the 
unaltered tree produced reasonable root dates and evolutionary 
rate estimates is that these metrics are computed from pre-
ART plasma HIV RNA sequences only). We next verified the 
extent to which the integration dates of env-intact proviruses 
inferred from the corrected trees matched those inferred from 
the benchmark tree (which, per current field standards, excluded 
hypermutated sequences entirely). Reassuringly, env-intact provi-
ral integration dates inferred from the HM-Stripped tree were 
highly concordant with those inferred from the benchmark tree 
[Spearman’s rho (ρ) = 0.95, P < .0001; Lin’s concordance correla-
tion coefficient (ρc = 0.96)], as were those inferred from the HM-
replacedw/R tree (ρ = 0.98, P < .0001; ρc = 0.97) (Fig. 6a). These 
results indicate that WIHS-P2’s corrected trees can be used 
for molecular dating, and produce valid proviral integration
dates.
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Figure 1. Tree-based metrics. (a) Hypothetical tree containing six sequences, labeled A–F, each in a unique color. Vertical dotted lines depict the 
distance scale in hypothetical units numbered below the tree. All other panels depict this same tree. (b) Colored horizontal lines trace the TBLs of 
sequences A–F, with the values also shown at the right of the tree. (c) Each sequence’s path from root to tip is traced with a unique color, where the 
sum of these lengths (representing the RTT distance) is shown at the right of the tree. (d, e) FP-ED divides the shared evolutionary history represented 
by an internal branch equally among all its descendant sequences at the tips. Here, colored lines and associated fractional branch lengths show how 
internal branch lengths are apportioned to each sequence. The sum of each sequence’s branch measurements, the FP-ED, is shown at the right of the 
tree. (e) In contrast, ES-ED assigns 50% of each internal branch length to each immediate descendant. As such, branches leading to a single 
descendant assign 50% of that branch to this descendant, whereas branches leading to multiple descendants further split the remaining 50% among 
them using this same scheme. The sum of these measurements, the ES-ED, is shown at the right of the tree. (f) The TD separating sequence A from all 
others is shown to the right of each tip, where TD is computed as the total number of nodes separating A from all others in the tree. Here, the median 
TD separating A from all others in the tree is 4.
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Figure 2. WIHS-P2 clinical history, within-host phylogenies, and tree metrics. (a) Participant WIHS-P2’s plasma viral load history and sampling timeline. 
Closed gray circles denote pre-ART plasma HIV RNA sampling. Open circles denote proviral sampling on ART (blue for env-intact proviruses and red 
for hypermutated proviruses). Gray shading denotes ART. (b) Participant WIHS-P2’s rooted ML phylogeny, inferred from all within-host env-gp120
sequences including hypermutated proviruses. Branches are colored by sequence type (pre-ART HIV RNA = gray; on-ART env-intact provirus = blue; 
on-ART hypermutated provirus = red). Inset shows the number of inferred migrations between env-intact and hypermutated sequence groups 
computed using the SM test, along with the estimated P-value. Here, P = 0 can be interpreted as P < .001, as 1000 permutations were performed. (c) TBLs 
of env-intact and hypermutated sequences in this tree. Horizontal black lines denote the median values. P-value computed using the Mann–Whitney U
test. (d) FP-ED values for env-intact and hypermutated sequences in this tree. (e) Median TDs separating env-intact and hypermutated proviruses from 
others of the same type. (f–l) Same as (b–e), but for the phylogeny inferred from an alignment where positions containing hypermutation were 
stripped out. (g–m) Same as (b–e), but for the phylogeny inferred from an alignment where hypermutated sites were replaced with R.
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Figure 3. WIHS-P4 clinical history, within-host phylogenies, and tree metrics. Legend as in Fig. 2, except for participant WIHS-P4.

We next inferred the integration dates of all proviruses 
including the hypermutated ones, from the corrected trees. 
Inferred integration dates were highly concordant between the 

two approaches, yielding ρc between 0.93 and 0.97 depending on 
whether we compared env-intact, hypermutated, or all proviruses 
(Fig. 6b). Moreover, there was no bias between the two methods 
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Figure 4. Summary of tree metrics across all participants. For each participant (each shown with a distinct symbol), the P-value derived from 
comparing env-intact and hypermutated proviruses in the tree for each of the phylogenetic metrics (each shown in a distinct color) is plotted for each 
tree type. For consistency with the other metrics, the SM estimated P-values of 0 are shown here as P < .0001. The horizontal dashed line at P = .05 
denotes the standard threshold for statistical significance.

(P = .65) (Fig. 6c). Thus, for participant WIHS-P2, both methods 
recovered proviral ages equally well. In contrast, yet not sur-
prisingly, the phylogeny inferred from the unaltered alignment 
produced hypermutated provirus integration dates that were 
poorly concordant with those from the corrected trees (HM-
Stripped ρc = 0.46; HM-Replacedw/R ρc = 0.45; Fig. 6d). This illus-
trates the pitfalls of inferring evolutionary information from the
former tree type.

We obtained similar results for WIHS-P4. Again, the integration 
dates of env-intact proviruses inferred from both corrected trees 
were highly concordant with those inferred from the benchmark 
tree (both ρc = 0.98; Fig. 7a), indicating that the corrected trees are 
appropriate for molecular dating. Moreover, proviral integration 
dates inferred from the corrected trees were highly concordant 
with one another (ρc = 0.97–0.98) (Fig. 7b) and showed no bias 
between methods (P = .25) (Fig. 7c). By contrast, the phylogeny 
inferred from the unaltered alignment produced hypermutated 
provirus integration dates that were highly discordant with those 
inferred from the corrected trees (both ρc = 0.08; Fig. 7d), again 
illustrating the pitfalls of inferring evolutionary information from 
the former tree type.

WIHS-P1, WIHS-P3, WIHS-P5, and WIHS-P6’s corrected trees 
similarly produced env-intact proviral integration dates that were 
strongly concordant with those inferred from their benchmark 
trees (ρc: 0.81–0.93), and overall proviral integration dates that 

were generally highly concordant with one another, with no 
bias between methods (Supplementary Figs S16–S19). Again, the 
phylogenies inferred from their unaltered alignments produced 
hypermutated provirus integration dates that were generally 
poorly concordant with those inferred from the corrected trees.

Together, these observations demonstrate that masking hyper-
mutation within alignments is possible and yields phylogenies 
that can be used to infer the integration dates of both hypermu-
tated and env-intact proviruses.

Longevity and dynamics of hypermutated 
proviruses persisting on ART
Having demonstrated that proviral integration dates can be 
inferred from the corrected trees, we compared the integration 
dates of env-intact and hypermutated proviruses persisting on 
ART. Again, we begin with participant WIHS-P2. Both of this 
participant’s corrected trees indicated that the hypermutated 
proviruses, like the env-intact ones, spanned essentially the entire 
duration of untreated infection, with the earliest dating to early 
2004, approximately 1 year after seroconversion, (Fig. 8a and b). On 
average, however, hypermutated proviruses were older than env-
intact ones in this participant (both trees P = .001; Fig. 8a and b). 
Longitudinal analysis further revealed that, while integration date 
distributions of env-intact proviruses remained stable during the 
first 7 years of ART (both trees P ≥ .1; Fig. 8c and d), hypermutated 
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Figure 5. Within-host phylogenetic approach to infer proviral integration dates. (a) Viral load and sampling timeline for a hypothetical participant. 
Closed gray circles denote plasma HIV RNA sampling prior to ART, while the open blue circle denotes proviral HIV DNA sampling during ART. Light 
gray shading represents ART. (b) Rooted, ML within-host phylogeny, with branches colored by sequence type (gray = pre-ART plasma HIV RNA; 
blue = on-ART proviruses). (c) HIV sequence divergence from the root over time. The blue dashed diagonal represents the linear model relating the RTT 
distances of distinct pre-ART plasma HIV RNA sequences (closed gray circles) to their sampling dates. This model is used to convert the RTT distances 
of proviral sequences sampled during ART (open blue circles) to their integration dates. Faint gray lines trace the ancestral relationships between HIV 
sequences. (d) Integration date point estimates (and 95% confidence intervals) for each distinct provirus sequence sampled during ART, sorted from 
oldest to youngest. The provirus shown at the bottom right of (c), for example, was estimated to have integrated in October 1998 and is shown at the 
bottom left of (d).

proviruses gradually shifted toward earlier integration dates over 
time (both trees P < .02; Fig. 8e and f). This was presumably because 
proviruses with more recent integration dates were preferentially 
eliminated during long-term ART.

WIHS-P4’s proviruses also spanned essentially the entire dura-
tion of untreated infection (Fig. 8g and h). In contrast to WIHS-
P2, however, the integration dates of WIHS-P4’s hypermutated 
proviruses were on average more recent than their env-intact 
ones (both trees P ≤ .02; Fig. 8g and h). As previously reported 
(Shahid et al. 2024), WIHS P4’s env-intact proviruses gradually 
shifted toward earlier integration dates over time on ART (both 
trees P ≤ .003; Fig. 8i and j), likely because those with more recent 
integration dates decayed more rapidly following ART initiation. 
In contrast, hypermutated provirus integration date distributions 
remained stable during ART (both trees P > .1; Fig. 8k and l).

WIHS-P1, WIHS-P3, WIHS-P5, and WIHS-P6’s hypermutated 
proviruses also spanned broad age ranges, but in contrast to 
WIHS-P2 and WIHS-P4, they did not differ from env-intact ones 
in terms of their overall integration date distributions (Supple-
mentary Figs S20 and S21). As reported previously, their env-intact 
proviral integration date distributions remained stable except for 
participant WIHS-P5 in whom the proviral pool shifted slightly 
toward later integration dates over time (Supplementary Figs S21c 
and d) (Shahid et al. 2024). Hypermutated proviral integration date 
distributions were also stable over time except in WIHS-P1, whose 
proviral date distributions differed markedly by visit (Supplemen-
tary Figs S20e and f). Although this could suggest dynamic changes 
over time, limited sampling must be acknowledged. Notably, the 
HM-Stripped and HM-Replacedw/R approaches produced com-
parable results except in the temporal analysis of env-intact 
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Figure 6. Inferring proviral integration dates from corrected trees: validation using WIHS-P2’s data. (a) Correlation between inferred integration dates 
of env-intact proviruses from the benchmark versus corrected trees, where the dates inferred from the HM-Stripped tree are in orange and those 
inferred from the HM-Replacedw/R tree are in teal. Spearman’s 𝜌, associated P-value, and Lin’s concordance correlation coefficient (ρc) are shown for 
each comparison. Regression lines in matching colors are also provided to help visualize these relationships. The dotted diagonal denotes a 
hypothetical perfect concordance. (b) Correlation between inferred integration dates of all proviruses from HM-Stripped versus HM-Replacedw/R 
trees, with hypermutated proviruses in red and env-intact proviruses in blue. Statistics are computed for all proviruses (black), hypermutated 
proviruses only (red), and env-intact proviruses only (blue). (c) Inferred integration dates of env-intact and hypermutated proviruses from HM-Stripped 
and HM-Replacedw/R trees, presented as paired measurements connected with matching-colored lines. P-value computed using the Wilcoxon 
matched-pairs signed-rank test. (d) Correlation between inferred integration dates of hypermutated proviruses from the HM-Unaltered and corrected 
trees (HM-Stripped tree = maroon; HM-Replacedw/R tree = gold).
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Figure 7. Inferring proviral integration dates from corrected trees: validation using WIHS-P4’s data. Legend as in Fig. 6, except for participant WIHS-P4.

proviruses for WIHS-P3, where HM-Stripped suggested a modest 
shift toward more recent integration dates over time, whereas 
HM-Replacedw/R indicated no change (Supplementary Figs
S20i and j).

Discussion
Although hypermutated proviruses persist in all people living with 
HIV (Ho et al. 2013, Bruner et al. 2016, Kinloch et al. 2023), 
we know relatively little about their within-host origins because 

their extensive mutations complicate phylogenetic inference. We 
explored three simple approaches to mask hypermutation in 
nucleotide alignments, with the dual goals of (i) reconstructing 
phylogenies that accurately reconstruct the within-host evolu-
tionary histories of hypermutated sequences and (ii) applying 
molecular dating approaches to these trees to gain insights into 
hypermutated provirus within-host origins and dynamics.

Of the approaches we evaluated, stripping nucleotide posi-
tions containing putative APOBEC3 mutations from the alignment, 
or replacing individual APOBEC3 mutations in hypermutated 
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sequences with R, consistently normalized tree topologies 
and metrics. By contrast, replacing APOBEC3 mutations in 
hypermutated sequences with G failed to consistently resolve 
their erroneous clustering in the tree. We speculate that this is 
because G replacement is an overcorrection, as not all A bases at 
target sites are necessarily due to recent APOBEC3 activity. The 
HIV genome is naturally high in A bases (Kypr and Mrazek 1987, 
Kypr et al. 1989), so some of the A bases at APOBEC target sites are 
likely inherited, not due to recent APOBEC3 activity. Given this, G 
replacement likely obscures some legitimate ancestral informa-
tion, while also making hypermutated sequences appear to share 
more G bases than they really do, leaving these sequences at con-
tinued risk of long-branch attraction in some cases. By contrast, 
replacing putative APOBEC3 mutations with R mitigates this risk 
by acknowledging this ambiguity. We therefore advise against the 
replacement of APOBEC3 mutations in hypermutated sequences 
with G.

Importantly, the integration dates of env-intact proviruses 
inferred from the HM-Stripped and HM-Replacedw/R approaches 
were highly concordant with those inferred from benchmark trees 
that excluded hypermutated sequences entirely, as is the current 
practice. The demonstration that these corrected trees provide 
valid molecular dating results is important because it provides a 
way to study the within-host evolutionary origins and dynamics 
of the genetically diverse population of hypermutated proviruses 
that persist during ART.

Proviral integration date estimates produced by the two 
approaches were highly concordant, and there was no clear dif-
ference in their performance. While the P-values derived from 
comparing the tree-based metrics of env-intact and hypermu-
tated sequences, shown in Fig. 4, are overall slightly higher for 
the HM-Replacedw/R compared to the HM-Stripped approach, we 
caution against interpreting this to mean that the former is supe-
rior. Although we applied statistical tests to guide interpretation, 
the main goal was to produce tree metric values for hypermu-
tated and env-intact sequences that were comparable in range. 
Both HM-Stripped and HM-Replacedw/R approaches achieved 
this. We did not necessarily expect that env-intact and hypermu-
tated sequence metrics would normalize completely (i.e. produce 
nonsignificant P-values) in all cases, because some evolution-
ary attributes of hypermutated sequences might plausibly differ 
from env-intact ones. As hypermutated sequences do not normally 
yield descendants for example, their closest neighbors in the tree 
might be more distant than those for env-intact proviruses, sim-
ply because of the lower likelihood of sampling a close relative 
(which, for a hypermutated sequence, could only be an ancestor). 
Differential evolutionary dynamics between hypermutated and 
env-intact proviruses could also produce differential RTT mea-
surements (and by extension integration date estimates) between 
groups, a phenomenon that was indeed observed in WIHS-P2 and 
WIHS-P4.

We therefore offer the following considerations when choos-
ing an approach. Since the HM-Replacedw/R approach retains the 
full alignment, it should also preserve more phylogenetic signal 
than the HM-Stripped approach, where an average of 9% of each 
env-gp120 alignment was removed. This could be advantageous 
for HIV regions that are relatively conserved, yet hotspots for 
APOBEC3 mutation, for example parts of pol (Kieffer et al. 2005, 
Kijak et al. 2008). However, before implementing the Replacedw/R 
approach, it is essential to verify that the chosen phylogenetic 
inference package supports ambiguous characters. IQ-TREE 2 
v2.1.3, used in the present study, assigns equal likelihood to each 
component character (Minh et al. 2020), but other packages, such 

as the approximate ML algorithm FastTree, treat all non-A/C/T/G 
characters as missing data (Price et al. 2010). We also wish to 
acknowledge that, while the approaches described herein involve 
modification of sequence alignments for general downstream 
phylogenetic analyses, probabilistic inference frameworks have 
been developed in the Bayesian Evolutionary Analysis for Sam-
pling Trees software (Drummond and Rambaut 2007) to account 
for different types of DNA damage, including APOBEC3-mediated 
hypermutation in HIV (Drummond et al. 2012) and post-mortem 
damage in ancient DNA (Rambaut et al. 2009) for downstream 
Bayesian time-calibrated phylogenetic analyses.

It is also important to recognize when sequence alignment 
modifications are warranted. Hypermutated sequences can be 
incorporated directly into phylogenies if the goal is simply to visu-
alize a complete dataset. Such trees might even be adequate for 
some limited tree-based inferences, as suggested by our find-
ing that uncorrected trees produced reasonable root dates and 
evolutionary rates, likely because these calculations only use 
information from pre-ART plasma HIV RNA sequences. Never-
theless, our finding that these uncorrected trees produce falsely 
highly supported clades, erroneously reconstruct the ancestry of 
hypermutated proviruses, and produce inaccurate (and often non-
sensical) proviral integration dates underscores why they should 
not be used to answer questions about the evolutionary history of 
hypermutated proviruses. For such questions, strategies to mask 
hypermutation should be used.

Our results also reveal insights into the evolutionary dynamics 
of defective proviruses. Even though these cannot reseed infec-
tion, studying their dynamics is still important because many can 
still produce viral proteins (Pollack et al. 2017, Imamichi et al. 
2020) that cause chronic immune activation (Deeks et al. 2013) and 
likely contribute to T-cell exhaustion during ART (Hatano et al. 
2013), which in turn could reduce the efficacy of immune-based 
reservoir elimination strategies (Pollack et al. 2017). Indeed, defec-
tive proviruses decay much more slowly than intact ones (Pinzone 
et al. 2019, Peluso et al. 2020, Gandhi et al. 2021), and differen-
tially with respect to one another, depending on their defect type 
(Pinzone et al. 2019), presumably because proviruses capable of 
HIV protein expression have a higher cumulative risk of elimi-
nation over time (Imamichi et al. 2020). Our study reveals that, 
like env-intact ones, hypermutated proviruses persisting during 
ART spanned a very wide age range that largely recapitulates 
the within-host evolution of HIV prior to ART. From WIHS-P2, 
for example, we isolated hypermutated proviruses that had inte-
grated as early as a year following seroconversion. This indicates 
that hypermutated proviruses, like other provirus types, begin to 
be seeded into the proviral pool essentially immediately following 
transmission, and can persist for decades thereafter.

Our results also revealed evidence of differential evolutionary 
dynamics of hypermutated and env-intact proviruses in two of 
the six participants studied, namely WIHS-P2, whose hypermu-
tated proviruses were on average older than env-intact ones, and 
WIHS-P4, in whom the opposite was observed. This suggests that 
the decay rates of different types of proviruses can be hetero-
geneous within a given host, as well as heterogeneous between 
hosts, adding further complexity to the challenge of HIV reservoir 
elimination.

Our study has some limitations. We analyzed the present 
dataset (Shahid et al. 2024) because it is among the most com-
prehensive of its type (in terms of sequence N, follow-up time, 
and sampling near seroconversion) and because env-gp120 is com-
monly used for within-host HIV evolutionary studies (Dapp et al. 
2017, Brooks et al. 2020). That said, participants WIHS-P3 and 
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Figure 8. WIHS-P2 and P4: integration dates of env-intact and hypermutated proviruses persisting during ART. Top: HIV plasma viral load and 
sampling history for participant WIHS-P2. (a, b) Integration dates of env-intact (blue) and hypermutated proviruses (HM; red) inferred from the 
HM-Stripped (a) and HM-Replacedw/R (b) trees. Here, all proviruses of the same type are grouped together regardless of their sampling date on ART. 
P-value derived from the Mann–Whitney U test. Horizontal black lines represent the median values. (c, d) These are the same env-intact provirus 
integration dates as shown in (a, b), but now stratified by their sampling date on ART. The P-value is from a Kruskal–Wallis test comparing all groups. 
(e–f) These are the same hypermutated provirus integration dates as shown in (a, b), but now stratified by their sampling date on ART. The large 
P-value at the top is from a Kruskal–Wallis test comparing all groups. The smaller P-values below represent the significant pairwise post-tests after 
correction for multiple comparisons. (g–l) Same as for (a–f), except for participant WIHS-P4.
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WIHS-P6 had only modest numbers of hypermutated proviruses, 
which limited our power to detect differences between these and 
env-intact proviruses in their data. Furthermore, while our pro-
posed method should be applicable to any HIV gene, we did 
not explicitly investigate this. The identification of hypermutated 
sequences, on which our method depends, is by definition imper-
fect, as it relies on a statistical cut-off and can be subtly influenced 
by the choice of reference sequence, particularly if a heterol-
ogous sequence (e.g. HXB2 HIV reference strain) is used (Rose 
and Korber 2000). As recommended, we used the most frequent 
sequence observed post-seroconversion as the reference (Rose 
and Korber 2000), although we verified that use of a different 
sequence impacted the identification of hypermutated sequences 
minimally or not at all (e.g. using an arbitrarily chosen refer-
ence sequence from WIHS-P2’s earliest time point yielded 137 out 
of 1515 nucleotide positions with putative APOBEC3 mutations, 
versus the original 140). Finally, we cannot assume that intact env-
gp120 sequences come from fully intact HIV genomes. As such, 
the comparison group for hypermutated sequences in the present 
study is not the replication-competent HIV reservoir, but rather 
the pool of proviruses with intact env-gp120 sequences, many of 
which will have defects elsewhere.

In summary, the current practice of excluding hypermutated 
proviruses from phylogenies used for hypothesis testing has lim-
ited our understanding of the in vivo evolutionary origins and 
longevity of these sequences. Here, we validated two simple 
nucleotide alignment modification approaches that allow hyper-
mutated sequences to be correctly incorporated into phyloge-
nies that can be used for molecular dating. Our observations 
reveal that hypermutated proviruses, like other provirus types, 
are archived throughout untreated infection and can persist for 
years on ART. Our results further suggest that the evolutionary 
dynamics of hypermutated proviruses may differ from those of 
other proviral types in some individuals. In addition to enriching 
our understanding of HIV persistence toward the ultimate goal 
of HIV cure, the approaches developed here could be extended 
to between-host phylogenies, and testing of other hypothe-
ses related to within-host evolutionary origins of hypermutated
sequences.

Materials and methods
Study participants and within-host HIV 
sequence datasets
We analyzed longitudinal, single-genome-amplified HIV env-
gp120 sequence datasets previously collected from six WIHS 
participants with documented HIV seroconversion (Shahid et al. 
2024). WIHS is a multi-center cohort of women living with (or with-
out) HIV in the United States (Barkan et al. 1998, Bacon et al. 2005, 
Adimora et al. 2018) that has now merged into the MACS/WIHS 
Combined Cohort Study (MWCCS) (D’Souza et al. 2021). Each 
participant’s longitudinal dataset comprised plasma HIV RNA env-
gp120 sequences collected between seroconversion and ART ini-
tiation, along with env-gp120 proviral sequences sampled during 
ART (Shahid et al. 2024) (Table 1). All sequences were collected by 
single-genome amplification, where those with nucleotide mix-
tures, defects (e.g. deletions causing frameshifts), or evidence of 
within-host recombination (identified using RDP4 v4.101; Martin 
et al. 2015) were excluded (Shahid et al. 2024). Sequences that 
were 100% identical in env-gp120 were collapsed to a single rep-
resentative sequence prior to phylogenetic inference. Within-host 
datasets comprised a median of 242 (interquartile range 119–337) 
distinct sequences per participant.

Ethics statement
Institutional review boards at each WIHS clinical research site 
approved the study protocol. All participants provided writ-
ten informed consent. This nested substudy was additionally 
approved by the institutional review boards at Providence Health 
Care/University of British Columbia and Simon Fraser University.

Identification of hypermutated sequences and 
sequence alignment modification
Hypermutated HIV sequences were identified using Hyper-
mut 2.0, available at https://www.hiv.lanl.gov/content/sequence/
HYPERMUT/hypermut.html (Rose and Korber 2000). This program 
takes a nucleotide alignment as input, where the first sequence 
is used as a reference to which all others are compared. As rec-
ommended for within-host datasets (Rose and Korber 2000), we 
chose the most frequently observed env-gp120 sequence from the 
first plasma HIV RNA sampling timepoint as the reference wher-
ever possible. Hypermut defines APOBEC3 target sites as GGGGGGGGGGGGGGGGGRD; that 
is, a GGGGGGGGGGGGGGGGG followed by either A or G (denoted by the IUPAC code R; 
Cornish-Bowden 1985) and then followed by A, G, or T (denoted by 
D), where the bold and underlined GGGGGGGGGGGGGGGGG is the APOBEC3 target site. 
Non-APOBEC3 target sites are defined as GGGGGGGGGGGGGGGGGY (where Y denotes C 
or T) or GGGGGGGGGGGGGGGGGRC. Hypermut identifies all target and nontarget sites 
within each sequence and categorizes each as mutated (i.e. har-
boring an A) or not (i.e. harboring a C, G, or T). The program then 
compares the proportion of mutated target and nontarget sites 
in each sequence using Fisher’s exact test. Sequences enriched 
in G-to-A mutations at target sites with P < .05 are identified as 
hypermutated.

We then prepared five within-host env-gp120 sequence align-
ments for each participant, where the first two were controls and 
the last three used different strategies to mask hypermutation. 
Sequence alignments were performed in a codon-aware manner 
using Multiple Alignment Using Fast Fourier Transform (MAFFT) 
v7.471 (Katoh and Standley 2013) and manually inspected in 
AliView v1.26 (Larsson 2014). The first alignment contained all pre-
ART env-gp120 plasma HIV RNA sequences plus only the env-intact 
proviruses sampled during ART (i.e. hypermutated proviruses 
were excluded, as is the current practice in the field; Jones et al. 
2018, 2020, Brooks et al. 2020, Kinloch et al. 2023). We called 
this the “env-intact only” alignment, where the resulting phy-
logeny was used as the benchmark for provirus molecular dat-
ing. The second alignment contained all pre-ART plasma HIV 
RNA sequences plus all (i.e. both env-intact and hypermutated) 
proviruses sampled during ART. The phylogeny inferred from this 
“HM-Unaltered” alignment served to illustrate the skewed topolo-
gies of resulting trees. The next three alignments were modifica-
tions of this second one, where we tested different strategies to 
mask hypermutation and thereby normalize topology. The first 
strategy, HM-Stripped, removed all nucleotide positions that har-
bored an A at an APOBEC3 target site in at least one hypermu-
tated sequence, yielding a shorter overall alignment. The sec-
ond strategy, HM-Replacedw/R, individually replaced all A bases 
at APOBEC3 target sites within hypermutated sequences with R 
(denoting A or G). The third strategy, HM-Replacedw/G, individ-
ually replaced all A bases at APOBEC3 target sites within hyper-
mutated sequences with G. Both these strategies preserved the 
alignment length. Here, replacing with G assumes that all A bases 
at target sites are the result of APOBEC3 effects, whereas replacing 
with R recognizes the possibility that some of these A bases may be 
inherited. Visualizations of the HM-Unaltered, HM-Stripped, and 
HM-Replacedw/R alignments are provided in Supplementary Fig. 

https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html
https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html
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S1. Phylogenies inferred from these alignments were evaluated as 
described in the next section.

Within-host phylogenetic inference, rooting,
and tree metrics
ML phylogenies were inferred from sequence alignments following 
automated model selection using an Akaike information criterion 
(AIC) in IQ-TREE 2. Best-fit models are reported in Supplementary 
Table S3. Branch support values were derived using the ultrafast 
bootstrap option (1000 bootstraps) (Hoang et al. 2018, Minh et al. 
2020). Phylogenies were visualized using the R package ggtree (Yu 
2020).

Most of our downstream analyses required rooting the tree at 
the inferred MRCA of the dataset. As previously described, we 
used a modified RTT regression approach where we explored all 
positions in the tree to identify the location that maximized the 
(Pearson’s) correlation between the RTT distances of all plasma 
HIV RNA sequences collected prior to ART initiation and their 
sampling dates (Jones et al. 2018). This location was set as the tree 
root, which represents the estimated transmitted/founder virus, 
or a close descendant thereof, in these datasets.

To evaluate the extent to which the three alignment mod-
ification strategies normalized the position of hypermutated 
proviruses in the tree, we compared env-intact and hypermutated 
proviruses with respect to various tree-based metrics, explained 
in Fig. 1. We quantified each sequence’s terminal branch length 
(TBL), which is the length of the branch connecting each sequence 
to the tree, in estimated substitutions per nucleotide site (Fig. 1b). 
We computed each sequence’s root-to-tip (RTT) distance, defined 
as the total distance between each tip and the tree root (Fig. 1c). 
We computed two measures of evolutionary distinctiveness: fair 
proportion evolutionary distinctiveness (FP-ED) and equal splits 
evolutionary distinctiveness (ES-ED), both of which distribute the 
RTT distances in a tree among the descendant sequences at 
the tips (Pavoine et al. 2017). FP-ED does this by dividing the 
shared evolutionary history represented by an internal branch 
equally among all its descendant tips, regardless of branching 
order (Isaac et al. 2007, Redding et al. 2014) (Fig. 1d), whereas 
ES-ED assigns a longer portion of shared internal branches to 
immediate descendants (Redding and Mooers 2006) (Fig. 1e). FP-ED 
and ES-ED were computed using a custom R script with package 
picante (v1.8.2) (Kembel et al. 2010). We computed each provi-
ral sequence’s median topological distance (TD) from all other 
sequences of the same type (i.e. env-intact or hypermutated), 
where distance was defined as the number of nodes separat-
ing each pair (Fig. 1f). We used the Slatkin Maddison (SM) test 
(Slatkin and Maddison 1989), implemented using the R pack-
age “slatkin.maddison” (v0.1.0; https://github.com/prmac/slatkin.
maddison) to assess the extent to which env-intact and hyper-
mutated proviruses displayed population structure in the tree. 
This test determines the minimum number of migrations between 
groups to explain the distribution of groups at the tree tips: the 
smaller the number, the stronger the support for population struc-
ture. Statistical support is based on the number of migrations 
that would be expected in a randomly structured population, sim-
ulated by permuting group labels between tips. Note that SM 
returns an estimated P-value, where a value of 0 can be interpreted 
as P < .001, as 1000 permutations were performed. Finally, as the 
SM test can sometimes produce statistically significant P-values 
for larger datasets that have only minimal levels of compartmen-
talization (Council et al. 2020, Sarkar et al. 2023), we also applied 
the Simmonds Association Index (AI) (Wang et al. 2001), imple-
mented in BaTSv0.9 (Parker et al. 2008). The Simmonds AI assesses 

the degree of population structure by calculating the composition 
of descendant sequences in each successive node in the tree and 
summing these in a weighted manner (where nodes closer to the 
root receive less weight) to generate an overall association value 
(Wang et al. 2001). The AI represents the ratio of the mean associ-
ation value calculated from 100 bootstrap replicates of the data, 
and the mean of 10 control trees with randomly permuted tip 
labels, where smaller ratios indicate a higher degree of compart-
mentalization. Finally, we used Shimodaira–Hasegawa tests, as 
implemented in PAUP* (*Phylogenetic Analysis Using PAUP) (Swof-
ford 2002), to compare the likelihood of tree topologies inferred 
under the different hypermutation repair strategies with those 
inferred using unaltered alignments.

Within-host phylogenetic inference and proviral 
dating
We inferred the integration dates of env-intact and hypermutated 
proviruses persisting during ART using a published phylogenetic 
approach (Jones et al. 2018). Using the rooted trees, we fit a lin-
ear model relating the RTT distances of pre-ART plasma HIV 
sequences to their collection dates (i.e. proviral sequences were 
not considered when determining the root). The slope of this line 
represents the average within-host env-gp120 evolutionary rate 
during untreated HIV infection, and the x-intercept represents the 
inferred root date. Model quality was assessed by comparing the 
model’s AIC to that of a null model with zero slope. To pass quality 
control, the linear model needed to have an AIC value of at least 10 
units lower than the null model (ΔAIC ≥ 10) and a root date prior 
to the first plasma sampling. All phylogenies met these criteria 
(Supplementary Table S3). We then used the linear model to con-
vert proviral RTT distances to their integration dates. The custom 
R script for this method is available at https://github.com/cfe-lab/
phylodating.

Statistical analysis
Spearman’s correlation (ρ) and Lin’s concordance correlation coef-
ficient (ρc) were calculated in R. All other statistical analyses were 
performed in Prism, v10.0.2 (GraphPad Software). A threshold of 
P < .05 was used to denote statistical significance.
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