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ABSTRACT
Modern rice production systems need a reliable, easy-to-use, efficient, and
environmentally-friendly method to determine plant nitrogen (N) status , predict grain
yield, and optimize N management. We conducted field experiments to determine the
influence of different N rates on Soil Plant Analysis Development (SPAD) readings
of rice leaves. We also performed field validations to evaluate the grain yield and
N use efficiency under recommended N rates. Our results showed that leaf SPAD
readings increased as N rates increased. We applied the recommended N based on the
relationships between the N rates and leaf SPAD readings at the tillering and booting
stages. The recommended N decreased N rates and improved N use efficiency without
sacrificing grain yield. When compared to farmer practices (FP), the recommended N
rates of optimization (OPT) decreased by 5.8% and 10.0%, respectively. In comparison
with FP, theN agronomic efficiency of OPT increased by 5.8 and 10.0%while the partial
factor productivity of N increased by 6.0 and 14.2%, respectively. The SPADmeter may
be a reliable tool to analyze the N in rice, estimate real-timeN fertilization, and improve
N use efficiency.

Subjects Agricultural Science, Plant Science
Keywords SPAD reading, Nitrogen diagnosis, Non-destructive, Chlorophyll, Leaf greenness

INTRODUCTION
Rice (Oryza sativa L.) is one of the most important cereal crops and food sources in the
world. Rice yields must be increased in order to meet the food demands of ever-growing
populations (Guo et al., 2019) and synthetic fertilizers, particularly nitrogen (N), play
a vital role in improving rice yields. N is arguably the most important limiting factor,
aside from water, for rice production. Global rice yield significantly increased with rising
N rates. In current agricultural systems, most farmers apply N in excess relative to the
actual crop’s needs to harvest more grain. This practice leads to low N use efficiency due
to high N losses through runoff, denitrification, leaching, volatilization, and a high risk
of environmental contamination (Zeng et al., 2012; Liu et al., 2013; Bodirsky et al., 2014;
Xiong et al., 2015). The average N use in China’s rice production has been reported to be
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significantly higher than the global average (Chen, Huang & Tang, 2011). It is imperative
to optimize N fertilizer use to prevent damage to crops and the environment, improve N
use efficiency, andmaintain production system sustainability. The use of controlled-release
N fertilizers, nitrification inhibitors, and deep conventional urea placement are methods
that have been tested to prevent N losses and improve N use efficiency. N fertilizer may be
reduced by 12–50% without sacrificing grain yield (Qiao et al., 2012; Wang et al., 2012).

It is important to accurately measure leaf N content because it plays a crucial role in
the growth and development of rice. Chemical analysis of leaf N content has been used
to monitor N status and estimate the demand for N fertilizer (Ziadi et al., 2008; Tian et
al., 2011). The current method is destructive and time-consuming so finding an indirect
method to measure leaf N content is of great importance (Uddling et al., 2007; Yuan et
al., 2016). Leaf N content is strongly correlated with chlorophyll content (Wang et al.,
2014; Yang et al., 2014; Kalaji et al., 2017), thus leaves’ spectral characteristics may be used
to guide N fertilizer use. Soil Plant Analysis Development (SPAD) readings can be used
to assess the in situ leaf N status based on light transmitted through leaves. The use of
SPAD readings to monitor rice N status has been used to improve grain yield and N use
efficiency over the past two decades (Khurana et al., 2007;Huang et al., 2008; Li et al., 2009;
Hou et al., 2020). Available N affects the chlorophyll content of the leaf, as N is one of
the key elements of chlorophyll. Errecart et al. (2012) observed a close correlation between
chlorophyll content and leaf N concentration. SPAD may reflect the plant leaves’ N status
and is simple, quick, reliable, and harmless (Li et al., 2009; Xiong et al., 2015; Akhter et al.,
2016; Yuan et al., 2016). There has been a significant correlation between SPAD readings
for dry mass leaves’ N content and grain yield (Ramesh et al., 2002; Parvizi et al., 2004),
indicating that SPAD readings may help determine optimum N application rates.

We sought to: (1) estimate the relationship between leaf SPAD readings and
recommendedN rates; (2) investigate the yield effects andN use efficiency of recommended
N rates based on leaf SPAD readings.

MATERIALS AND METHODS
Experimental site
We conducted two field experiments and two verification experiments (45.09◦N, 124.92◦E;
45.13◦N, 124.89◦E) in 2008 and 2009 involving different N rates in the Songyuan, Jilin
Province, which is one of the major regions for japonica rice production in China. Both
testing sites had black soils. The physicochemical properties of the experimental soils were
pH 8.3 and pH 7.2 (soil: water = 1: 2.5), organic matter content 12.6 g kg−1 and 18.7 g
kg−1, total N 1.4 g kg−1 and 2.1 g kg−1, Olsen-P 12.2 mg kg−1 and 9.0 mg kg−1, and readily
available K 98.4 mg kg−1 and 49.0 mg kg−1, respectively.

Weather parameters
Songyuan has a mid-temperate continental monsoon climate. The annual average
temperature, annual average sunshine, frost-free period, and annual precipitation in
the rice-growing seasons were 5.1 ◦C, 2,878 h, 140 days, and 450 mm, respectively. Figure 1
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Figure 1 Temperature and precipitation during the rice-growing stage.
Full-size DOI: 10.7717/peerj.12107/fig-1

shows the daily temperature and precipitation during the rice-growing season. The total
precipitation during the rice-growing season was 387 and 218 mm in each field.

Experimental design and managements
In 2008, we conducted two field trials using seven nitrogen (N) rates (0, 45, 90, 135, 180,
225, and 270 kg N ha−1) in two different fields in the same location. We used the same
planting pattern in both fields. We then used a randomized complete block design with
three replicates. Nitrogen (N), phosphorus (P), and potassium (K) were applied as urea
(46% N), superphosphate (12%, P2O5), and potassium chloride (60% K2O), respectively.
Nitrogen was applied in three doses: 1/2 dose in the form of basal fertilizer 1 day before
transplanting, 1/4 dose in the first topdressing 7 days after transplanting, and 1/4 dose
as the second top dressing at the panicle initiation stage. Demonstrative experiments
were conducted in 2009 close to where we experimented with different N rates. The two
demonstration experiments were comprised of three treatments: zero N (CK), farmer
practice (FP, 180 kg N ha−1), and optimization (OPT, N rate was recommended based on
leaf SPAD readings).

Phosphorous was applied at a uniform rate of 90 kg P2O5 ha−1 in each experimental
plot as a basal dressing one day before transplanting. We applied 90 kg K2O ha−1 in each
experimental plot: 70% was applied as a basal dressing 1 day before transplanting; 30%
was applied as a top dressing at the panicle initiation stage. The fertilizers were distributed
to each plot and then mixed evenly by a rake. Each plot measured 30 m2 (6 m ×5 m).

We used the hybrid rice Jigeng 88 with a growth period of 145 days in these experiments.
This rice variety is widely planted in the Northeast China Plain basin. Seedlings were raised
in a seedbed. Seeds were sown on May 3rd and May 22nd, and seedlings were transplanted
on June 3rd and June 29th in 2008 and 2009, respectively, at the four-leaf-stage. We planted
a single plant per hill; hills were spaced 30 cm ×20 cm and followed the local agricultural
technology department’s recommended practices. Rice seeds and plants were treated with
the same fungicides, insecticides, and herbicides to avoid yield losses. We irrigated and
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performed other agronomic practices according to high-yield and standard protocols
(Zhang et al., 2009).

Soil sample collection and analysis
Surface soil (0–20 cm) samples were randomly collected with a drag-type drill from
five points in the experimental field two days before transplanting on a sunny day. The
composite soil samples were air-dried, ground, and passed through one mm and 0.149
mm sieves to determine soil physicochemical characteristics. The soil pH, organic matter,
total N, available P, and exchangeable K were determined following Bao (2000)’s method.

SPAD reading
A total of six plants placed in the center of each plot were marked after transplanting. A
chlorophyll meter (Soil Plant Analysis Development, SPAD-502) was used for taking the
SPAD reading measurements of the uppermost fully expanded leaves at the tillering stage,
jointing stage, booting stage, heading stage, flowering stage, and filling stage. Three SPAD
readings per leaf were taken around the midpoint and again 30 mm away on both sides
of the midpoint. Each plot’s SPAD reading was determined by taking the average of 18
readings (Peng et al., 1993).

Plant harvest
Plants were harvested on September 15th and October 1st in two consecutive years. Each
plot’s grain yield was determined from the 15 m2 area by measuring from the center of
each plot and was adjusted to 14% moisture.

Calculations
Nitrogen use efficiency was expressed in terms of N agronomic efficiency (NAE) and partial
factor productivity of N (PFPN), which were calculated as follows (Jian et al., 2014):

NAE (kg kg−1) = (grain yield of N-fertilized plot - grain yield of zero-N plot) / applied
N rate.

PFPN (kg kg−1) = grain yield of N-fertilized plot / applied N rate.

Statistical analysis
All figures were drawn using Origin 8.0 software (Origin Lab, Massachusetts, USA).
The means were separated using one-way analysis of variance with a Tukey test at a 5%
probability level using SPSS 17.0 software (SPSS Inc., Chicago, USA).

RESULTS
Effects of N rates on leaf SPAD readings
The leaf SPAD readings first increased and then decreased during the reproductive period
(Fig. 2). Higher N rates significantly increased the leaf SPAD readings. The N0 treatment
resulted in the lowest leaf SPAD readings, while N270 showed the highest leaf SPAD
readings in both years. In 2008, N270 leaf SPAD readings increased by 31.5–42.8% in
experiment 1 and by 27.2–56.2% in experiment 2 when compared with N0.
There was a significant positive linear relationship between N rates and leaf SPAD readings
at the tillering and booting stages in both experiments (Fig. 3). The following linear
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Figure 2 Temperature and precipitation during the rice-growing stage.
Full-size DOI: 10.7717/peerj.12107/fig-2
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Figure 3 Relationships between N rates with SPAD at tillering (A and B) and booting stage (C and D).
Full-size DOI: 10.7717/peerj.12107/fig-3

correlations were found between N rates and leaf SPAD readings at the tillering stages in
experiments 1 and 2, respectively:
Y = 0.0833X+30.4 (a)
Y = 0.1006X+29.8 (b)

The following linear correlations were found between the N rates and leaf SPAD readings
at the booting stages in experiments 1 and 2, respectively:

Y = 0.0568X+30.5 (c)
Y = 0.0480X + 30.8 (d)

Grain yield
The grain yield quickly responded to N rates in both experiments (Fig. 4). An increase in N
rates significantly improved the grain yield relative to the N0 treatment. However, further
increases in N rates caused significantly different yield responses. The grain yield decreased
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Figure 4 (A–B) Effects of different N rates on grain yield of rice.
Full-size DOI: 10.7717/peerj.12107/fig-4

when the N rate was higher than 235 kg ha−1 in experiment 1 (Fig. 4A). The relationship
between the N rates and grain yield was unitary conic. In contrast, the grain yield increased
with an increase in N rates and then became stagnant as the N rate rose beyond 195 kg
ha−1 in experiment 2 (Fig. 4B).

Recommended N rates at the tillering and booting stages
The recommended N rates at the tillering and booting stages based on leaf SPAD readings
are shown in Tables 1 and 2, respectively. The N supply increased the leaf SPAD readings
in experiments 1 and 2 by 21.3% and 22.7% at the tillering stage, and by 27.1% and 13.6%
at booting stage, respectively, compared with CK. The optimum N rate was 235 kg ha−1 in
experiment 1 and 195 kg ha−1 in experiment 2 in 2008 based on the relationship between
N rates and grain yield (Fig. 4). Basal dosages in the OPT treatments were based on the
N usage mode; in experiment 1 the dosage was 78 kg N ha−1, in experiment 2 the dosage
was 65 kg N ha−1, and in the FP treatments the dosage was 90 kg N ha−1. At the tillering
stage, the leaf SPAD readings in the OPT treatments were 33.0 in experiment 1 and 32.6
in experiment 2, respectively. The optimum leaf SPAD readings at the tillering stage in
experiments 1 and 2 were 36.9 and 36.3, respectively. These findings were based on the
relationship between the N rates and leaf SPAD readings at the tillering stage (Fig. 3A & b).
N rate supply in experiments 1 and 2 were determined to be 12.0 kg ha−1 and 9.7 kg ha−1,
respectively, for the unit increase in leaf SPAD readings. The recommended N rates at the
tillering stage in experiment 1 and 2 were 46.8 and 35.9 kg ha−1, respectively (Table 1).

Similarly, leaf SPAD readings of the OPT treatments at the booting stage were 36.8 in
experiment 1 and 34.7 in experiment 2. The optimum SPAD readings in experiments 1
and 2 were 39.4 and 37.1, respectively, based on the relationship between the N rates and
leaf SPAD readings at the booting stage (Figs. 3C & 3D). The N supply rates in experiments
1 and 2 were determined to be 17.2 and 21.5 kg ha−1, respectively, for the unit increase in
leaf SPAD reading. Hence, the recommended N rates at the tillering stage in experiments
1 and 2 were 44.7 and 51.6 kg ha−1, respectively (Table 2).
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Table 1 Leaf SPAD readings and recommended N rates of the verification experiments at tillering
stage.

Treatments Experiment 1 Experiment 2

SPAD N rate
kg N ha−1

SPAD N rate
kg N ha−1

CK 28.7± 0.6 c 0± 0 c 28.6± 0.9 c 0± 0 c
FP 36.6± 1.4 a 45.0± 0.8 b 37.6± 1.7 a 45.0± 1.2 a
OPT 33.0± 1.1 b 46.8± 0.9 a 32.6± 1.3 b 35.9± 1.0 b

Table 2 Leaf SPAD readings and recommended N rates of the verification experiments at booting
stage.

Treatments Experiment 1 Experiment 2

SPAD N rate
kg N ha−1

SPAD N rate
kg N ha−1

CK 28.6± 1.1 b 0± 0 b 30.9± 0.7 b 0± 0 c
FP 35.9± 0.8 a 45.0± 0.4 a 35.5± 1.1 a 45.0± 1.0 b
OPT 36.8± 1.2 a 44.7± 0.5 a 34.7± 0.9 a 51.6± 1.2 a

Table 3 Grain yield, N rates and N use efficiency of the verification experiments.

Treatments Grain yield
kg ha−1

N rate
kg ha−1

NAE
kg kg−1

PFPN
kg kg−1

CK 1951± 136 b 0± 0 c — —
FP 8733± 245 a 180.0± 0 a 37.7± 1.1 b 48.5± 0.9 bExperiment 1

OPT 8713± 289 a 169.5± 1.6 b 39.9± 0.7 a 51.4± 0.7 a
CK 3394± 208 b 0± 0 c — —
FP 6989± 368 a 180.0± 0 a 20.0± 0.8 b 38.8± 1.3 bExperiment 2

OPT 6756± 404 a 152.5± 1.8 b 22.0± 1.1 a 44.3± 1.8 a

Grain yield and N use efficiency
The grain yield and N use efficiency of the demonstration experiments are shown in
Table 3. Compared with CK, the N supply increased grain yield by 347.1 and 102.5% in
experiments 1 and 2, respectively. However, there was no significant difference between
the yield of FP and OPT recorded. The recommended N rates on the basis of leaf SPAD
readings were 169.5 and 152.5 kg ha−1 in experiments 1 and 2, respectively. Compared
with FP, the recommended N rates of OPT decreased by 5.8% in experiment 1 and 15.3%
in experiment 2. Moreover, the OPT’s NAE and PFPN were higher than FP’s in both
experiments. The OPT’s NAE increased by 5.8 and 10.0% while PFPN increased by 6.0 and
14.2% compared to FP in experiments 1 and 2, respectively.

DISCUSSION
We determined N based on non-destructive leaf SPAD readings, which may help to
decrease N rates. The recommended N rates based on leaf SPAD readings improved the N
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use efficiency of rice without sacrificing grain yield. SPAD readings gradually increased as
N rates rose (Fig. 2).

SPAD readings are increasingly used as a quick and non-destructive method to monitor
crop N content, growth status, and to predict grain yield. Maiti & Das (2006) reported
that a SPAD reading of 37 as the threshold works well for N fertilizer application in wheat.
There is a significant correlation between the chlorophyll measurement obtained using
a SPAD meter and leaf N content in maize (Yu, Wu &Wang, 2010). Cabangon, Castillo
& Tuong (2011) and Xiong et al. (2015) determined that there was a close relationship
between leaf SPAD readings and leaf N content per leaf area. (Arregui et al., 2006) reported
that the absolute or normalized relationships between the relative yield and grain N content
with SPAD meter readings following a quadratic model and the Cate-Nelson statistical
procedure. Monostori et al. (2016) indicated that SPAD readings could be used to predict
wheat yield. Zhou & Yin (2017) determined that SPAD readings may be used to assess
cotton N nutrition status and estimate cotton biomass. Edalat, Naderi & Egan (2019)
reported that the combination of leaf N and SPAD data may become a tool to manage corn
field N status and predict grain yield. A SPAD reading of 38 could be used to optimize N
management by maintaining high grain yield and reducing N input by approximately 25%
N (Cabangon, Castillo & Tuong, 2011), which was similar to our results.

Low N use efficiency may be caused by excessive N applications coupled with the
inefficient splitting of N doses (Singh et al., 2010). The global N demand is expected to
increase by 100–110% relative to 2005 usage levels, and the use of N is projected to increase
from 100 Mt to 225–250 Mt by 2050 (Tilman et al., 2011), resulting in increased N losses,
decreased economic benefits, and a decline in environmental health (Peng et al., 2006).
It is important to determine the appropriate N rate for sustainable and productive rice
production (Ku et al., 2016). N management practices should be easy to use, reliable,
efficient, and environment friendly. SPAD readings would allow farmers to routinely
monitor the leaf N status, adjust fertilization rates and times, avoid excessive N application,
reduce N losses, and enhance N use efficiency.

The SPAD meter is a useful tool to determine plants’ N status but it might have
limitations. The SPAD readings are taken from a small leaf area (six mm2) and require
many repetitions before ascertaining the leaf N status (Rorie et al., 2011;Wang et al., 2014).
In contrast, the leaf N contents could be determined using themicro-Kjeldahl digestion and
distillation method (Yang et al., 2003), which is a destructive sampling method but is more
accurate. The SPAD reading could be affected by many factors like leaf thickness, growth
stages, genotype, chloroplast movement, irradiance, and field-to-filed variability of soil
N supply (Samborski, Tremblay & Fallon, 2009; Naus et al., 2010; Singh et al., 2010; Kalaji
et al., 2017). The infestation of plants with diseases or insects may also affect the results
of the SPAD meter (Singh et al., 2010). This equipment requires qualified personnel to
take leaf samples following a rigorous methodology (Reyes, Correa & Zñiga, 2017) and the
measurements may deliver incorrect data if the plants are deficient in nutrients other than
N (Kalaji et al., 2017). Previous studies have shown that nutrient deficiencies influenced
the photosynthetic yield of PSII (Redillas et al., 2011;Msilini et al., 2013; Kalaji et al., 2014).
It was suggested that the chlorophyll fluorescence could be used as a noninvasive method
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to detect nutrient deficiency that is more precise and sensitive (Goltsev et al., 2016; Kalaji
et al., 2018; Horaczek et al., 2020).

CONCLUSION
Our study determined the positive effects of N rates on rice leaf SPAD readings, which
can help determine more precise N application rates. The recommended N rates of OPT
decreased by 5.8% and 15.3% in comparison with FP in the two experiments, respectively,
based on leaf SPAD readings, when compared with FP doses. Similarly, the NAE of OPT
increased by 5.8% and 10.0%, while PFPN increased by 6.0% and 14.2%, respectively,
compared with FP. The SPAD meter allows farmers to monitor rice N status routinely,
rapidly, and accurately. This may improve the timing and dose of N applications, reduce
N losses, and improve N use efficiency.
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