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Comparison of Large Language Model with Aphasia

Takamitsu Watanabe,* Katsuma Inoue, Yasuo Kuniyoshi, Kohei Nakajima,
and Kazuyuki Aihara

Large language models (LLMs) respond fluently but often inaccurately, which
resembles aphasia in humans. Does this behavioral similarity indicate any
resemblance in internal information processing between LLMs and aphasic
humans? Here, we address this question by comparing the network dynamics
between LLMs—ALBERT, GPT-2, Llama-3.1 and one Japanese variant of
Llama—and various aphasic brains. Using energy landscape analysis, we
quantify how frequently the network activity pattern is likely to move from one
state to another (transition frequency) and how long it tends to dwell in each
state (dwelling time). First, by investigating the frequency spectrums of these
two indices for brain dynamics, we find that the degrees of the polarization of
the transition frequency and dwelling time enable accurate classification of
receptive aphasia, expressive aphasia and controls: receptive aphasia shows
the bimodal distributions for both indices, whereas expressive aphasia
exhibits the most uniform distributions. In parallel, we identify highly
polarized distributions in both transition frequency and dwelling time in the
network dynamics in the four LLMs. These findings indicate the similarity in
internal information processing between LLMs and receptive aphasia, and the
current approach can provide a novel diagnosis and classification tool for
LLMs and help their performance improve.

1. Introduction

Major large languagemodels (LLMs) fluently generate persuasive
answers to almost all inquiries,[1] but their responses are often
inaccurate[2–4] and sometimes contain hallucinations.[5,6] This be-
havioral tendency resembles symptoms of receptive aphasia in
humans: for example, individuals with Wernicke’s aphasia—a
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representative type of receptive aphasia—
are able to speak with normal rhythm
and grammatical accuracy, but their speech
content often does not make sense.[7]

Also, repetition of noninformative words
is observed among the symptoms of Wer-
nicke’s aphasia[7] and in hallucinated out-
puts of LLMs as well.[6,8] A recent re-
port on LLMs’ insensitivity to underlying
messages[8] would be comparable to the dif-
ficulty in language comprehension seen in
receptive aphasia.[7,9] Furthermore, we can
argue linguistic similarities between cer-
tain types of aphasia and LLMs. First, de-
spite their recent development, LLMs’ out-
puts show significant structural differences
from human-written texts[4,10] and still can-
not produce as much linguistic diversity
and variation as humanwriters can.[11] Con-
versely, the abrupt and sudden topic shifts
often seen in their hallucinated outputs[12]

are similar to the decrease in the linguistic
cohesion observed in the speech of individ-
uals with receptive aphasia.[13]

These behavioral and linguistic resem-
blances between LLMs and aphasia—
especially, receptive aphasia—in

humans may indicate similarities even in internal information
processing between them. Here, to examine this indication, we
compared the dynamics of network activity observed in LLMs
with the collective neural dynamics seen in human brains with
various aphasia. We focused on such network dynamics since a
line of human neuroimaging studies suggested that collective
neural dynamics are closely linked with one’s cognitive ability
and intelligence.[14–16]

Collective network dynamics were assessed with energy land-
scape analysis,[17,18] which enables us to depict dynamic changes
occurring in a network as a ball movement among different
attractors that are defined as local minima on a hypothetical
energy landscape (Figure 1a; see Experimental Section for de-
tails). We chose this method since it can extract such network
dynamics from various types of time-series data, including not
only neural signals of human brains[18–21] but also activities of
microbiota in rodents’ guts.[22] In particular, regarding human
brains, this data-driven approach has successfully detected atyp-
ical brain dynamics underlying a wide range of neuropsychi-
atric conditions, such as autism,[16,23] ADHD,[23,24] depression,[25]

Schizophrenia,[26] epilepsy[27] and Alzheimer’s disease.[28]

To identify the intrinsic brain dynamics underlying aphasia,
we analyzed resting-state fMRI (rsfMRI) data recorded from
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Figure 1. Energy landscape analysis. a) Using energy landscape analysis, we compared the network dynamics between aphasic human brains and alarge
language models (LLMs). For the aphasic brain dynamics, we analyzed resting-state functional MRI data of each individual and identified each energy
landscape with multiple local minima. Then, by conducting a random-walk simulation on the energy landscape, we calculated the dwelling time for each
local minimum and transition frequency between every pair of the local minima. We applied the same analysis to the internal network activity occurring
in LLMs. b. For presentation purposes, the six dendrograms—so-called dysconnectivity graphs—show the results of the group-level energy landscape
structures for the six different groups. The same letters indicate the same local minima, whereas the apostrophised letters denote similar local minima
(activation similarity ≥89%). Note that the main analyses were performed at an individual level.

Table 1. Demographic data for aphasic individuals.

Individuals with stroke

Control without
stroke

Control Anomic aphasia Broca aphasia Conduction Wernicke’s

N 63 15 52 130 46 6

Age
(mean±sd)

63.3 ± 3.8 64.5 ± 6.6 67.4 ± 6.7 63.7 ± 7.7 60.4 ± 9.0 59.2 ± 2.4

Comparison
with
control
with
stroke

0.8 – 0.1 0.6 0.1 0.1

stroke patients with four different types of aphasia, stroke
patients without any aphasia, and healthy individuals without
any brain stroke nor aphasia symptoms (Table 1). We exam-
ined the resting-state brain signals since this neural activity,
which was collected without asking participants to engage in
any specific cognitive task, is known to represent the func-
tional backbones of a wide range of cognitive functions.[14,29–32]

In fact, analyzing the rsfMRI data revealed fundamental
neural characteristics underlying various neuropsychiatric
disorders.[16,33–36]

To investigate network dynamics occurring in LLMs, we used
four LLMs: A-Lite Bidirectional Encoder Representations from
Transformers (ALBERT),[37] an LLM developed by Google; GPT-
2[38] by OpenAI; Llama-3.1[39] by Meta; LLM-jp-3,[40] a Japanese
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variant of Llama developed by National Institute of Informatics
(NII) in Japan.
We chose these LLMs since they share the same principle with

other representative LLMs, such as GPT 4.[41] That is, they are
built upon the attention mechanism[42]—a building block of the
Transformer—and generate internal dynamics by iterating this
structure[43] (see Experimental Section for the definition of ‘in-
ternal dynamics’ in LLMs). In addition, the four LLMs were prac-
tical choices because their codes are publicly available and small
enough for us to handle in laboratory settings.
Furthermore, we selected these LLMs because such LLMs are

considered to share computational principles of language pro-
cessing with the human brains.[44–46] In particular, several stud-
ies reported evidence for the LLM-brain similarity for GPT-2: one
research showed that GPT-2 can be a good model to understand
how humans predict the next words and comprehend a stream
of languages;[47] another study showed significant similarities be-
tween human neural activity during language comprehension
and information processing occurring in GPT-2.[48] These find-
ings indicate that it is reasonable to compare how these LLMs
compute language information with how the human brains com-
prehend and generate language.
Given these, we adopted the four LLMs and compared

their internal dynamics with those seen in the human
brains.
Note that, for comparisons with the resting-state brain dy-

namics in humans, we analyzed the internal network activ-
ity that occurred in the LLMs after the LLM generated an an-
swer to the input (Figure S1, Supporting Information). Such
an LLM network activity can be regarded as a representa-
tion of a quasi-static state of the LLM’s information process-
ing, which we assume is comparable to resting-state brain
dynamics.[49,50]

2. Results

2.1. Brain Dynamics of Aphasic Humans

We first characterized the aphasic brain dynamics. After con-
firming that a pairwise maximum entropy model—a basis of en-
ergy landscape analysis—was accurately fitted to all the individ-
ual rsfMRI data (accuracy >90.1%), we constructed an energy
landscape for each participant and found different energy land-
scape structures in different types of aphasia (see Figure 1b for
the group-level results as examples). Compared to the controls,
the brains with expressive aphasia exhibited shallower and more
uniform attractors, whereas the brains with receptive aphasia
contained both deep and shallow attractors.
We then performed a random-walk simulation on each energy

landscape and quantified brain dynamics for each group. Specif-
ically, we calculated how long the brain activity pattern stayed at
each attractor (dwelling time; Figure 2a) and how often it tran-
sited among different attractors (transition frequency; Figure 2b).
As a result, we found that, in the expressive aphasia, the energy
landscape with shallow and uniform attractors tended to yield rel-
atively uniform distributions for both the dwelling time and tran-
sition frequency. In contrast, in the receptive aphasia, the energy
landscape consisting of attractors with diverse depths was likely

to generate bimodal and polarized distributions of the two brain
dynamics indices.

2.2. Characterization of Aphasia based on Gini Coefficients

This qualitative difference between the different types of aphasia
was quantitatively confirmed by assessing Gini coefficients for
the dwelling time distributions and transition frequency distri-
butions. We calculated the Gini coefficient since the index can
quantify the degree of the polarization of a distribution. For ex-
ample, if the transition frequency showed a bimodal distribution,
the Gini coefficient for the transition frequency should be close
to 1. If the metric for the neural dynamics exhibited a uniform
distribution, its Gini coefficient should be close to 0.
First, in the expressive aphasia, we found significantly lower

Gini coefficients for the dwelling time than those in the controls
with stroke (t > 7.3, PBonferroni <0.05, 𝜂

2 > 0.33; Figure 2c). Addi-
tionally, this aberrant decrease in the Gini coefficient was corre-
lated with the damaged speech fluency observed in Broca aphasia
(r128 = 0.56, p< 10−5; Figure 2d). In contrast, the Gini coefficients
for the transition frequency did not significantly differ from those
in the control group (t < 1.3, p > 0.16; Figure 2e).
In the receptive aphasia group, we identified the opposite pat-

tern: the Gini coefficients for the dwelling time seen in this
aphasia group showed only marginal differences from those in
the control groups (t <1.9, p > 0.06 for conduction aphasia;
Figure 2c); in contrast, their Gini coefficients for the transition
frequency were significantly larger than those in the controls (t
> 10.9, PBonferroni <0.05, 𝜂

2 > 0.67; Figure 2e), and this atypically
high Gini coefficient was correlated with the poor comprehen-
sion capability seen in the receptive aphasia (r49 =−0.53, p< 10−5;
Figure 2f).
These results suggest that the two Gini coefficients for the

dwelling time and transition frequency could be indices to clas-
sify the types of aphasia based on the internal network dynamics
(Figure 3a).

2.3. Application to LLMs

Given these findings, we then compared internal network dy-
namics between aphasia and LLMs. Specifically, using energy
landscape analysis, we first examined internal network activ-
ity recorded from the four LLMs (ALBERT, GPT-2, Llama-3.1
and LLM-jp-3). We then calculated their Gini coefficients for the
dwelling time and transition frequency, and finally compared
the two indices with those observed in the aphasia. For Google
ALBERT, we used three different internal network activity data
recorded from the LLM, which processed three different lengths
of tokens (i.e., 32, 64 and 128). The other LLMs were given 20-
length tokens.
First, we found that, in all the LLMs, the energy landscapes had

deeper attractors than the human brains (Figure 3b).We then cal-
culatedGini coefficients for both the dwelling time and transition
frequency (Figure 3c) and revealed that the two Gini coefficients
for the LLMs were significantly larger than those seen in the hu-
man controls (t> 6.6,PBonferroni <0.05, 𝜂

2 > 0.17 for dwelling time;
t > 9.3, PBonferroni <0.05, 𝜂

2 > 0.28 for transition frequency) and
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Figure 2. Brain dynamics of aphasia. a and b. For each group, we assessed the distributions of the dwelling time in each attractor (Panel a) and the
transition frequency among different attractors (Panel b). c-f. We then calculated the degrees of the polarization of these distributions by estimating Gini
coefficients for dwelling time and transition frequency, respectively, at an individual level. Compared to the control individuals with stroke, the individuals
with expressive aphasia had significantly smaller Gini coefficients (Panel c). The reduced Gini coefficients seen in the individuals with Broca aphasia
were correlated with their impairment of speech fluency (Panel d). As to transition frequency, the Gini coefficient was significantly larger in the receptive
aphasia than in the controls (Panel e), and such an atypically large Gini coefficient observed in the receptive aphasia was correlated with its impairment
of comprehension ability (Panel f). In Panels d and f, each circle represents each individual. *PBonferroni < 0.05.

the expressive aphasia group (t > 22.1, PBonferroni < 0.05, 𝜂2 > 0.69
for dwelling time; t > 25.4, PBonferroni < 0.05, 𝜂2 > 0.75 for tran-
sition frequency). In contrast, such distinct differences were not
seen between the LLMs and the receptive aphasia (e.g., t = 1.5,
PBonferroni > 0.05 for a two-sample t-test of dwelling time between
the GPT 2 and Wernicke’s aphasia).
Taken together, these results suggest that the internal network

dynamics seen in ALBERT, GPT-2, Llama-3.1 and LLM-jp-3 were
more similar to collective brain dynamics underlying the recep-
tive aphasia than to those seen in the expressive aphasia or con-
trols.

3. Discussion

Inspired by the behavioral resemblance between aphasia and
LLMs, we investigated similarities in the internal information
processing between them. As a preparation, we analyzed the
collective neural dynamics underlying expressive and receptive
aphasia using energy landscape analysis and found that the de-
grees of polarization of the transition frequency and dwelling
time on the hypothetical energy surface are the key to brain-
dynamics-based classification of aphasia. We then applied this
result to LLMs and identified a significant similarity between in-
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Figure 3. Comparison between aphasia and LLMs. a. Based on the two Gini coefficients (one for transition frequency and the other for dwelling time),
we could distinguish between expressive aphasia (anomic and Broca aphasia), receptive aphasia (conduction and Wernicke’s aphasia), and controls
relatively clearly. Each circle represents each individual. bWe applied energy landscape analysis to network activities recorded from the LLMs (ALBERT,
GPT-2, Llama-3.1 and LLM-jp-3). The dendrogram shows examples of the energy landscape structures for the four LLMs. c. We then calculated the two
types of Gini coefficient for the LLMs and found that the network dynamics indices for the four LLMs were located close to those for Wernicke’s aphasia.

ternal dynamics in the four LLMs (ALBERT, GPT-2, Llama-3.1
and LLM-jp-3) and collective brain dynamics seen in receptive
aphasia.
One of the limitations of the current study is the number of

types of aphasia and LLMs we investigated here. Regarding apha-
sia, we analyzed brain dynamics observed in four representative
aphasia (Table 1); but, due to the difficulty of data availability, we
did not examine other relatively rare types of this disorder, such
as transcortical motor aphasia and transcortical sensory aphasia.
In addition, the sample sizes of some aphasic individuals are rel-
atively small. Given these, future studies would have to test the
generalizability of the current observations with larger and more
diverse samples.
As to LLMs, the current study investigated ALBERT, GPT-2,

Llama-3.1, and LLM-jp-3 as examples of LLMs mainly because
they have internal dynamics to which energy landscape analy-
sis can be applied. In the meantime, the network structure of
this LLM is relatively simple (e.g., 235 million parameters for the
xxlarge model in ALBERT) compared with other LLMs such as
GPT 3,[51] which has 175 billion parameters. Considering this,

we would have to examine network dynamics in larger LLMs in
future studies.
Another limitation is that we did not investigate the biologi-

cal mechanisms underlying the aphasia. This study focused on
the meta-comparison between the human brain dynamics and
in-silico phenomena occurring inside the LLMs. A line of hu-
man neuroimaging studies have reported aphasia-specific atyp-
ical neural activities and functional and structural abnormalities
of large-scale brain networks.[9,52–60] The current observations on
the brain state dynamics underlying a variety of aphasia would
be expected to contribute to further neurobiological understand-
ing of this disorder; but, to achieve that, it would be necessary to
conduct a more comprehensive neuroscientific investigation on
the atypical brain dynamics we found here.
In addition, we have to mention the possibility that the inac-

curate responses of the LLMs and their so-called hallucinations
may not be due to the same causes as those underpinning the
symptoms of receptive aphasia in humans. Although the exact
mechanisms that generate hallucinations are unidentified, such
incorrect but highly fluent responses often seen in LLMs are
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considered to be related to inaccurate knowledge acquired dur-
ing their pretraining.[61] In fact, the improvement of the qual-
ity of the pretraining is known to lead to less hallucinated out-
puts in LLMs.[62,63] In other words, inaccurate data for the pre-
training would increase the shallow language matching inside
LLMs, resulting in their hallucinated responses. In contrast, re-
ceptive aphasia in humans is reported to be associated with the
stroke-induced damages to the appropriate matchings of words
and sentences that are thought to be implemented in brain-wide
networks.[64,65]

In particular, for Wernicke’s aphasia, we also have to clarify
behavioral and linguistic differences between its symptoms and
typical hallucinations generated by LLMs. Individuals with Wer-
nicke’s aphasia have difficulty in language comprehension but
can speak fluently and tend to repeat noninformative words,[7] all
of which are often observed in LLMs.[6,8] However, unlike LLMs,
the speech seen in Wernicke’s aphasia is likely to show less lin-
guistic cohesion[13] and complexity.[66,67] In fact, it is known that
some LLMs, such as GPT-4, can improve linguistic cohesion of
essays written by humans.[68]

Given these, future studies would have to clarify not only the
similarities but the differences between hallucinations in LLMs
and symptoms of receptive aphasia by scrutinizing the details of
their information processing and its resulting linguistic behav-
iors.
Despite these limitations, the current studymay present a new

concept on the relationship between human brains and LLMs.
With the rapid development of LLMs, it is becoming intensively
difficult to understand their internal information processing.[69]

As a result, most evaluations of the LLMs are likely to be per-
formed by examining their outputs.[51,70] In contrast, the current
study has pointed out a possibility that we may be able to give a
certain diagnosis to an LLM by comparing its internal network
dynamics with typical/atypical human brain dynamics. This ap-
proach may lead to developing a novel methodology to character-
ize LLMs, which would enable us to infer their performance even
before using them and looking into their outputs.

4. Experimental Section
Overall Design: We compared network dynamics between aphasic

brains and LLMs using energy landscape analysis. As for aphasia, we ana-
lyzed resting-state fMRI data obtained from i) individuals who had aphasia
due to brain stroke, ii) those who had brain stroke but no aphasic symp-
toms, and iii) those who had neither stroke nor aphasia. As to the LLMs,
we collected internal dynamics from ALBERT, GPT-2, Llama-3.1, and LLM-
jp-3 after we put some random inputs into the LLMs. Then, we applied
energy landscape analysis to the data and quantified the network dynam-
ics.

Analysis of the Human Brain Data: MRI Data: To investigate brain
dynamics in aphasia, we analyzed rsfMRI data shared in two datasets:
the Aphasia Recovery Cohort (ARC) dataset[71] and the PREVENT-AD
project.[72] The ARC dataset was collected from individuals who had dif-
ferent types of aphasia due to brain stroke and those with stroke but no
aphasic symptoms. TheMRI data were recorded at the University of South
Carolina using multiple 3.0T MRI scanners (TrioTim/Prisma Fit, Siemens
Medical Systems). T1-weighted anatomical imageswere collected at 1mm-
cubic resolution. Functional images were recorded using an echo planar
imaging (EPI) sequence (TR 2sec, TE 30ms, Flip angle 90°, 36 slices, spa-
tial resolution 3×3×3mm). Phase image and magnitude images were also
obtained for a fieldmap.

We used the PREVENT-AD dataset to obtain MRI data from cognitively
normal individuals who had neither stroke nor aphasia. TheMRI data were
recorded using a 3.0 T MRI scanner (Magnetom Tim Trio, Siemens Med-
ical Systems). Functional images were collected using EPI sequence (TR
2sec, TE 30ms, Flip angle 90°, 32 slices, spatial resolution 4×4×4mm).
Anatomical images were obtained as T1*-weighted MRI data with a 1mm-
cubic resolution.

Ethics: The recording of the ARC data was approved by the Institutional
Review Board at the University of South Carolina. The acquisition of the
PREVENT-AD data was approved by the “Research, Ethics and Compliance
Committee” of McGill University. In both the datasets, the participants
gave informed consent in a written form.

Participants: For the ARC dataset, we focused on the data obtained from
individuals with anomic/Broca/conduction/Wernicke’s aphasia and age-
matched individuals with stroke but no aphasia. We used the PREVENT-
AD dataset to obtain the data of another control group without stroke.

Preprocessing of Brain Data for Energy Landscape Analysis: The EPI data
were preprocessed with SPM12 (www.fil.ucl.ac.uk/spm) in the same way
as in the previous studies using the energy landscape analysis for rsfMRI
data.[16,23] First, the first five images were discarded, and the images un-
derwent realignment, unwarping, slice timing correction, normalization
to the standard template (ICBM 152) and spatial smoothing (Gaussian
kernel with 8mm of full-width at half maximum). Then, we removed the
effects of head motion, white matter signals, cerebrospinal fluid signals
and global signals before performing band-pass temporal filtering (0.01–
0.1Hz). No significant difference was found in any of the six parameters
for the headmotion between the control with strokes and the other groups
(p > 0.4).

For the ARC datasets, we then used an individual anatomical mask im-
age that was defined for each patient and indicated the brain lesion caused
by stroke. After preprocessing the anatomical mask image, we overlayed
the mask to the preprocessed rsfMRI images, set voxels in the stroke le-
sion as “Not a Number” (i.e., “NaN” in Matlab) and omitted the rsfMRI
signals of the stoke lesion from the following analyses. We performed this
processing for each individual.

To apply energy landscape analysis to this preprocessed rsfMRI dataset,
we then divided the cerebral cortex into the following nine functionally dis-
tinct networks: the default mode network (DMN), frontoparietal network
(FPN), salience network (SAN), dorsal attention network (DAN), ventral
attention network (VAN), cingulo-opercular network (CON), somatosen-
sory network (SMN), auditory network (AN) and visual network (VN). We
performed this functional segmentation based on a widely used brain par-
cellation system[73] since the previous studies using the same parcellation
system succeeded in capturing brain state dynamics specific to ASD,[16,23]

ADHD[23] and ASD+ADHD comorbidity.[23]

Technically, we extracted time-series rsfMRI data from each region of
interest, which was defined as a 4-mm-radius sphere around the pre-
determined MNI center coordinate, and assigned the data to the corre-
sponding network based on the parcellation system.[73] Next, we calcu-
lated the average rsfMRI signal for each network at each time point for each
participant and then binarized the network activities using the whole-brain
average fMRI signal as a threshold (+1 for active and –1 for inactive). This
binarization procedure balanced the numbers of active and inactive states
and should improve the accuracy of the following analysis,[17] which was
also face-validated in the previous work.[15,16,19,23] After this procedure, an
activity pattern of the nine networks at time point t was described such as
Vt =

[
𝜎
t
1, 𝜎

t
2,… , 𝜎tN

]
, where 𝜎

t
i represented a binary activity of network i

at time t (i.e., 𝜎ti = +1 or − 1) and N denotes the number of the networks
(here, N = 9).

LLM Data Generation: Most LLMs are based on the neural network
architecture known as the Transformer,[37] which comprises two compo-
nents: an encoder and a decoder. Once raw input text is uniquely converted
into a sequence of tokens—integers extracted froma finite set called vocab-
ulary V—by a’tokenizer’, the encoder transforms each token into a high-
dimensional continuous vector; this process is often referred to as embed-
ding. In contrast, the decoder not only shares the same components as the
encoder but also has an additionalmechanism to generate the subsequent
token. Notably, recent studies have proposed models that utilize only the
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encoder (encoder-onlymodel) or solely the decoder (decoder-onlymodel).
Here, we focused on these two types of models and sampled the temporal
evolution of the internal states from them. This study named such a series
of internal states ‘internal dynamics’.

Encoder-Only Model: Encoder-only models are neural networks com-
posed of attention blocks—each consisting of a combination of multi-
head self-attention and a feedforward network—with each token trans-
lated into a representative vector of dimension Nhidden. Specifically, for
token k(≥ 1), the attention block at layer l(1 ≤ l ≤ Nlayer) produces the
representative vector hk

l
∈ RN

hidden
. In this formulation, the representative

vector ht at layer t is regarded as the internal state at time t, i.e., x(t)≔ht.
When an input text is represented as a token sequence of length Ntoken,

x(t) corresponds to the vector h1:N
token

t , which is of dimension Ntoken ×
Nhidden.

Here, we employed ALBERT[37] developed by Google as an encoder-
only model. In ALBERT, since the attention blocks sharing the same pa-
rameters are repeatedly applied to the hidden state, it can be strictly inter-
preted as a dynamical system. In other words, it can be expressed in the
form x (t + 1) = F(x(t)), and the length of the time series Niteration to be
sampled can therefore be freely determined.

Google/ALBERT: We used publicly available parameters of the ALBERT
large model (https://github.com/google-research/albert), whose hidden
dimensionNhidden was 1024 and whose total parameter size was 18M (M:
million). The token size Ntoken was set to 32, 64, and 128, enabling us to
change the dimension of the systems to 32768, 65536, and 131072, respec-
tively. We randomly sampled input sentences from the English Wikipedia
dataset, which was initially used for the pretraining of the model. By it-
eratively applying the layer of the Transformer’s encoder, the dynamics of
token vectors were obtained for 2 × 105 time steps (Niteration = 2 × 105).
Since the representative vectors began to synchronize among tokens af-
ter a few hundred-time steps from the initial input,[41] we analyzed the
synchronized time-series dataset of the internal network dynamics, repre-
sented as an Niteration × Nhidden matrix.

Decoder-Only Model: Decoder-only models are neural networks com-
posed of Nlayer attention blocks that generate representative vectors from
a token sequence of length Ntoken. In contrast to encoder-only models,
decoder-only models yield the next token sNtoken+1 using the representa-

tive vector of the final layer for the last token, hN
token

Nlayer (in many cases, the

logits for each token are computed with a linear layerWhead ∈ R|V|×Nhidden

referred to as a classification head). Models that generate tokens in this
manner are generally termed autoregressivemodels.

Unlike encoder-only models, the hidden state corresponding to token
t, ht

1:Nlayer , can be seen as the internal state at time t (i.e., x(t)≔ht
1:Nlayer ).

In contrast to ALBERT, decoder-only models cannot be strictly interpreted
as usual dynamical systems, since token generation depends on the in-
ternal state—more precisely, on the values of the key and value within the
attention blocks—for all preceding tokens. In other words, they cannot be
described in the form x(t + 1) = F(x(t)). However, we refer to the tem-
poral evolution of the internal state as the dynamics for consistency with
encoder-only models.

Wte analyzed the dynamics of three models classified as decoder-only:
GPT-2[38] by OpenAI; Llama-3.1[39] by Meta; LLM-jp-3,[40] a Japanese vari-
ant of Llama developed by NII in Japan (https://huggingface.co/llm-jp/
llm-jp-3-13b).

GPT 2 by OpenAI: We employed the publicly available GPT-2 (https://
github.com/openai/gpt-2, parameter size: 124M). GPT-2 is a decoder-only
model composed of attention blocks with a hidden dimension of Nhidden

= 768 and a total ofNlayer = 12 layers (x (t) ∈ RN
layer×Nhidden

). The context
length of GPT-2 is 1024, allowing it to generate up to 1024 tokens including
the input prompt. As the internal state corresponding to the token at the
final time step t = 1024 is not computed, a total of 1023 time steps of the
time series were sampled and analyzed (Niteration = 210 − 1).

The input prompts were prepared by selecting 200 samples of test data
from the WebText dataset, which was originally used for pretraining GPT-
2 (https://github.com/openai/gpt-2-output-dataset). Each input prompt
was tokenised using a BPE (Byte-Pair Encoding) tokenizer and the first 20

tokens of each were extracted as the input prompt. The remaining 1004 to-
kens were generated by GPT-2. The next token was selected stochastically
based on the probability distribution computed via the final layer’s hid-
den states hNlayer and the subsequent logits WheadhNlayer . A fixed random
seed was set to ensure reproducibility of the experiments. Moreover, the
typical hyperparameters for adjusting the probability distribution—namely
temperature, top_k and top_p—were not specified, and the default values
(each set to 1) were employed.

Llama-3.1 by Meta: We employed the publicly available Llama-3.1-
8B (https://github.com/meta-llama/llama-models, parameter size: 8B,
where B stands for billion; hereafter referred to as Llama-3.1). Llama-3.1
is a decoder-only model composed of attention blocks with a hidden di-
mension of Nhidden = 4096 and a total of Nlayer = 32 layers. Although
Llama-3.1 has a context length of 131072, the token length was limited
to 16384, and the corresponding internal state was analyzed (Niteration =
214 − 1).

The first 20 tokens were extracted from each of the 20 test samples
in the WebText dataset. Tokens were generated stochastically under the
same settings as for GPT 2 (with a fixed random seed and no specified
hyperparameter adjustments). Typically, Llama-3.1 inserts a special token
“<|begin_of_text|>” at the beginning of the input prompt; however, to
maintain consistency with theGPT-2 setup, “<|begin_of_text|>” was omit-
ted. This did not significantly affect the completion quality. In addition,
while token generation would normally be terminated upon the generation
of the special token “<|end_of_text|>”, generation was continued until the
length reached Niteration.

LLM-jp-3 by NII: We also employed the publicly available LLM-jp 3–
13B, a decoder-only model that was developed by NII, Japan (https:
//huggingface.co/llm-jp/llm-jp-3-13b, parameter size: 13B; hereafter re-
ferred to as LLM-jp-3) and shared its architecture with Llama 3.1 (Nhidden

= 5120, Nlayer = 40). LLM-jp-3 uses a tokenizer specifically designed for
Japanese and is primarily pretrained on multiple Japanese corpora. The
context length of LLM-jp-3 is 4096 tokens, and the dynamics were sam-
pled up to this limit (Niteration = 212 − 1). From the dataset used for pre-
training LLM-jp-3 (https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-
v3), 20 validation samples formatted from the Japanese Wikipedia were
selected, and the first 20 tokens from each were extracted to serve as the
input prompt. As with GPT-2, a fixed random seed was used, and no hyper-
parameters were specified. Moreover, as with Llama-3.1, the special token
denoting the beginning of a sentence, “<s>”, was omitted, and the sam-
pling continued even if the special token indicating the end of a sentence,
“</s>”, was generated.

Preprocessing of LLM Data for Energy Landscape Analysis: As shown in an
example displayed in Figure S1a,b (Supporting Information), the internal
dynamics in the LLMswere likely to lose the fluctuation after 105 iterations.
Therefore, to reduce the effects of such relatively stable network activity,
we used the data before 6×104 iterations. In addition, we also excluded
the first 104 iterations to decrease the confounding effects of the sample
sentences input into the LLMs as an initial condition. In sum, we analyzes
the data obtained between 104 and 6×104 iterations (i.e., the data in the
red box in Figure S1a, Supporting Information).

We then performed temporal normalization for each activity recorded
from each node and conducted k-means clustering to classify the Nhidden

nodes into nine clusters (Figure S1c, Supporting Information). We set the
number of clusters at nine since the whole-brain neural activity was also
represented as time-series data of the nine large-scale brain networks.

Based on the k-means clustering, we calculated the mean activity for
each cluster and binarized the data for the following energy landscape
analysis. We set the threshold for the binarization at the temporal aver-
age of each cluster activity.

As a result of these procedures, an activity pattern of the nine clusters
at time point t was denoted as Vt =

[
𝜎
t
1, 𝜎

t
2,… , 𝜎tN

]
, where 𝜎ti represented

a binary activity of cluster i at time t (i.e., 𝜎ti = +1 or − 1) andN represents
the number of clusters (i.e., N = 9).

We prepared such preprocessed binary data for each of the LLM internal
dynamics.
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For the decoder-only models, we performed this preprocessing and the
following energy landscape analysis for each layer separately. Afterward, we
calculated the two Gini coefficients and estimated the averages of the two
coefficients across layers. Note that we excluded the data of the first layer
since the internal states in the first layer merely represent input tokens.

Energy Landscape Analysis: For both the brain data and LLM data, we
applied the same energy landscape analysis to the binarized time-series
data (i.e., Vt =

[
𝜎
t
1, 𝜎

t
2,… , 𝜎tN

]
) in the same manner as in the previous

studies.[16,18,19,23]

Fitting of a Pairwise Maximum Entropy Model: We fitted a pairwise max-
imum entropy model (MEM) to the binary data. The MEM consisted of
two parameters, hi and Jij. hi is considered to indicate the basal activity of
node i (here, network i for the brain data and cluster i for the LLM data),
whereas Jij should represent a pairwise interaction between nodes i and j.

We determined the two types of parameters so that the average
of the MEM-based node activity 〈𝜎i〉m and the average of the MEM-
based pairwise interactions 〈𝜎i𝜎 j〉m are close enough to the average
of the empirical node activity 〈𝜎i〉 and the average of the empiri-
cal pairwise interaction 〈𝜎i𝜎 j〉, respectively. We defined the 〈𝜎i〉m as

Σ2N𝓁=1𝜎i(V𝓁)P(V𝓁) and the 〈𝜎i𝜎 j〉m as Σ2N𝓁=1𝜎i(V𝓁)𝜎j(V𝓁)P(V𝓁), where 𝜎i(Vk)
represented the activity of node i in the activity pattern Vk and P(Vk) de-
noted the appearance probability of the neural activity pattern Vk. The
P(Vk) was given as e−E(Vk)∕Σ2N𝓁=1e

−E(V𝓁 ), where E (Vk) = −ΣN
i=1hi𝜎i(Vk) −

(1∕2)ΣN
i=1Σ

N
j=1Jij𝜎i(Vk)𝜎j(Vk). In this setting, we adjusted hi and Jij until the

〈𝜎i〉m and 〈𝜎i𝜎 j〉m were approximately equal to the 〈𝜎i〉 and 〈𝜎i𝜎 j〉 with a
gradient ascent algorithm. The fitting accuracy, rD, was evaluated based
on a proportion of Kullback–Leibler divergence in this 2nd-order model
(D2) to that in the 1st-order model (D1)

[16–19,23] (i.e., rD = (D1 – D2)/D1).
Here, the 1st and 2nd-order models indicate independent and pairwise
MEM, respectively.

Energy Landscape Structure: Using the hi and Jij, we determined an en-
ergy landscape structure for each individual and each LLM trial. Note that,
in the landscape, two activity patterns were regarded as adjacent if and
only if their difference was seen at only one node activity.

First, we identified local energy minima, whose energy values were
smaller than those of the N adjacent activity patterns. We then clari-
fied the hierarchical structures between the local minima by building a
dendrogram—a so-called disconnectivity graph—as follows.[16,18,19,23] i)
We prepared a hypercube graph in which each vertex represented an ac-
tivity pattern, Vk, and was adjacent to the N neighboring vertices. ii) We
set a threshold energy level, Ethreshold, at the largest energy value among
the 2N vertices. iii) We then removed the vertices whose energy values
E(Vk) were greater than Ethreshold. iv) We examined whether each pair of
local minima remained connected by a path in the slightly disconnected
graph. v) We repeated steps (iii) and (iv) after changing Ethreshold down to
the next largest energy value. vi) We stopped these procedures when all
the remaining local minima were isolated. vii) Based on the obtained re-
sults, we built a hierarchical tree whose leaves (i.e., terminal vertex down
in the tree) represented the local minima and internal vertices indicated
the branching points of different local minima.

Classification to Attractors: Based on this individual disconnectivity
graph, we classified all the activity patterns Vk (k = 1, 2, …, 2N) into one
of the attractors with a corresponding local minimum at their bottoms.
First, we picked up an activity pattern Vi from the 2N patterns. If any of its
neighbor patterns had a smaller energy value than Vi, we moved to such
an activity pattern. Otherwise, we did not move because the Vi was a lo-
cal minimum. We repeated this procedure for all the Vi until reached any
of the local minima. The initial Vi was then classified into a member of
the basin of the local minimum that we finally reached. Through this pro-
cedure, we classified all the activity patterns on the energy landscape—
except for nodes on the saddles—into any of the attractors.

RandomWalk Simulation: Using these results, we performed a random-
walk simulation and estimated state dynamics on the energy landscape.
The simulation was based on a Markov chain Monte Carlo method with
the Metropolis–Hastings algorithm.[74,75]

In this simulation, an activity pattern Vi moved only to a neighboring
pattern Vj. First, we randomly chose one of such neighboring patterns and

then determined whether such a movement to the neighbor occurred or

not at the probability Pij = min
[
1, e

E(Vi)−E
(
Vj
)]
. In other words, when Vi

was more unstable than Vj (i.e., E(Vi) > E(Vj)), the activity pattern always
moved from Vi to Vj. In the meantime, this setting left some room for
moving to Vj even if Vi was more stable than Vj (i.e., E(Vi) < E(Vj)), which
prevented the activity pattern from being stuck in a local minimum forever.

For each individual or LLM trial, we repeated this randomwalk 105 steps
with a random initial pattern, which resulted in a trajectory of the activity

pattern such as
[
V1, V2,… , V105

]
. After discarding the first 100 steps to

reduce the effects of the initial condition, we classified all the Vt into ei-
ther of the attractors and converted

[
V101, V102,… , V105

]
to, for example,

[Attractor #1, Attractor #3, Attractor #2, …].
Calculations of Dwelling Time and Transition Frequency: Next, we as-

sessed how long each attractor continued in the trajectory (dwelling time)
and how often one attractor switched to another attractor in the sequence
(transition frequency). This was performed for each individual or each LLM
trial.

Gini Coefficients: Finally, we calculated Gini coefficients—an index for
polarization and bimodality—for the dwelling time and transition fre-
quency. We estimated the coefficients for each individual and each LLM
data and compared them between different aphasia groups and LLMs.

To infer correlations between this index and aphasic behaviors, we cal-
culated Pearson correlation coefficients i) between Gini coefficients for the
dwelling time and fluency scores and ii) between Gini coefficients for the
transition frequency and comprehension scores. Both the fluency score
and comprehension score were rated based on Western Aphasia Battery.

Given the characteristics of each aphasia, the former correlation was
estimated for Broca aphasia, whereas the latter was assessed for the two
receptive aphasia (i.e., conduction and Wernicke’s aphasia).

Statistics: The Gini coefficients were compared between the different
types of aphasia and controls using two-sample t-tests. The effects of the
multiple comparisons were corrected using Bonferroni’s method.

Data and Code: All the aphasia data were openly available in the repos-
itories: the ARC dataset[71] and the PREVENT-AD project.[72] The code for
energy landscape analysis is shared as Supporting Information for the pre-
vious study.[76]

Ethics: We used openly available neuroimaging data, all of which were
recorded under the approval of local ethics committees. See Experimental
Section for details.
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