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A B S T R A C T

Detecting antibodies formed in serum in response to infection is the traditional function of serology. Di-
agnosticmodalities have included complement fixation tests, agar gel immune-diffusion, radioimmunoassay,
ELISA and immunofluorescence. More recent technology now allows for the direct detection of patho-
gens by PCR. This review details the options for diagnostic testing using specimen types other than serum,
identifying the advantages and disadvantages of these options and providing evidence for more wide-
spread use of these techniques and specimen types.

© 2016 Elsevier Ltd. All rights reserved.

Introduction

A quest for clean serum specimens to detect immunological re-
sponses to the presence of important pathogens has characterised
the history of disease testing in veterinary medicine. Serum has tra-
ditionally been preferred over whole blood to decrease non-
specific reactions, and givemore accurate and reliable results. Assays
such as the complement fixation test, dating from the very begin-
ning of the last century (Bialynicki-Birula, 2008), agar gel immune-
diffusion test (Ouchterlony, 1948), radioimmunoassay (Yalow and
Berson, 1960) and immunofluorescence antibody testing (Voller,
1964) were some of the first tests used. In more recent years, ELISA
(Engvall and Perlmann, 1971; Van Weemen and Schuurs, 1971) in
its various permutations (direct, indirect, competitive, sandwich,
capture) has been able to detect either antibody or antigen, and is
popular because it is simple, inexpensive and rapid.

Newer technologies such as PCR and quantitative PCR (Mullis and
Faloona, 1987) are pathogen detection methods and could readily
be applied to a variety of a specimen types containing genetic ma-
terial. Extraction and amplification clean-up steps now make PCR
less prone to interference than earlier versions that relied on ob-
servation to detect lines or agglutination. Recent further
developments in PCR technology, eliminating the need for expen-
sive thermocyclers, have the potential to further revolutionise field
diagnostics (Thekisoe et al., 2007).

Specimen types other than serum have commonly been collect-
ed and tested in recent years, but difficulties of obtaining a clean
and reliable signal to confirm a diagnosis have had to be over-
come. Improvements in laboratory science and accessibility to good
laboratory services and practices have improved diagnostic effi-
ciency and decreased turnaround times. Additionally, efficient courier
services make it practical to transport suitable specimens to a well-
equipped laboratory.

In some parts of the world it is still difficult to get good quality
specimens reliably to a diagnostic laboratory, either because the nec-
essary transport infrastructure is absent or distances within the
country or between countries to the laboratory infrastructure are
too great. Similarly, convenience and cost-effectiveness can affect
specimen collection, as obtaining a blood specimen is often the
domain of veterinary or para-veterinary personnel, adding to the
expense of diagnostic testing. Other readily obtainable body fluids,
excretions or tissues could be obtained by less skilled personnel or
animal owners to save on collection costs. In the human diagnos-
tic field there is currently significant interest in exploring alternative
specimen analysis such as dried blood spot testing for the diagno-
sis of hepatitis C (Coats and Dillon, 2015).

Recently, there has been a move away from centralised labora-
tory services, to ‘in-house’ or practice-based laboratory services for
a variety of clinical disciplines, including serology. The robustness
and reliability of the sampling technology has improved and has
also started to venture out towards more novel applications, in-
cluding point-of-care single specimen assays.

This review discusses a number of testing modalities with some
examples from the authors’ experience. Since this field is con-
stantly evolving, the examples are not comprehensive, but will
hopefully encourage others to explore more novel testing options.
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Milk

Milk can be a suitable medium for animal disease testing as it
is generally easy to obtain (often without any specialised equip-
ment), and in dairy cattle it is often available throughout the year.
Using milk as a specimen, a wide range of animal diseases can be
tested for in individual animals and in pooled specimens from herds.
Tests for antibodies against the following pathogens are available:
Brucella abortus (Nielsen and Gall, 2001), bovine viral diarrhoea virus
(BVDV; Lanyon et al., 2014b), enzootic bovine leukosis (EBL) and
bovine herpes virus 1 (BoHV1; Reber et al., 2012), Neospora caninum
(Schares et al., 2004; Hall et al., 2006), liver fluke (Fasciola he-
patica; Reichel et al., 2005), Johne’s disease (Mycobacterium avium
subspecies paratuberculosis; MAP; Collins et al., 2005) and Osterta-
gia ostertagi (Charlier et al., 2005; Forbes et al., 2008) in cattle. Single
animal testing can be performed and tank milk from herds of dairy
cows is a ready-made pool for testing groups of animals. Tank milk
presents a natural pool of animal biological specimens that, with
adequate test analytical sensitivity, enables the tester to screen large
numbers of animals for the presence or absence of disease. While
testing for EBL by antibody ELISA, milk pools rarely exceeded 100–
200 cows (Ridge and Galvin, 2005), but PCR testing for BVDV is now
routinely performed on pools in excess of 400 because high test an-
alytical sensitivity provides a very cost-effective way of screening
large herds and, more broadly, whole dairy industry. Herds of >400
cows are typical for the New Zealand dairy industry (Hill et al., 2010).

Historically, milk testing for pathogens was used to test for
B. abortus infection using the ‘milk ring test’ (Fleischhauer, 1955),
where a drop of stained B. abortus antigen was added to a pooled
milk specimen. If antibody to B. abortuswas present, an antibody–
antigen complexwas formed, adhering tomilk fat globules and rising
to the surface of the milk as a coloured ring (Fleischhauer, 1955).
False positive results for B. abortus antibody can occur in cattle vac-
cinated against B. abortus <4 months prior to testing, or in milk
containing colostrum or from cowswithmastitis. Infectionwith other
pathogens, such as Yersinia enterocolitica, can also cause non-
specific positive reactions (Kittelberger et al., 1997). Comparable
results are obtainable with the fluorescence polarisation assay
(Nielsen and Gall, 2001), and this newer test can be used in the field.

Viral pathogens such as bovine leukaemia virus (causative agent
of EBL) and BoHV1 (causative agent of infectious bovine
rhinotracheitis; Witte et al., 1989) can also be tested for in milk.

BVDV is widely tested for in milk specimens and testing can be
simultaneously performed to detect virus (by PCR) and antibody (by
ELISA), thereby providing a means of establishing both the pres-
ence and absence of the virus and measuring herd immunity.
Antibodies formed against BVDV are excreted into milk and corre-
late well with serum antibody titres. Pooled testing provides a
quantitative ELISA assessment strongly correlated with within-
herd prevalence (Lanyon et al., 2014b). High levels of antibody in
the tankmilk suggest sufficient exposure to virus to reduce the need
for vaccination, while low tankmilk antibody levels suggest the need
for biosecurity measures or vaccination to prevent infection. The
ability to monitor the relative changes in pooled antibody levels,
and therefore, within-herd prevalence is particularly valuable. A
sudden increase may be indicative of a recent incursion of infec-
tion, a change that can be difficult and expensive to detect when
relying on individual animal testing, and would suggest the need
for further investigation, beginning with bulk milk PCR testing.

As a logical follow-on after eradication of BVDV from the na-
tional dairy herd in Switzerland, on-going monitoring for continued
freedom from BVDV infection is now based on regular bulk milk sur-
veillance in that country (Presi et al., 2011). Surveillance testing for
recently emerging animal diseases, such as bluetongue and
Schmallenberg viruses, has also been based on bulk milk testing by
ELISA (Balmer et al., 2014).

Pooled milk testing has also been successfully applied for EBL
detection. Screening of all dairy herds in New Zealand by testing
pools of milk from groups of 20 dairy cows using EBL ELISA found
no evidence of infection by 2011 (Voges, 2011). While primary
testing was on pooled milk specimens, further testing was re-
quired for any suspicious or positive results using individual serum
antibody ELISA and PCR tests. By contrast, the EBL status of the beef
industry in New Zealand remains unknown.

In Switzerland, a bulk tank milk specimen to test for BoHV1 re-
ported significant cost savings by using milk instead of serum to
detect antibodies. If the expenditure was identical, testing bulk milk
yielded significant increases in test sensitivity (Reber et al., 2012),
thus improving diagnostic outcomes.

Diagnostic outcomes have also been improved through the use
of N. caninum bulk milk ELISA testing to predict the prevalence of
infection in dairy herds in Australia (Hall et al., 2006). The stage of
lactation affected the accuracy of the comparison between serum
and milk (Schares et al., 2004), and milk testing was more sensitive.

Excellent accuracy has also been demonstrated when testing in-
dividual milk specimens for antibodies against F. hepatica, with very
high sensitivity and specificity close to 100%. However, when bulk
tank milk specimens were tested there was a decrease in sensitiv-
ity, so only dairy herds where the prevalence of F. hepaticawas >60%
could be identified (Reichel et al., 2005).

Serological tests for Johne’s disease have low sensitivity but rea-
sonable specificity. Testing of individual milk specimens yielded a
sensitivity of 28% (Collins et al., 2005), slightly higher than serum,
and sensitivity increased with age of animal tested (Nielsen et al.,
2013). PCR can also be used to test for the presence of MAP DNA
in milk (Buergelt andWilliams, 2004), as can the peptide-mediated
magnetic separation-phage (PMS-phage) assay (Foddai et al., 2011).
However, advances in PCR testing for MAP in faeces could negate
the need to use antibody based tests.

Antibody based tests (ELISA) are available to measure antibod-
ies in bulk tank milk to the abomasal parasite O. ostertagi (Forbes
et al., 2008). Only an association between ELISA values andmilk yield
can be made using these test results, rather than confirming true
positive nematode infections in the herds, so additional diagnos-
tic testing is required to establish the parasite status of the herd.

In sheep, Q-fever (Coxiella burnetii; Klaasen et al., 2014), Bru-
cella melintensis (Hamidi et al., 2015) and Mycoplasma agalactiae
(Poumarat et al., 2012) can be tested for using milk; in goats, milk
specimens can be used to test for caprine arthritis and encephali-
tis (Nagel-Alne et al., 2015). Q-fever outbreaks in humans are
associated with C. burnetii infection in small milking ruminants in
Africa (Klaasen et al., 2014). Shedding of the organism is intermit-
tent, thus infection was not always detected by PCR and serological
tests might also be required. In contrast, PCR testing of milk for
B.melintensis detected wasmore sensitive than serology in one study
(Hamidi et al., 2015). Accurate serological classification of the
M. agalactiae status of sheep is difficult and PCR testing of milk speci-
mens with two PCRs should be used to confirm the presence of the
organism. The resultant PCR results also require cross checking with
a dot-immunobinding technique (Poumarat et al., 1991).

Milk testing can be utilised for detection of non-infectious con-
ditions. For example, lateral flow devices to test for progesterone
concentrations in milk present opportunities to define the oestrus
cycle and pregnancy status of cows (Waldmann and Raud, 2016)
and technological modificationsmay allow for testing to occur during
milking (Dobson, 2016).

Colostrum

Colostrum is another medium that can be used for animal disease
testing instead of milk. Its availability is restricted to a shorter time
period, but provides other testing and diagnostic advantages. Testing
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colostrum for antibodies (as an alternative or add-on tomilk testing)
is potentially useful because of the higher concentration of immu-
noglobulins in colostrum compared to milk. The concentration of
IgG is estimated to be up to 100 times higher than milk in the first
few days after parturition (Korhonen et al., 2000). Recent work in
cattle suggests that testing colostrum increases analytical and di-
agnostic sensitivity compared to milk. This could be most useful for
on-going surveillance of animal diseases requiring less frequent
checks, as colostrum is only available during the perinatal period
(Jenvey et al., 2012, 2015; Cockcroft et al., 2014).

The drawback of colostrum testing is the small window of avail-
ability and the difficulty of collection in some species. In dairy cattle,
sampling of colostrum might be most usefully applied for dis-
eases where diagnostic tests are hampered by low analytical and/
or diagnostic sensitivity (such as is the case with Johne’s disease;
Reichel et al., 1999). Colostrum has also been used successfully for
testing for rotavirus andmycoplasma infections (Corthier and Franz,
1981; Zimmermann et al., 1986; Rautiainen, 1998).

Hair and ear notch skin specimens

Hair specimens can be easily obtained, even by animal owners,
and submitted for testing. Meanwhile, ear notches may be the by-
product of routine farming procedures such as ear-tagging, thereby
reducing the amount of additional handling and restraint re-
quired for animal disease testing.

Hair and ear notch specimens have been used successfully to
detect BVDV persistently infected animals (Hill et al., 2007; Lanyon
et al., 2014c) and formed the basis of the recent successful Swiss
BVDV eradication campaign (Presi and Heim, 2010). In this cam-
paign, detection of BVDV antigen in skin was the specimen of choice
to identify persistently infected calves, andwas preferred over serum.
After the ingestion of colostrum, maternal anti-BVDV antibodies can
bind to BVDV antigen and prevent its successful detection in the
routinely used antigen-capture ELISA (Fux and Wolf, 2012). Using
ear notch skin specimens reduces this complication, as there are
fewer antibodies in ear notch tissue. Heating of serum specimens
under specific conditions to break up antibody-antigen complexes
can overcome the interference of maternal antibody and allow suc-
cessful serum testing. This adds extra steps to the procedure, but
has been used effectively in BVDV testing (Lanyon and Reichel, 2016)
and in heartworm serology (Little et al., 2014a, 2014b; Velasquez
et al., 2014).

Ear notch specimens are increasingly being used for parentage
testing because of the ease with which they can be obtained1. Hair
has also been used (Singh et al., 2011) to identify persistently BVDV
infected animals, and in parentage testing2 and DNA profiling.

Swabs from mucosal surfaces

Swabbing of readily accessible animal surfaces is an option for
diagnostic testing in animals that could otherwise be difficult to re-
strain for more invasive blood sampling. Swabs from mucosal
surfaces, including the mucous membranes of the eyes, vagina,
prepuce, and oral cavity can yield antibody and antigen in suffi-
cient quantities for testing to produce meaningful results (Lanyon
et al., 2014c). Swabs can also be used for parentage (DNA) testing
and have been used to detect the following pathogens: Bordetella

bronchiseptica, Leishmania, feline leukaemia virus (FeLV), feline herpes
virus 1 (FHV-1), Chlamydia felis, feline calicivirus (FCV), BoHV1, bat
lyssavirus,Mycoplasma felis and rinderpest virus (Mushi andWafula,
1984; Lutz and Jarrett, 1987; Echevarria et al., 2001; Strauss-Ayali
et al., 2004; Di Muccio et al., 2012; Hernandez et al., 2015; Litster
et al., 2015).

The characteristics of specific disease states can influence the
usefulness of these tests. One study found that 96% of latently
infected cats did not shed FeLV RNA in saliva and were not
detected by PCR (Gomes-Keller et al., 2006a), but virus shedding
was a consistent feature in viraemic cats (Gomes-Keller et al.,
2006b). A conjunctival swab tested by PCR had the highest sensi-
tivity compared to immunofluorescent antibody and lymph node
microscopy for the diagnosis of Leishmania, but still only de-
tected 74% of infected dogs (Di Muccio et al., 2012). Screening
bats for lyssavirus with PCR using oropharyngeal swabs was more
accurate than PCR of fresh brain (Echevarria et al., 2001), and
could be performed antemortem. Combination PCR testing of
oropharyngeal swabs and either conjunctival or nasal swabs were
needed to identify all cats infected with B. bronchiseptica, FHV-1,
C. felis, FCV, and M. felis in one study (Litster et al., 2015), but a
single PCR test could be performed on both specimens. One-step
multiplex PCR testing of nasal swabs and bronchoalveolar lavage
specimens from cattle for BoHV1, bovine respiratory syncytial
virus and bovine parainfluenza virus 3 was more sensitive than
virus isolation and had a sensitivity of 97% in another study
(Thonur et al., 2012).

Preputial and vaginal swabs can be tested in cattle for the pres-
ence of Campylobacter fetus spp. venerealis (McMillen et al., 2006)
using a 5’ Taq PCR assay. Subsequent studies found there was cross
reaction between C. fetus spp. venerealis and Campylobacter
hyointestinalis (Spence et al., 2011), illustrating the need for addi-
tional confirmatory testing of any PCR positive C. fetus spp. venerealis
isolates. Improved sensitivity in detecting Tritrichomonas fetus in
smegma and vaginal mucouswas demonstrated using PCR (McMillen
and Lew, 2006) compared to culture. Quantitative PCR testing for
Ureaplasma diversum was 100-fold more sensitive than conven-
tional PCR (Marques et al., 2013). In addition, buccal swabs can also
be collected to test for a range of inherited diseases including collie
eye anomaly (Chang et al., 2010), hereditary cataract (Mellersh et al.,
2006), and ceroid lipofuscinosis in dogs (Karli et al., 2014). Collie
eye anomaly can be diagnosed by examination of the retinas in 5–10
week old puppies, but after 12weeks this is impossible as the lesions
become coveredwith pigment. Saliva collected onto filter paper from
Collie-related breeds of dog of any age can rapidly be tested for the
anomaly with the cost effective SYBR green method (Chang et al.,
2010) allowing for large scale screening of populations. Saliva can
also be collected for real time PCR testing for ceroid lipofuscinosis
in dogs (Mizukami et al., 2011), providing early opportunities for
diagnosis rather than waiting for the onset of clinical signs and con-
firmation by histopathology.

Urine

Urine specimens are relatively difficult to obtain in animals, re-
quiring direct capture of voided specimens with risks of
contamination. Alternatively, urinary catherisation or cystocentesis
of individual animals is needed if a clearly identifiable uncontami-
nated specimen is required. Urine has been used as a medium for
testing animal diseases and is particularly useful to test for Lepto-
spira infection. Increasingly, PCR is used as the method of choice
for the detection of the organism (Chappel et al., 1985; Fang et al.,
2014; Hamond et al., 2014). Urine testing is also used to detect if
performance enhancing drugs have been used in horses (and humans
athletes; Thevis et al., 2016).

1 See: http://www.genomnz.co.nz/ear-punch-sampling-new-method-for-genomnz/
(accessed 18 April 2016).

2 See: http://www.genomnz.co.nz/how-to-take-dna-samples/hair-samples/ (ac-
cessed 18 April 2016).
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Semen

Semen of male animals is frequently tested to screen for infec-
tion, mostly reproductive pathogens such as Brucella ovis in rams,
N. caninum, BoHV1 and T. fetus in cattle, but also viruses such as
equine infectious arteritis (Campero et al., 1990; Ramina et al., 1999;
Ortega-Mora et al., 2003; Serrano-Martinez et al., 2007; Wang et al.,
2007; Rana et al., 2011; Ridler et al., 2014). Specimens can be dif-
ficult to obtain in pastured animals and may require sedation,
specialised equipment and collection procedures. However, diag-
nostic testing of semen is particularly valuable for ensuring semen
collected from bulls at semen collection centres is free from C. fetus
spp. venerealis (Eaglesome et al., 1995), BVDV (Rikula et al., 2008)
and BoHV1 (Alegre et al., 2001) to ensure venereal infection is not
transmitted via natural or artificial breeding.

Faeces

Testing for the presence of pathogens in faeces is a preferred
option for diseases that are spread via excretion in the faeces, and
has certain advantages over serological testing. For example, for F. he-
patica, serological tests perform very well, demonstrating high
diagnostic sensitivity and specificity (Reichel, 2002) and the de-
tection of antibodies confirms previous exposure to the parasite with
high accuracy. However, antibodies may persist for weeks after an
infection has been eliminated by effective treatment with a flukicide.
In order to detect patent infections (with shedding), faecal (copro)-
antigen ELISAs have successfully been deployed to detect active,
patent infections with a high degree of diagnostic sensitivity (and
perfect specificity; Palmer et al., 2014), thus giving an indication
of current infection. Similarly, the application of diagnostic assays
to detect the presence of nematode larvae and eggs in faeces pres-
ents new options for investigation of the parasite infection status
of sheep and cattle, using a combined microscopy-molecular tech-
nique where parasite eggs are separated from faeces by a salt
flotation technique before PCR testing to identify the species present
(Bott et al., 2009; Hoglund et al., 2013). This avoids the need for time-
consuming larval culture and identification.

Testing for antibodies to Johne’s disease is hampered by the late
onset immunological (particularly humoral) response, limiting the
diagnostic sensitivity of serological tests (Reichel et al., 1999). Culture
is similar to serological testing in its ability to detect infected animals,
although it was considered the reference standard for testing. Faecal
culture enhanced by PCR testing has improved diagnostic sensitiv-
ity and is now the new reference standard (Whittington et al., 2000;
Marsh and Whittington, 2001).

Faecal ELISA testing can be used to detect rotavirus in foals,
(Browning et al., 1991), Giardia duodenalis in cats (Mircean et al.,
2011) and Cryptosporidium parvum (Anusz et al., 1990), Escheri-
chia coli K99 and coronavirus in cattle (Cho et al., 2012). Faecal PCR
testing enables identification of enterotoxigenic E. coli from diar-
rhoeic piglets (Byun et al., 2012) and T. fetus infection in cats (Gookin
et al., 2002).

Point of care test devices

Very recently, the diagnostic test devices themselves have been
shown to be suitable as specimens, as foot-and-mouth disease virus
was recovered successfully from lateral flow devices (Fowler et al.,
2014), further expanding the possible range of sampling modalities.

The concept of specimen pooling

Pooling of specimens can be used to provide information about
immunological reactions to specific pathogens, or to identify patho-
gens or reagents of interest. Often this method is used for economic

reasons; testing a large number of pooled specimens with one test
is generally far cheaper than testing each animal individually. This
is the case where the additional individual diagnostic test adds con-
siderable cost, but the specimen is relatively cheap and readily
available (e.g. milk). Pooled specimen testing is particularly useful
as a screening test for the absence of disease or where disease prev-
alence is low. While pooling offers a method of investigating the
disease status of a large population quickly (Lanyon et al., 2014a),
there are two points important to note. Firstly, when testing for the
presence of a condition/factor or pathogen, pooling onlymakes sense
if it makes testing more cost-effective or less time-consuming than
individual testing. If the prevalence of the factor of interest is higher
than the dilution factor caters for, all pools will be positive, and
nothing has been gained. For example, if you pool 20 animals/
pool for BVDV virus testing and the disease prevalence in the
population is 1–2%, 80% of pools are likely to screen negative, saving
time and money. However, if you test 100 specimens/pool from the
same population, all pools are likely to be positive, and you are no
closer to identifying which animals are infected. By contrast, a run
of 100 specimens is within the analytical capability of a PCR assay.
Secondly, the diagnostic test also needs to possess sufficient ana-
lytical sensitivity to detect the antibody or antigen at the dilution
factor determined by the degree of pooling. Usually an additional
safety factor is added to ensure this. When testing for antibodies
to EBL, the greatest dilution allowed for pooling is 10 times less than
the highest dilution of a standard positive that can be detected e.g.
if the standard can be detected diluted 1:100, pools of 10 animals
each can be tested (Reichel et al., 1998).

One of the issues with pooling is the loss of the ability to account
for the influences of individuals with very strong relative contri-
butions, such as an animal with a very high antibody titre, distorting
the overall picture. Hence, pooling generally indicates the level of
infection or immunity at the herd, flock or unit level. For example,
when testing for BVDV antibodies by ELISA, a single strong posi-
tive individual can result in a positive result in a pool of up to 128
individuals, while even a weak positive individual can cause a pos-
itive result in a pool of eight (Lanyon et al., 2014a). On the other
hand, pooling provides a very cost-effective snapshot of that herd,
flock or unit and can, if interpreted appropriately and used in con-
junction with antibody and pathogen testing, can provide a very
effective ongoing surveillance tool to augment biosecurity.

Conclusions

In addition to serum, a variety of animal excretions, secretions
and tissues can successfully be used for the detection of an immune
response to an agent, or for detection of the agent itself. Improv-
ing detection technologies present exciting future options for disease
diagnosis and control. Drivers for exploring different test media have,
in some cases, been the quest for more cost-effective testing mo-
dalities or an effort to make use of specimens that are more readily
available and can easily obtained by the farmers themselves.
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