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ABSTRACT The mycomembrane layer of the mycobacterial cell envelope is a barrier
to environmental, immune, and antibiotic insults. There is considerable evidence of
mycomembrane plasticity during infection and in response to host-mimicking
stresses. Since mycobacteria are resource and energy limited under these conditions,
it is likely that remodeling has distinct requirements from those of the well-charac-
terized biosynthetic program that operates during unrestricted growth. Unexpectedly,
we found that mycomembrane remodeling in nutrient-starved, nonreplicating mycobac-
teria includes synthesis in addition to turnover. Mycomembrane synthesis under these
conditions occurs along the cell periphery, in contrast to the polar assembly of actively
growing cells, and both liberates and relies on the nonmammalian disaccharide treha-
lose. In the absence of trehalose recycling, de novo trehalose synthesis fuels mycomem-
brane remodeling. However, mycobacteria experience ATP depletion, enhanced respira-
tion, and redox stress, hallmarks of futile cycling and the collateral dysfunction elicited
by some bactericidal antibiotics. Inefficient energy metabolism compromises the survival
of trehalose recycling mutants in macrophages. Our data suggest that trehalose recy-
cling alleviates the energetic burden of mycomembrane remodeling under stress. Cell
envelope recycling pathways are emerging targets for sensitizing resource-limited bacte-
rial pathogens to host and antibiotic pressure.

IMPORTANCE The glucose-based disaccharide trehalose is a stress protectant and car-
bon source in many nonmammalian cells. Mycobacteria are relatively unique in that
they use trehalose for an additional, extracytoplasmic purpose: to build their outer
“myco” membrane. In these organisms, trehalose connects mycomembrane biosyn-
thesis and turnover to central carbon metabolism. Key to this connection is the ret-
rograde transporter LpqY-SugABC. Unexpectedly, we found that nongrowing myco-
bacteria synthesize mycomembrane under carbon limitation but do not require
LpqY-SugABC. In the absence of trehalose recycling, compensatory anabolism allows
mycomembrane biosynthesis to continue. However, this workaround comes at a
cost, namely, ATP consumption, increased respiration, and oxidative stress. Strikingly,
these phenotypes resemble those elicited by futile cycles and some bactericidal anti-
biotics. We demonstrate that inefficient energy metabolism attenuates trehalose
recycling mutant Mycobacterium tuberculosis in macrophages. Energy-expensive mac-
romolecule biosynthesis triggered in the absence of recycling may be a new para-
digm for boosting host activity against bacterial pathogens.
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The mycobacterial cell envelope is comprised of covalently bound peptidoglycan,
arabinogalactan, and mycolic acids, as well as intercalated glycolipids and a thick

capsule (1). The mycolic acids attached to the arabinogalactan and the noncovalent
glycolipids, respectively, form the inner and outer leaflets of the mycomembrane, a
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distinctive outer membrane present in members of the Corynebacterineae suborder.
The mycomembrane is a key determinant of envelope permeability and home to a va-
riety of immunomodulatory lipids and glycolipids (2–4). There is substantial evidence
that the mycomembrane is remodeled in vivo and in response to host-mimicking
stresses, conditions in which mycobacterial growth and envelope synthesis are pre-
sumed to be slow or nonexistent (3, 5–13). While these studies have elucidated bulk
changes in mycomembrane composition, the dynamics and subcellular distribution of
the molecular transitions have not been characterized. It is also unclear in most cases
whether the alterations are solely catabolic, or whether anabolic reactions also contrib-
ute to changes in mycomembrane composition under stress.

Recycling pathways are likely to be at the nexus of stress-triggered mycomembrane
reorganization. Mycolic acids are ligated to the nonmammalian disaccharide trehalose
in the cytoplasm (14). Once transported to the periplasm, trehalose monomycolate
(TMM) donates its mycolic acid to arabinogalactan, forming arabinogalactan mycolates
(AGM), or to an acceptor TMM, forming trehalose dimycolate (TDM; Fig. 1A). Both proc-
esses release free trehalose. TDM can also be degraded by TDM hydrolase (TDMH) into
TMM and free mycolic acids, the latter of which are an important component of biofilm
extracellular matrix in mycobacteria (7, 15). While a salvage mechanism for mycolic
acids is still under debate (16–19), recapture of trehalose occurs via the LpqY-SugABC
transporter (20). Depending on the specific environmental demand, mycobacteria may
funnel reclaimed trehalose back to central carbon metabolism to generate intermedi-
ates for glycolysis or the pentose phosphate pathway or to store it in the cytoplasm,
possibly as a stress protectant or compatible solute (6, 21–23). An additional but unex-
plored potential fate for recaptured trehalose is direct reincorporation into TMM or
other glycoconjugates destined for the cell surface. Thus, trehalose connects myco-
membrane synthesis and turnover to the metabolic status of the mycobacterial cell.

We find that mycomembrane remodeling triggered by nutrient limitation comprises
both synthesis and degradation of AGM and TDM. Remodeling continues in the ab-
sence of trehalose recycling. However, compensatory anabolism upsets the energy and
redox balance of the cell in a manner indicative of futile cycling (24–28). Similar dys-
function has been proposed to enhance the efficacy of certain antibiotics (29, 30), and
indeed, loss of LpqY sensitizes Mycobacterium tuberculosis to multiple drugs (31). M. tu-
berculosis DsugC and DlpqY strains are also known to be attenuated during infection
(20, 32, 33). We show here that inefficient ATP metabolism is the primary mechanism
of attenuation in macrophages.

While previous studies identified multiple phenotypes for trehalose recycling
mutants, they did not explain how the LpqY-SugABC system contributes to mycobac-
terial fitness. Our data indicate that trehalose recycling minimizes energy consumption
and oxidative stress during mycomembrane adaptation to nutrient limitation. Given
the energetic costs associated with de novo biosynthesis, recycling pathways for treha-
lose and other mycomembrane components may be particularly important for M. tu-
berculosis resilience to stress.

RESULTS
Mycomembrane synthesis and degradation are active under carbon limitation.

Decreased TDM abundance has been reported for mycobacteria growing in biofilms or
adapting to hypoxia or nutrient limitation (3, 5, 7, 23). Since uncontrolled TDM hydroly-
sis results in cell lysis (7, 34), we sought to understand the kinetics of TDM turnover
under stress. TMM donates mycolic acids to other molecules of TMM, to form the TDM
glycolipid, or to arabinogalactan, to form covalent arabinogalactan mycolates (AGM,
Fig. 1A). The TMM-mimicking probe N-AlkTMM specifically incorporates into TDM
because the amide linkage permits mycolic acid acceptance but not donation of the
alkyne-appended lipid chain (35). To track TDM hydrolysis under carbon limitation, we
performed a pulse-chase experiment in which we labeled M. smegmatis with N-
AlkTMM for 12 h in low (0.02%)-glucose-supplemented 7H9 medium then washed the
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FIG 1 Mycomembrane synthesis and degradation are active under carbon limitation. (A) Mycomembrane synthesis and
degradation. TMM, trehalose monomycolate; TDM, trehalose dimycolate; AG, arabinogalactan; AGM, arabinogalactan mycolates;
MA, free mycolic acids; TDMH, TDM hydrolase. (B) TDM turnover under nutrient deprivation. M. smegmatis was cultured in 0.02%
glucose-supplemented medium in the presence of metabolic probes O-AlkTMM (primarily labels AGM), N-AlkTMM (labels TDM),
or HADA (labels cell wall peptidoglycan). After 24 h, the cultures were washed and resuspended in probe-free medium. Aliquots
were removed 0, 4, and 8 h into the chase and fixed with 2% formaldehyde. Alkynes were detected by copper-catalyzed azide-
alkyne cycloaddition (CuAAC) reaction with carboxyrhodamine-110 azide. Fluorescence was quantitated by flow cytometry, with
the median fluorescence intensities (MFIs) were normalized to the initial, 0-h time point for each probe. The experiment was
performed three times in triplicate; the results of one representative experiment are shown. (C) Metabolic labeling of M.
smegmatis in 0.02% glucose-supplemented medium with O-AlkTMM, N-AlkTMM, and alkDala (labels peptidoglycan). Alkynes were
detected by CuAAC reaction with carboxyrhodamine-110 azide. Data were normalized to labeling in 2% glucose-supplemented
medium and plotted from four independent experiments. (D) Quantitation of TLC of different mycomembrane components for
M. smegmatis in 0.02% glucose-supplemented medium. TDM, trehalose dimycolate; CS-MA, free, culture supernatant mycolic
acids; AGM-MA, mycolic acids released from arabinogalactan. TLC results were scanned and processed in ImageJ (99). The data
are normalized to TLC results from samples taken from M. smegmatis cultured in 2% glucose-supplemented medium and plotted
from three independent experiments. (For representative TLC results, see Fig. S2.) (E) PI staining of M. smegmatis during
adaptation to low carbon. M. smegmatis was cultured in 0.02% glucose-supplemented medium. Aliquots were removed at 13, 24,
and 48 h and incubated with PI. Fluorescence was quantitated by flow cytometry, and the MFI was plotted. The experiment was
performed three times in triplicate; the results of a representative experiment are shown. (F) O-AlkTMM labeling of M. smegmatis
AGM in 2 or 0.02% glucose-supplemented medium. Alkynes were detected by CuAAC reaction with carboxyrhodamine-110
azide. (Left) Fluorescence microscopy. Scale bars, 5mm. (Right) The cellular fluorescence was quantitated for cells lacking visible
septa from three independent experiments. The signal was normalized to both cell length and total fluorescence intensity. Cells
were oriented such that the brighter pole is on the right-hand side of the graph. A.U., arbitrary units. (G) Quantification of
trehalose from supernatants of M. smegmatis wild-type and DsugC strains cultured in 2 or 0.02% glycerol-supplemented medium.
The experiment was performed at least three times in triplicate; the results of one representative experiment are shown. Error
bars, standard deviations. The statistical significance of 0.02% versus 2% glucose or glycerol samples from three independent
experiments was assessed by two-tailed Student t test. *, P , 0.05; **, P , 0.005.
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sample before transferring it to 7H9 lacking both the probe and glucose (Fig. 1B, left).
Alkyne-labeled TDM was detected on fixed cells at 0, 4, and 8 h posttransfer by copper-
catalyzed azide-alkyne cycloaddition (CuAAC) with a fluorescent azide label. We found
that TDM labeling decreased by ;3-fold in this time period (Fig. 1B, right).
Fluorescence derived from D-amino acid-labeled cell wall peptidoglycan remained
steady, however, consistent with limited bacterial growth under this condition (Fig. 1B,
right; see also Fig. S1A in the supplemental material).

Under acid stress, nonreplicating but metabolically active M. tuberculosis make new
TDM (9). We found that N-AlkTMM uptake (no chase) increased ;2-fold in low-glucose
medium (Fig. 1C). However, a decline in the steady-state abundance of TDM (Fig. 1D;
see also Fig. S2B) suggested that enhanced synthesis is outweighed by the TDM turn-
over observed in the pulse-chase experiment (Fig. 1B, right).

We hypothesized that there were additional changes in mycomembrane metabo-
lism. O-AlkTMM is also a TMM-mimicking probe but features an ester-linked lipid chain.
While the molecule can serve as either an alkyne-lipid donor or acceptor, ;90% of
labeling from this probe is present in the M. smegmatis AGM cellular fraction (35). O-
AlkTMM uptake was enhanced in low-glucose medium to a greater extent than N-
AlkTMM (Fig. 1C). The fluorescence signal derived from this probe was also more per-
sistent than N-AlkTMM in a no-probe, no-glucose chase (Fig. 1B).

A variety of carbohydrates can serve as mycolate acceptors, including glucose (36,
37). High levels of glucose in the growth medium might therefore suppress O-AlkTMM
labeling of the cell surface by competing with arabinogalactan. While in our labeling
window M. smegmatis grew faster in 7H9 medium with high (2%) versus medium
(0.2%) glucose supplementation, O-AlkTMM-derived fluorescence in the high-glucose
condition was lower (see Fig. S1B). However, O-AlkTMM labeling was similar for M.
smegmatis in 0.2 or 0.02% glucose or acetate (see Fig. S1B), despite sluggish or absent
bacterial replication under the low carbon conditions (see Fig. S1A). Thus, incorpora-
tion of O-AlkTMM into AGM is suppressed in high glucose, likely because the alkyne-
fatty acid from the probe is transferred to the unanchored glucose and washed away.
Nonetheless our data indicate that substantial AGM synthesis occurs in growth-limiting
amounts of glucose or acetate. Since the steady-state abundance of the molecule did
not change in carbon-limited medium (Fig. 1D; see also Fig. S2C), these experiments
also suggest that AGM synthesis is balanced by the turnover that we observed by
pulse-chase (Fig. 1B, right).

We previously showed that the fluorescent D-amino acid HADA as well as alkyne-D-ala-
nine (alkDala) incorporate into M. smegmatis peptidoglycan via both cytoplasmic and
L,D-transpeptidase enzymes (38). HADA and alkDala labeling roughly correlated with myco-
bacterial growth rate under different amounts of glucose or acetate (Fig. 1C; see also
Fig. S1A and C in the supplemental material). Suppressed levels of peptidoglycan synthesis
or remodeling during carbon limitation stood in contrast to active mycomembrane
metabolism.

AGM synthesis occurs along the periphery of the mycobacterial cell during
carbon limitation. TDM hydrolysis enhances envelope permeability in oleic acid- and
glucose-deprived M. tuberculosis (3). Surprisingly, despite an analogous decrease in
TDM abundance (Fig. 1D; see also Fig. S2B), M. smegmatis became less permeable to
propidium iodide when cultured in glucose-limited medium (Fig. 1E). Global AGM lev-
els have also been linked to mycobacterial permeability (39). Although AGM abun-
dance was relatively unaffected in glucose-deprived medium (Fig. 1D; see also
Fig. S2C), our data suggest that the apparent stasis belies active synthesis and degrada-
tion (Fig. 1B and C). We considered whether AGM remodeling might impact its spatial
distribution, which in turn could alter cell permeability.

Mycobacteria growing in nutrient-replete medium construct their cell envelope in
gradients that emanate from the poles and continue along the sidewall (35, 38, 40–48).
While polar peptidoglycan synthesis promotes cell elongation, sidewall synthesis
occurs in response to cell wall damage (38). We hypothesized that the AGM synthesis
that we observe under carbon deprivation (Fig. 1C) is a cell-wide response, similar to
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peptidoglycan repair. Quantitative fluorescence microscopy revealed that O-AlkTMM
labeling of M. smegmatis growing in carbon-replete medium comprised polar gra-
dients (Fig. 1F) as expected (35, 38). However, in slow- or nongrowing, carbon-deprived
M. smegmatis, O-AlkTMM-labeled species were more evenly distributed around the pe-
riphery of the cell. This observation suggests that AGM synthesis fortifies the myco-
membrane along the sidewall as mycobacteria adapt to carbon deprivation.

Trehalose cycling supports mycomembranemetabolism during carbon starvation.
Mycomembrane synthesis centers on the mycolic acid donor trehalose monomycolate
(TMM). Prior to its export to the periplasm, TMM is synthesized in the cytoplasm by the
ligation of a mycolic acid to trehalose (50). De novo synthesis of mycolic acids and tre-
halose is both energy and resource intensive; recycling pathways for both molecules
have been shown or proposed (18–20). We hypothesized that nutrient-starved myco-
bacteria might buffer the costs of TMM synthesis by enlisting recycling pathways.
Since the recycling mechanism for mycolic acids is still controversial (16, 17), we
focused on the role of trehalose uptake.

Trehalose released as a by-product of extracellular mycomembrane metabolism is
recycled via the LpqY-SugABC transporter (20) (Fig. 2A). At least two different proc-
esses liberate trehalose: (i) ligation of mycolic acids from TMM to arabinogalactan to
form AGM and (ii) transfer of mycolic acids from TMM to another molecule of TMM to
form TDM (Fig. 1A). Breakdown of TDM by the TDM hydrolase (TDMH) yields TMM and
mycolic acids (7, 15, 34), so subsequent use of TMM in the foregoing reactions would
also release trehalose. Our metabolic labeling results suggested that all of these proc-
esses are active as M. smegmatis adapts to carbon limitation (Fig. 1). We were unable
to measure extracellular trehalose levels in wild-type M. smegmatis, presumably
because LpqY-SugABC rapidly internalizes the disaccharide (20). However, by using M.
smegmatis DsugC, a strain that lacks a functional trehalose transporter, we were able to
detect elevated levels of trehalose in the supernatant when bacteria were grown in
carbon-limited conditions (Fig. 1G; note that we used glycerol as the carbon source as
glucose interferes with the assay). We also found that free mycolic acids accumulated
in the supernatant of low glucose cultures (Fig. 1D; see also Fig. S2D), as expected
from TDM turnover. Together, our data indicate that trehalose is liberated upon reor-
ganization of the mycomembrane.

Exogenously supplied trehalose can support mycobacterial growth (20) after it is
transported by LpqY-SugABC (20) and metabolized by trehalase (21) or TreS (6, 50–52)
(Fig. 2A). We recovered similar CFU for DsugC, Dtre, DtreS, and wild-type M. smegmatis
strains from 1, 2, 4, and 6 days in low glucose (Fig. 2B and C). These data suggest that
trehalose catabolism is not required for viability, nor does it fuel appreciable cell
growth, under carbon deprivation. Given that both the optical density and CFU of M.
smegmatis were steady (Fig. 2B and C; see also Fig. S1A), trehalose recovered from the
mycomembrane also does not fuel appreciable cell growth under this condition.

In hypoxic and biofilm cultures of M. tuberculosis, TMM and TDM levels decrease (5,
6, 23). Glycolipid turnover occurs rapidly in the former, within 4 h (6), and slowly in the
latter, within 16 days (23). We did not observe a net decrease in TMM for M. smegmatis
or M. tuberculosis under carbon limitation (Fig. 2F and G) despite an increase in TMM-
consuming AGM and TDM remodeling (Fig. 1C). We posited that TMM pools might be
replenished by recycled trehalose. Metabolic incorporation of exogenous 6-azido-tre-
halose (6-TreAz) by M. smegmatis or M. bovis BCG requires uptake by LpqY-SugABC
(53). We found that 6-TreAz labeling was enhanced in slow-growing, glucose-starved
M. smegmatis (Fig. 2D) or oleic acid- and glucose-starved M. tuberculosis (Fig. 2E) (3). As
incorporation of the metabolite was respectively abolished or diminished in DsugC M.
smegmatis (Fig. 2D; see also Fig. S3A) (53) or M. tuberculosis (Fig. 2E), enhanced 6-TreAz
labeling under carbon limitation indicates an increase in trehalose recycling.

6-TreAz recovered by the LpqY-SugABC transporter may remain intact in the cyto-
plasm, be catabolized, or be converted to azido-TMM and transported outside the cell
(Fig. 2A) (53). Although it has not been reported, it is possible that the probe
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incorporates into other trehalose-bearing molecules in the mycobacterial envelope
(21). To tune our detection for the cell surface, we selected DBCO-Cy5 as the fluores-
cent, azide-reactive label because the localized charge on the sulfonated cyanine dye
confers poor membrane permeability (54). The enhanced 6-TreAz labeling that we
observed for M. smegmatis and M. tuberculosis during carbon limitation (Fig. 2D and E)
strongly suggests that at least some of the recycled trehalose is converted into an en-
velope component(s). Given that (i) TMM and TDM are the only known trehalose-con-
taining glycoconjugates shared by both M. smegmatis and M. tuberculosis and that (ii)
TDM cannot be labeled by 6-TreAz (53), we conclude that TMM is the most likely tar-
get. As steady-state TMM levels remained relatively constant in both species (Fig. 2F
and G; see Fig. S3B and C), enhanced conversion of 6-TreAz to azido-TMM further

FIG 2 Trehalose cycling supports mycomembrane metabolism during carbon limitation. (A) Potential fates of recycled trehalose in
catabolism (trehalase [Tre] or TreS) or in trehalose monomycoate (TMM) biosynthesis. (B and C) Survival of wild-type, DsugC,
complemented DsugC (CDsugC), DtreS, and Dtre M. smegmatis strains in 0.02% glucose-supplemented medium. Tenfold serial
dilutions were plated at the indicated time points. The experiment was performed two times with similar results; the results of one
experiment are shown. (D and E) 6-TreAz labeling of wild-type and DsugC M. smegmatis (Msmeg) and M. tuberculosis (Mtb) cultured in
low- or high-carbon medium. Azides were detected by strain-promoted azide-alkyne cycloaddition (SPAAC) with DBCO-Cy5 label. The
fluorescence was detected by flow cytometry, with MFI values from controls lacking 6-TreAz (but subjected to SPAAC) subtracted
from the sample MFI. The experiment was performed at least three times in triplicate; the results of one representative experiment
are shown. (F and G) TMM abundance in M. smegmatis and M. tuberculosis cultured in low- or high-carbon medium. TLC results were
scanned and processed in ImageJ (99). The data are normalized to the TLC results from mycobacteria cultured in high-carbon
medium and plotted from two (M. tuberculosis) or three (M. smegmatis) independent experiments. (For representative TLC results, see
Fig. S3B and C.) Error bars, standard deviations. The statistical significance of low- versus high-carbon samples was assessed by two-
tailed Student t test. *, P , 0.05.
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suggests that trehalose recycling under carbon deprivation helps to maintain TMM lev-
els. These data are consistent with a model in which trehalose cycles in and out of the
cell to remodel the mycomembrane in carbon-deprived mycobacteria.

Mycomembrane reorganization under carbon deprivation can occur in the
absence of trehalose cycling. Our experiments suggest that trehalose cycling contrib-
utes to mycomembrane reorganization during carbon limitation. However, loss of tre-
halose import by LpqY-SugABC did not impact the abundance of TMM, TDM or AGM
(see Fig. S2B, S2C, S3B, S3C, S4B, and S4C); synthesis of AGM or TDM (see Fig. S4D);
turnover of TDM (compare Fig. 1B, right, to Fig. S4E); or permeability (see Fig. S4F). The
absence of measurable changes in mycomembrane metabolism or composition were
consistent with earlier work showing that M. tuberculosis DsugC and DlpqY strains do
not have detectable changes in the glycolipid composition of their mycomembranes
compared to wild type (20). These data also indicate that mycomembrane reorganiza-
tion can occur in the absence of trehalose recycling.

Trehalose recycling promotes redox and energy homeostasis under carbon
limitation.While trehalose recycling was dispensable for M. smegmatis and M. tubercu-
losis mycomembrane remodeling and survival under carbon limitation, we hypothe-
sized that it might be important for withstanding other stressors. We first sought to
determine whether blocking trehalose recycling disrupts redox homeostasis. We tested
this hypothesis under growth-limiting (see Fig. S1) (3) carbon limitation since trehalose
recycling is enhanced under this condition (Fig. 2D and E).

M. smegmatis and M. tuberculosis DsugC strains were sensitized to exogenously
applied hydrogen peroxide and/or to reactive oxygen species (ROS)-potentiating vita-
min C (55) (Fig. 3A and B; see also Fig. S5A and B). Loss of trehalose recycling also
enhanced the fluorescence of dihydroethidium (DHE), an indicator dye of endogenous
cellular superoxide (Fig. 3C) (56). Propidium iodide staining remained unchanged (see
Fig. S4F), suggesting that the effect was not due to nonspecific differences in uptake,
efflux, or cell size. In M. smegmatis, the total pool of cytoplasmic thiol antioxidants was
modestly enhanced in the absence of sugC (see Fig. S5C). We hypothesized that the
increase in free thiols in the sugC mutant might be an adaptation to counteract the
higher basal levels of superoxide. Consistent with a drive to maintain a reduced thiol
pool (57) (58), we observed increased NADP:NADPH (see Fig. S5D) in M. smegmatis
DsugC. Taken together, our data suggest that trehalose recycling that occurs during
carbon limitation supports redox balance.

A possible endogenous source of ROS in the bacterial cell is respiration, which in
turn can be estimated by the oxidation of the methylene blue dye (59). In carbon-lim-
ited medium, we observed more methylene blue decolorization for the DsugC mutant
(Fig. 3D), indicating that respiration is enhanced in the absence of trehalose recycling.
Notably, however, the mutant had lower levels of ATP than the wild type (Fig. 3E).
These data are consistent with a model in which trehalose recycling maintains redox
balance in carbon-limited mycobacteria by minimizing ATP consumption and respira-
tion (Fig. 3F). Alternatively, or additionally, redox balance may enable energy homeo-
stasis under this condition.

Trehalose anabolism disrupts redox balance under carbon limitation. Cytoplasmic
trehalose can protect against ROS directly, in plants, fungi, and other bacteria (60–63),
or indirectly, via TreS-dependent catabolism in mature M. tuberculosis biofilms (23). To
test whether either of these potential mechanisms could account for recycling-pro-
moted redox homeostasis, we measured the total trehalose pools, endogenous ROS
levels, and exogenous ROS sensitivity of mutants defective in trehalose catabolism or
anabolism. There are several metabolic pathways for trehalose in mycobacteria: OtsA
and OtsB convert phosphorylated glucose intermediates to trehalose; TreY and TreZ
degrade the glucose polymer a-glucan into trehalose; TreS converts trehalose to malt-
ose; trehalase degrades trehalose into glucose (Fig. 2A and 4A; see also Fig. S6A). We
found that changes to the size of the trehalose pool that were due to perturbations in
catabolism (see Fig. S6G and H) or anabolism (see Fig. S6B) did not correlate with en-
dogenous ROS levels (see Fig. S6C) or sensitivity to exogenous ROS (see Fig. S6D, E,
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FIG 3 Trehalose recycling promotes redox and energy homeostasis under carbon limitation. (A and B)
Sensitivity of carbon-deprived wild-type, DsugC, and complemented DsugC (CDsugC) M. smegmatis (A) or
M. tuberculosis (B) strains to hydrogen peroxide. Tenfold serial dilutions were plated. White triangles
highlight the most sensitive strain or condition. The sensitivity of each strain or condition was assessed at
least three independent times; representative data are shown. (C) Staining of M. smegmatis cultured in
0.02% glucose-supplemented medium by superoxide indicator dye dihydroethidium (DHE). Fluorescence
was detected by flow cytometry, and the MFI was plotted. The experiment was performed three times in
triplicate; the results of one representative experiment are shown. (D) Oxygen consumption of M.
smegmatis cultured in 0.02% glucose-supplemented medium. Strains were incubated with or without
methylene blue, and the absorbance at 665nm was measured. The absorbance from untreated samples
was subtracted and then values were normalized to those of the wild-type. The data are plotted
for three independent experiments performed in triplicate. (E) ATP levels of M. smegmatis
cultured in 0.02% glucose-supplemented medium. Protein concentration-normalized cell lysates
were incubated with BacTiter-Glo reagent, and the luminescence was measured in relative light-
forming units (RLU). The experiment was performed at least three times in triplicate; the results
of one representative experiment are shown. (F) Cartoon summary of Fig. 3 and Fig. S5. Error
bars, standard deviation. For panels C to E, the statistical significance of DsugC or complement
strains versus the wild type from at least three independent experiments was assessed by a two-
tailed Student t test. *, P , 0.05.
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and F). These experiments indicated that the mycobacterial redox balance does not
depend solely on the size of the trehalose pool or on trehalose catabolism during
short-term carbon limitation.

How might trehalose recycling promote redox homeostasis under nutrient limita-
tion? We noted that mycomembrane synthesis continues unabated in the DsugC mu-
tant (see Fig. S4D) and that TMM remains at wild-type levels (Fig. 2F and G). The syn-
thetic lethal interactions between otsA and treYZ or lpqY-sugABC in M. tuberculosis (64)
suggest functional redundancy between the pathways encoded by these genes. The
TreYZ pathway does not require energy to break down a-glucan into trehalose but
OtsA and OtsB convert phosphorylated glucose intermediates to trehalose. In glucose-
limited conditions, trehalose biosynthesis via the OtsAB pathway may also require
additional ATP to drive gluconeogenesis. We considered whether induction of ATP-ex-
pensive trehalose anabolism might explain the oxidative stress that occurs in the ab-
sence of LpqY-SugABC.

Four lines of evidence support the first part of this model, e.g., that loss of recycling
stimulates ATP-consuming trehalose biosynthesis. First, the M. smegmatis DsugC strain
has lower ATP levels than the wild type (Fig. 3E). Second, we observed enhanced me-
tabolism of fluorescently labeled glucose in the mutant (see Fig. S7). Third, while the
expression of otsA did not change and the expression of one of the two M. smegmatis

FIG 4 Trehalose anabolism disrupts redox balance under carbon limitation. (A) Anabolic and catabolic pathways for trehalose.
Light blue, phosphorylated glucose intermediates; purple, a-glucan polymer. (B) Expression of trehalose biosynthesis genes by
qRT-PCR. Wild-type and DsugC M. smegmatis strains were cultured in 0.02% glucose-supplemented medium. Expression data were
first normalized to the housekeeping gene sigA and then plotted as a ratio of the DsugC mutant to the wild type. The data are
combined from three independent experiments performed in triplicate. (C) Glucose-6-phosphate (G6P) levels of M. smegmatis
cultured in 0.02% glucose-supplemented medium. Protein concentration-normalized cell lysates were incubated with G6P working
solution, and the G6P level was measured in a 96-well plate by monitoring the absorbance ratio at 575 nm/605nm. The data are
plotted for three independent experiments performed in duplicate. G6P levels normalized to those of the wild type. (D) Sensitivity
of carbon-deprived M. smegmatis to hydrogen peroxide upon trehalase overexpression. Tenfold serial dilutions were plated at the
indicated time points. White triangles highlight the difference in sensitivity with or without otsA. –Tre, plasmid backbone only;
1Tre, plasmid with gene encoding trehalase under acetamide-inducible promoter; Acet, acetamide. The sensitivity of each strain
or condition was assessed at least three independent times; representative data shown. Error bars, standard deviations. The
statistical significance of expression in the DsugC mutant relative to the wild-type (B) or of other strains versus the wild type (C)
was assessed by two-tailed Student t test. *, P , 0.05; **, P , 0.005.
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otsB homologs, (MSMEG_6043) was not detectable, the expression of the other otsB
homolog, MSMEG_3954, was enhanced ;4-fold in the absence of sugC (Fig. 4B).
Finally, the levels of glucose-6-phosphate—the end product of gluconeogenesis—
were elevated in the DsugC strain but suppressed in the DotsA strain (Fig. 4C), respec-
tively, consistent with increased and decreased flux through this pathway.

We next tested the second part of our model, e.g., whether induction of trehalose
anabolism upsets redox balance in carbon-deprived mycobacteria. Given the synthetic
lethal interaction between sugC and otsA (64), we opted to deplete the trehalose pool
by inducible trehalase overexpression. We compared the hydrogen peroxide sensitivity
of strains that overexpress trehalase in wild-type, DotsA, and DtreYZ backgrounds. Loss
of OtsA, but not of TreYZ, rescued the sensitivity of M. smegmatis to hydrogen peroxide
upon trehalase overexpression (Fig. 4D). These experiments indicate that trehalose
replenishment by the OtsAB pathway can sensitize carbon-starved mycobacteria to
ROS. Taken together, our data suggest that trehalose recycling limits energy consump-
tion and oxidative stress during carbon limitation by alleviating the need for de novo
biosynthesis.

Trehalose recycling promotesM. tuberculosis survival in macrophages. Deletion
of sugC or lpqY inhibits M. tuberculosis replication in the acute phase of murine infec-
tion (20). Transposon insertions in sugABC or lpqY also attenuate pooled M. tuberculosis
growth in interferon-gamma (IFN-g)-activated or resting C57BL/6 bone marrow-derived
macrophages (BMDM) (32). While it is likely that progressive carbon starvation under-
lies the in vivo and macrophage defects of trehalose recycling mutants, the precise
mechanism(s) have not been clear. Our in vitro experiments support a model in which
trehalose anabolism compensates for the loss of trehalose recycling but exacts ener-
getic and redox costs. Since one consequence of IFN-g activation is ROS production by
the macrophage (65, 66), we first sought to test whether the magnitude of trehalose
recycling mutant attenuation was different in the presence or absence of the cytokine.
We confirmed that the M. tuberculosis DsugC mutant was defective for growing in
immortalized BMDM and that this phenotype was reversed by genetic complementa-
tion (Fig. 5A and B). However, the IFN-g-dependent decrease in the DsugC strain fitness
relative to the wild type was very modest (see Fig. S8A), suggesting that sensitivity to
ROS or to other, downstream stresses such as reactive nitrogen intermediates, acidic
pH, and nutrient limitation (67, 68) does not fully account for attenuation in macrophages.

We next sought to determine whether dysfunctional energy metabolism compro-
mises the fitness of trehalose recycling mutants during infection. To do this, we took a
chemical-genetic epistasis approach. Bedaquiline inhibits ATP production by targeting
the F1F0 ATP synthase (69, 70). Bedaquiline-treated M. tuberculosis is transiently able to
maintain ATP levels by increasing oxidative and substrate-level phosphorylation (71,
72). Loss of trehalose recycling also results in ATP depletion (Fig. 3E) and enhanced res-
piration (Fig. 3D) in vitro. If these perturbations to (energy) metabolism are responsible
for trehalose recycling mutant attenuation, we reasoned that bedaquiline should in-
hibit wild-type, DlpqY, and DsugC M. tuberculosis strains similarly, e.g., that the drug
should not be additive with either of the mutations. Indeed, we found that the loss of
lpqY or sugC was additive with treatment with rifampin, an antibiotic that does not
impair mycobacterial energy metabolism (73, 74), but not with bedaquiline (Fig. 5C;
see also Fig. S8B). Taken together, our data suggest that energy dysfunction that
accompanies loss of trehalose recycling attenuates M. tuberculosis in macrophages.

DISCUSSION

Hints of mycomembrane plasticity began to appear in the early 1900s, when it was
recognized that acid-fastness—a hallmark staining property still used for microscopy-
based diagnosis of M. tuberculosis—varied with nutrient supply (75–77). More recent
work supports the idea that the mycomembrane is reconfigured in vivo and in
response to host-mimicking stresses (3, 5–13). The mechanisms by which these cell sur-
face alterations occur are still emerging but have been attributed primarily to catabolic
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pathways (3, 6). We took advantage of recent advances in metabolic labeling (35, 78)
to show that mycomembrane remodeling under in vitro carbon deprivation also
involves anabolic reactions (Fig. 1C), a counterintuitive result since mycobacterial repli-
cation (see Fig. S1A) and presumably the overall metabolic activity are sluggish. Our
data collectively indicate that the net result of such reactions is decreased TDM and spatial
rearrangement of AGM (Fig. 6). We previously showed that synthesis of peptidoglycan
along the nonexpanding sidewall of M. smegmatis is enhanced in response to cell wall
damage (38). AGM synthesis under carbon starvation also occurs along the cell periphery
(Fig. 1F), further supporting the notion that mycobacteria can edit their cell surface in a
growth-independent fashion.

The adaptive consequences of mycomembrane remodeling are manifold (21, 79,
80). For example, bulk decreases in TDM and AGM abundance are known to increase
mycobacterial cell permeability, which in turn enhances nutrient uptake and antimicro-
bial susceptibility (3, 4, 39). Although we do not observe gross changes in the amount
of AGM under nutrient deprivation (Fig. 1D), the primary site of synthesis shifts from
the pole to sidewall (Fig. 1F). The concomitant reduction in permeability (Fig. 1E)—de-
spite an overall decrease in TDM abundance—suggests that the subcellular distribu-
tion of AGM also contributes to the barrier function of the mycobacterial cell envelope.
Beyond enabling edits to the structural components of the mycomembrane,

FIG 5 Trehalose recycling promotes M. tuberculosis survival in macrophages. (A) Survival of wild-type,
DsugC, and complemented DsugC (CDsugC) M. tuberculosis strains in immortalized C57BL/6 bone
marrow-derived macrophages (iBMDM) with or without IFN-g treatment at 3 days postinfection. The
experiment was performed at least three times in duplicate or triplicate; the results of one
representative experiment are shown. (B) Wild-type and DsugC M. tuberculosis strain survival in IFN-
g-stimulated iBMDM at 0, 2, and 5 days postinfection. Log10-transformed data are combined from
three to seven independent experiments performed in duplicate or triplicate. (C, left) Survival of wild-
type, DsugC, and DlpqY M. tuberculosis strains in IFN-g-activated iBMDM with or without bedaquiline
(BDQ) or rifampin (RIF) at 2 days postinfection. The CFU from each condition were normalized to the
untreated wild type. (Raw data are shown in Fig. S8B.) (Right) Bliss independence scores for mutant-drug
interactions were obtained by subtracting the expected values for inhibition from the observed values.
The expected values were calculated as described in Materials and Methods. Combined data from five
(RIF) or six (BDQ) independent experiments are shown. Error bars, standard deviations. Statistical
significance was assessed by a two-tailed Student t test on log10-transformed data at each time point (B)
or by comparing expected and observed values for mutant-drug interactions (C, right). *, P , 0.05.
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remodeling reactions liberate smaller molecules that influence cell physiology. Free
trehalose released by TDM and AGM synthesis can be recycled into glycolysis or pen-
tose phosphate intermediates or act as a stress protectant or compatible solute in the
cytoplasm (6, 21–23). Our data suggest that it can also be directly refashioned into tre-
halose-containing, cell surface glycolipids (Fig. 2D and E), likely TMM. Free mycolic
acids generated by TDM hydrolysis are components of biofilm matrix (7) and, like tre-
halose, serve as carbon sources (81). We speculate that they may additionally be
reused together with recycled trehalose to make TMM.

How do mycobacteria power mycomembrane remodeling when faced with a loss
of nutrients? The three isoforms of the TMM-consuming antigen 85 complex (Ag85C),
encoded in M. tuberculosis by fbpA, fbpB, and fbpC, have partially redundant acceptor
specificities (39, 82). However, only fbpC is upregulated in nutrient-starved M. tubercu-
losis (83, 84), making Ag85C an obvious candidate for performing synthetic reactions
under that condition. Perhaps the more interesting question, however, is the source of
the energetically expensive TMM building blocks. Breakdown of TDM by TDMH fur-
nishes free mycolic acids and TMM, the latter of which could serve as a donor for side-
wall AGM synthesis (7, 15). While such a pathway would not require ATP, it would be
limited by the amount of TDM loss that can be tolerated without lysis (7, 34) or
reduced resilience to host stress (3). Our data suggest that M. smegmatis and M. tuber-
culosis also generate TMM in the cytoplasm from recycled trehalose (Fig. 2D and E). An
intracellular route of TMM generation would limit TDM loss, thereby preserving myco-
membrane integrity. Use of recycled materials in turn would allow the mycobacterial
cell to reap the benefits of sidewall AGM fortification while minimizing energy expendi-
ture. In the absence of trehalose recycling, de novo synthesis supplies the sugar and
mycomembrane remodeling continues unabated (see Fig. S4). The cost of from-
scratch, OtsAB-mediated anabolism is not apparent under standard in vitro culture con-
ditions but sensitizes M. smegmatis and M. tuberculosis to ROS (Fig. 3) and may contrib-
ute to defective M. tuberculosis growth during infection (Fig. 5) (20).

FIG 6 Model for the role of trehalose recycling in mycomembrane remodeling under nutrient or host
stress. (Bottom left) Mycobacteria growing under carbon-replete conditions synthesize peptidoglycan (PG;
green) and arabinogalactan mycolates (AGM; red) primarily at the poles of the cell. (Bottom right)
Mycobacteria respond to growth-limiting carbon deprivation by turning over trehalose dimycolate (TDM)
and synthesizing AGM along the entire cell periphery. Peptidoglycan metabolism, in contrast, is relatively
inactive. (Top left) In carbon-deprived wild-type cells, the TMM building blocks are obtained at least in
part from trehalose recycled by LpqY-SugABC. Trehalose may also be funneled to central carbon
metabolism via TreS- or trehalase (Tre)-mediated catabolism. (Top right) In carbon-deprived mutants
unable to recycle trehalose, TMM is supplied by de novo trehalose synthesis (dark arrow), which in turn
depletes ATP, drives respiration, and confers ROS sensitivity.

Pohane et al. ®

January/February 2021 Volume 12 Issue 1 e02801-20 mbio.asm.org 12

https://mbio.asm.org


Trehalose is a cytoplasmic stress protectant and compatible solute and, in many
types of bacteria, a carbon source (62, 85, 86). Mycobacteria and related organisms are
relatively unique in using trehalose for extracellular purposes, to build their outer cell
envelope. As the sugar fluxes in and out of central metabolism and the mycomem-
brane via several synthetic (OtsAB and TreYZ) and degradative (TreS and trehalase)
processes, trehalose utilization may be particularly vulnerable to perturbations that
induce redox and metabolic imbalances. Like carbon-limited DsugC M. smegmatis or M.
tuberculosis strains, biofilm cultures of M. tuberculosis DtreS have disruptions in energy
and redox homeostasis (23). However, our data suggest that the mechanisms are dis-
tinct. In mature biofilms, trehalose is shunted away from TMM and TDM synthesis into
glycolytic and pentose phosphate intermediates in a TreS-dependent manner (23). In
contrast, we find that TMM levels are maintained during the time frame of our experi-
ment, either by LpqY-SugABC, in wild-type organisms, or by de novo synthesis, in
DsugC mutants (Fig. 6). While biofilm M. tuberculosis DtreS mutants are likely more sen-
sitive to ROS because they are depleted for the antioxidant precursor g-glutamylcys-
teine (23), carbon-limited M. smegmatis DsugC mutants have higher levels of ROS-
counteracting, cytoplasmic thiols (see Fig. S5C). Finally, biofilm M. tuberculosis DtreS is
hypersensitive to ATP-depleting bedaquiline (23), whereas intracellular DsugC and
DlpqY mutants are more tolerant (Fig. 5C). These and other metabolite data are most
consistent with the idea that enhanced ROS production and susceptibility (Fig. 3) in
the absence of trehalose recycling stems from increased anabolism of the sugar rather
than decreased catabolism. While we focus here on mycomembrane remodeling that
occurs within 1 to 3 days of adaptation to carbon-limited medium, the TreS-dependent,
trehalose-catalytic shift occurs in 4- to 5-week-old biofilms. Under our conditions, the
loss of TreS has no impact on ROS susceptibility (see Fig. S6E). While we cannot rule
out stress- or species-specific differences between the two studies, we favor a model in
which the adaptive role of trehalose changes over time: early fortification of the cell
envelope, to protect against immediate environmental insults, and later rewiring of
central carbon metabolism, to maintain ATP and antioxidant levels. Trehalose recycling
maintains redox and ATP homeostasis in the second case by driving glycolysis and the
pentose phosphate pathway and in the first case by providing energetically inexpen-
sive substrates for mycomembrane remodeling, thereby easing the demand for the
products of these metabolic pathways.

The presence of a retrograde transporter enables trehalose to cycle in and out of
the cell and serve as a metabolic node between the mycomembrane and cytoplasm.
Recycling of the sugar is known to enhance M. tuberculosis survival in a mouse model
of tuberculosis. It is widely hypothesized that the in vivo growth defects of trehalose
recycling mutants stem from progressive carbon starvation (20, 21, 50). Nutrient depri-
vation coupled with loss of trehalose catabolism may indeed reduce fitness in vivo.
However, our data suggest a more complex model, namely, that futile trehalose cy-
cling consumes ATP and stimulates compensatory, ROS-generating respiration (Fig. 6).
The energy and redox phenotypes of a trehalose recycling mutant resemble those eli-
cited by other futile cycles (24–28) and some bactericidal antibiotics (29, 71, 72, 87, 88).
Enhanced bacterial respiration has been proposed to increase drug efficacy (29, 30),
and indeed, the loss of trehalose recycling sensitizes M. tuberculosis to multiple antibi-
otics (31). Here, we found that disrupted energy metabolism is the primary mechanism
of attenuation for trehalose recycling mutant M. tuberculosis in macrophages (Fig. 5).
Dysfunction triggered by forced de novo synthesis of energy-expensive macromole-
cules may be a fruitful avenue for potentiating both immune and antibiotic activity
against bacterial pathogens, including those that inhabit growth-limiting, nutrient-
deprived host niches.

MATERIALS ANDMETHODS
Bacterial strains and culture conditions. M. smegmatis mc2155 was grown in Middlebrook 7H9

growth medium (HiMedia, India) supplemented with Tween 80 (7H9T) and glucose (2 or 0.02%) at
37°C unless otherwise specified in the text. Two-day-old primary cultures of M. smegmatis grown in
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2% glucose were normalized to an optical density at 600 nm (OD600) of 0.1 in fresh 7H9T supple-
mented with 2 or 0.02% glucose and allowed to grow for 24 h. M. tuberculosis H37Rv strains (gifts
from Rainier Kalscheuer) were grown in Middlebrook 7H9 medium (BD Difco, Franklin Lakes, NJ) sup-
plemented with Tween 80 and OADC (BD BBL, Sparks, MD). For starvation of M. tuberculosis, cultures
grown in 7H9T-OADC to an OD600 of 0.8 to 1.0 were collected by centrifugation and washed once
with 7H9T (no OADC) and resuspended in 7H9T (starvation medium) to a normalized OD600 of 1. To
prepare a strain that expresses tre, the gene that encodes trehalase, under an acetamide-inducible
promoter, we PCR amplified tre from genomic DNA of M. smegmatis by using 4535For_Acet
(TGATGTGCTCTAGAGTTCTGCAACAGACCGAGCC) and 4535Rev_Acet (GGCCTGATCTAGACATCGGGG
CGTTCGCGG) primers. The resulting PCR product was ligated in pYAB033 vector (a gift from Yasu
Morita) at the XbaI site and transformed in E. coli XL-1 Blue strain. The colonies were screened by
colony PCR and the obtained plasmid was confirmed by sequencing. Bacteria used in this study are
listed in Table 1.

ROS sensitivity. M. smegmatis grown in 0.02% glucose for 24 h were normalized to OD600 of 1. The
cultures were then treated with 0.15% H2O2 for 10 min at 37°C with shaking. The trehalase overexpres-
sion strains were grown for 20 h in 0.02% glucose and then induced with 0.2% acetamide for an addi-
tional 10 h before being treated with 0.1% H2O2 for 10 min at 37°C with shaking. After H2O2 treatment,
3ml of 10-fold serial dilutions made in phosphate-buffered saline (PBS) was spotted onto 7H9–2% glu-
cose agar. For the thiourea rescue experiment, cultures were pretreated with 50mM thiourea for 45 min
prior to H2O2. For M. tuberculosis, cultures in starvation medium were grown for 5 days, normalized to an
OD600 of 0.1 in fresh starvation medium, and then treated with 0.4% of H2O2 for 2 h at 37°C with shaking.
After H2O2 treatment, 5ml of 10-fold serial dilutions made in PBS were spotted on 7H10-OADC agar
plate. For the vitamin C experiment, M. tuberculosis cultures in starvation medium were normalized to
an OD600 of 0.1 in fresh starvation medium. The cultures were then treated with 20mM vitamin C for
2 days. After vitamin C treatment, 5ml of 10-fold serial dilutions made in PBS were spotted onto 7H10-
OADC agar.

Macrophage infections. Immortalized C57BL/6 BMDM (iBMDM; a gift from Christopher Sassetti)
were seeded at 105 cells/well in 24-well tissue culture plate and incubated at 37°C overnight. M. tubercu-
losis was added at 5:1 multiplicity of infection (MOI; bacteria:iBMDM) and incubated for 4 h. After incuba-
tion, the coculture was washed twice with high-glucose Dulbecco modified Eagle medium (DMEM;
Genesee Scientific, San Diego, CA) to remove extracellular M. tuberculosis, and fresh 5mM DMEM-FBS-
HEPES medium was added (fetal bovine serum [Genesee Scientific, San Diego, CA] and HEPES [Gibco,
Paisley, PA]). IFN-g (PeproTech, Rocky Hill, NJ) was added or not at 25 ng/ml concentration. For antibiotic
susceptibility experiments, cocultures were treated or not with 5mg/ml of bedaquiline (BDQ) or rifampin
(RIF) for 2 days of the infection. The infected iBMDM were incubated for 0 to 5 days and then washed
once with PBS and lysed with 0.05% Triton X-100 in PBS. After lysis, 10 or 50 ml of 10-fold serial dilutions
made in PBS were respectively spotted or spread onto 7H10-OADC agar to determine the CFU.

Bliss scoring. Bliss interaction scores (89) for pairs of mutant-drug interactions were obtained by
subtracting the expected values for inhibition from the observed values. The expected values were cal-
culated using the formula EM1 EA – EMEA, where EM is the effect of the mutation (DsugC or DlpqY) and EA

TABLE 1 Strains used in this study

Strain Source (references)
Immortalized C57BL/6 BMDM Christopher Sassetti (93)

M. smegmatis
mc2155 NC_008596 in GenBank (94)
DsugC Rainer Kalscheuer (20)
DsugC pMV361-sugC Ben Swarts (95, 96)
DotsA Rainer Kalscheuer (51)
DtreYZ Rainer Kalscheuer (51)
DtreS Rainer Kalscheuer (51)
Dtre Rainer Kalscheuer (48)
DotsA pYAB-tre This study
DtreYZ pYAB-tre This study
pYAB Yasu Morita (97, 98)
pYAB-tre This study

M. tuberculosis
H37Rv Rainer Kalscheuer (20)
DsugC Rainer Kalscheuer (20)
DlpqY Rainer Kalscheuer (20)
DsugC pMV306-sugC Rainer Kalscheuer (20, 95)

E. coli XL-1 Blue Agilent Technologies
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is the effect of the antibiotic (BDQ or RIF). Statistically significant combinations that produced Bliss
scores= 0 were interpreted as nonadditive interactions.

DHE staining.M. smegmatis grown for 24 h in 7H9T–0.02% glucose was normalized to an OD600 of 1
with the same medium and then treated with 5mM dihydroethidium (DHE; Sigma, St. Louis, MO) for 30
min at 37°C. Fluorescence was analyzed by flow cytometry.

Total thiol abundance. The protocol for measuring the total thiol content was adopted from (30).
Briefly, 10ml of M. smegmatis grown for 24 h in 7H9T–0.02% glucose was centrifuged at 2,500� g for 5
min and washed with buffer containing 50mM Tris-Cl (pH 8) and 5mM EDTA, and the cell pellets were
normalized by wet weight. Bacteria were resuspended in the same buffer and lysed by bead beating.
Lysates were centrifuged at 16,000� g for 15 min at 4°C, and 5,59-dithiobis(2-nitrobenzoic acid) was
added to 100 ml of supernatants to a final concentration of 0.05mM. The total thiol content was esti-
mated by determining the absorbance (l) at 412 nm.

Methylene blue. M. smegmatis grown for 24 h in 7H9T–0.02% glucose was adjusted to an OD600 of
0.25. Cultures were split in two; one of these was treated with 0.005% methylene blue and aliquoted to
a 96-well plate. The plate was sealed with Microseal B adhesive sealing films (Bio-Rad, UK) and incubated
at 37°C for 4 h with shaking. The seal was then removed, and the absorbance (l) at 665 nm was meas-
ured. The difference between the absorbance (l) values at 665 nm for treated and untreated samples
was plotted.

ATP, glucose-6-phosphate, and NADP/NADPH quantitation. The ATP concentration was meas-
ured by using a BacTiter-Glo (Promega, Madison, WI) luminescence kit. The glucose-6-phosphate (G6P)
concentration and the NADP/NADPH ratio were respectively measured with an Amplite (AAT Bioquest,
Sunnyvale, CA) colorimetric G6P assay and colorimetric NADP/NADPH ratio assay kits. M. smegmatis
grown for 24 h in 7H9T–0.02% glucose was washed once with PBS. The pellets were resuspended in PBS
and lysed by bead beating. Lysates were normalized by total protein concentration using a BCA protein
assay kit (Pierce, Rockford, IL) and then processed according to the manufacturer’s protocol.

Trehalose quantitation. For intracellular trehalose detection, M. smegmatis grown for 24 h in 7H9T–
0.02% glucose was washed once with PBS. Cell pellets were normalized by wet weight and then resus-
pended in chloroform-methanol (1:1) for overnight incubation with shaking. The suspension was centri-
fuged at 10,000� g for 5 min, and the organic fraction was collected in a new tube. One part chloroform
and one part water were added to the organic fraction and mixed vigorously in a shaker for 15 min.
Suspensions were centrifuged, and the upper aqueous layers were processed according to the manufac-
turer’s instructions for the trehalose assay kit (Megazyme, Ireland). For extracellular trehalose detection,
M. smegmatis were grown for 24 h in 7H9T supplemented with 2 or 0.02% glycerol. Cultures were nor-
malized to an OD600 of 1 prior to centrifugation. The upper layer was collected and filtered through a
0.2-mm syringe. Filtrates were processed as described above to detect trehalose.

Lipid extraction and TLC. For extractable lipid analysis, 10ml of culture was washed with PBS, and
cell pellets were normalized by wet weight (M. smegmatis) or by OD600 (M. tuberculosis). To obtain TDM
and TMM, cell pellets were extracted with chloroform-methanol (2:1). The extracted lipids were sepa-
rated by thin-layer chromatography (HPTLC silica gel; Millipore, Billerica, MA) with chloroform-methanol-
acetone (90:15:10) and chloroform-methenol-H2O (80:20:2) for TDM and TMM, respectively (35, 90).
Then, 5% H2SO4 in ethanol was used to develop the TLC results. Covalent mycolate extraction was
adopted an earlier study (91). Briefly, mycolic-arabinogalactan-peptidoglycan (mAGP) complex was
extracted from 100ml of culture as described previously (91). The pellet was resuspended in PBS and soni-
cated to lyse the cells. Lysates were centrifuged, and pellets were collected and washed with PBS. The pellets
were resuspended in 2% sodium dodecyl sulfate (SDS) in PBS and incubated at 80°C for 3 h with intermedi-
ate shaking. They were then resuspended in 1% SDS, centrifuged, and washed twice with water, once with
80% acetone, and once with 100% acetone. The pellets were dried to obtain the final mAGP complex. The
samples were normalized by mAGP weight and then resuspended in PBSplus0.05% Tween 80 (PBST) by
water bath sonication. To extract mycolic acids from mAGP, the suspension was treated with 5% tetrabuty-
lammonium hydroxide (TBAH) overnight with shaking. The extracted mycolic acids were separated by treat-
ment with an equal volume of dichloromethane, followed by treatment with an equal volume of 0.25 M HCl
and washed with water as described previously (91). To extract free mycolic acids from culture supernatants,
the OD600 of M. smegmatis grown for 24h in 7H9T–2% or 0.02% glucose were normalized to 1 with 7H9T.
The normalized cultures were centrifuged at 10,000� g for 5 min and supernatants were collected and
passed through a 0.25-mm syringe filter. Supernatants (1ml) were treated with 5% TBAH for 1h, followed by
an equal amount of dichloromethane and overnight incubation at room temperature with shaking. The sus-
pension was then centrifuged at 10,000� g, and the lower organic layer was removed. The organic layer
was evaporated, and the pellet was mixed with 40ml of chloroform-methanol (2:1). Mycolic acids were sepa-
rated by TLC using chloroform-methanol (96:4) as described previously (7). Next, 5% molybdophosphoric
acid in ethanol was used to develop the TLC results.

Fluorescent glucose labeling. M. smegmatis cultured in 0.02% glucose-supplemented 7H9T was
normalized to an OD600 of 1.0 in fresh medium and treated with a 5 mM concentration of the fluorescent
glucose analogue 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG; Abcam,
Cambridge, MA) for 2 h at 37°C with shaking. The cultures were centrifuged at room temperature for 5
min and 4,000 rpm and then washed twice with PBST. After normalizing to the wet weight, the pellets
were extracted with chloroform-methanol (2:1) overnight. The organic extracts were separated from the
cell suspension by centrifugation at room temperature for 15 min and 12,000 rpm and then treated with
1 volume of H2O for 15min at room temperature. The aqueous and organic layers were separated from
each other suspension by centrifugation at room temperature for 5 min at 12,000 rpm and then sub-
jected to TLC using chloroform-methanol-H2O (80:20:2) and 1-propanol–ethyl acetate–water (6:1:3),

Trehalose Recycling Supports Energy and Redox Homeostasis ®

January/February 2021 Volume 12 Issue 1 e02801-20 mbio.asm.org 15

https://mbio.asm.org


respectively. The TLC fluorescence was recorded by the ImageQuant system (GE Healthcare) or devel-
oped using 5% H2SO4 in ethanol.

Propidium iodide. We assessed propidium iodide (PI) uptake as described previously (92). Briefly,
50mg/ml PI was added to M. smegmatis that had been cultured in 0.02 or 2% glucose. After incubation
for 15 min at 37°C, the samples were washed once with PBS, and the fluorescence was measured by
flow cytometry.

Cell envelope labeling. Probes used in this study include alkDala (50mM), HADA (500mM), O-
AlkTMM (50mM), N-AlkTMM (250mM), and 6-TreAz (50mM). M. smegmatis labeling was performed
mainly as described previously (38). Briefly, the OD600 was normalized to 1 in the same medium.
Cultures were shaken in the presence of probes for 30min at 37°C for M. smegmatis. After incuba-
tion, the cultures were washed twice with PBST and fixed or not fixed with 2% formaldehyde at
room temperature for 10 min. After fixation, the cultures were washed with PBST. Alkynes were
detected by CuAAC reaction with carboxyrhodamine-110 azide (Click Chemistry Tools, Scottsdale,
AZ). Azides were detected on live, unfixed cells by SPAAC reaction with DBCO-Cy5 (Click Chemistry
Tools). Finally, the cultures were washed three times with PBST, and the fluorescence was measured
by flow cytometry. For M. tuberculosis, the OD600 values for carbon-starved and unstarved cultures
were normalized to 1 in the same media. Cultures were shaken in the presence of probes for 3 h at
37°C and then washed twice with PBST and subjected to SPAAC overnight at 37°C. The cultures were
washed three times with PBST and fixed with 4% formaldehyde overnight at room temperature prior
to removal from the BSL3 facility.

Microscopy analysis. Fluorescence microscopy and image quantitation were performed exactly as
described previously (38).

qRT-PCR. M. smegmatis was cultured in 0.02% glucose medium for 24 h. Cell pellets were resus-
pended in 1ml of TRIzol reagent (Invitrogen, Carlsbad, CA) prior to bead-beating (MP Biochemicals lys-
ing matrix B). After bead beating, 300ml of chloroform was added to each tube. The tubes were centri-
fuged at 14,000 rpm for 15min at 4°C. The upper aqueous layer was removed and resuspended in 600ml
of isopropanol in a fresh tube. The tube was kept at 220°C for 1 h to overnight and then centrifuged for
20 min at 4°C and 14,000 rpm to precipitate the RNA. The RNA-containing pellet was washed once
with 75% ethanol by centrifugation for 5 min at 4°C and 14,000 rpm and then resuspended in
RNase-free H2O. Next, 20mg of RNA was treated with 2.5ml of Turbo DNase (Ambion, Carlsbad, CA)
in a final volume of 100ml. The reaction mixture was incubated for 2 h at 37°C. The RNA was then
cleaned up according to the manufacturer’s instructions for the RNeasy minikit (Qiagen). cDNA syn-
thesis was carried out with 5mg of the cleaned-up RNA according to the manufacturer’s instructions
for SuperScript IV reverse transcriptase (Invitrogen). The cDNA was then used for qRT-PCRs (iTaq
Universal SYBR green Supermix; Bio-Rad, Hercules, CA). We used the sigA gene as our internal con-
trol. The primers are listed in Table 2.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.6 MB.
FIG S2, TIF file, 1.1 MB.
FIG S3, TIF file, 1.3 MB.
FIG S4, TIF file, 1.2 MB.
FIG S5, TIF file, 2.4 MB.
FIG S6, TIF file, 1.2 MB.
FIG S7, TIF file, 2.5 MB.
FIG S8, TIF file, 0.3 MB.

TABLE 2 Primers and sequences

Primer Sequence
4535For_Acet TGATGTGCTCTAGAGTTCTGCAACAGACCGAGCC
4535Rev_Acet GGCCTGATCTAGACATCGGGGCGTTCGCGG
RT-otsA-For ACTACACCAAGGGCATCGAC
RT-otsA-Rev TCGCGATGTAGCTCTCGAC
RT-otsB-For (MSMEG_3954) AACGAGAGCCTGGTCAATCT
RT-otsB-Rev (MSMEG_3954) AGGGTCTGCTGGTAGGACTG
RT-otsB-For (MSMEG_6043) GTGAGTCTTTCGGGGGATCT
RT-otsB-Rev (MSMEG_6043) AATCGGATGTGACCAGCAG
RT-treY-For CTCTCGACGTATCGGTTGC
RT-treY-Rev AGGATGGGGGACAGATACAC
RT-treZ-For CTCGACTACCTGGTCGATCTC
RT-treZ-Rev ACCTCCGTAGGGTTCGTGTA
ForsigA GGGCTACAAGTTCTCGACCT
RevsigA CCGAGCTTGTTGATCACCTC
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