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Bladder pain syndrome (BPS)/interstitial cystitis (IC) is a chronic pain syndrome characterized by pain, pressure, or discomfort
perceived to be bladder related and with at least one urinary symptom. It was recently concluded that 3.3–7.9 million women
(>18 years old) in theUnited States exhibit BPS/IC symptoms.The impact of BPS/IC on quality of life is enormous and the economic
burden is significant. Although the etiology and pathogenesis of BPS/IC are unknown, numerous theories including infection,
inflammation, autoimmune disorder, toxic urinary agents, urothelial dysfunction, and neurogenic causes have been proposed.
Altered visceral sensations from the urinary bladder (i.e., pain at low or moderate bladder filling) that accompany BPS/IC may be
mediated by many factors including changes in the properties of peripheral bladder afferent pathways such that bladder afferent
neurons respond in an exaggerated manner to normally innocuous stimuli (allodynia). The goals for this review are to describe
chemokine/receptor (CXCL12/CXCR4; CCL2/CCR2) signaling and cytokine/receptor (transforming growth factor (TGF-𝛽)/TGF-
𝛽 type 1 receptor) signaling that may be valuable LUT targets for pharmacologic therapy to improve urinary bladder function and
reduce somatic sensitivity associated with urinary bladder inflammation.

1. Lower Urinary Tract (LUT)

1.1. Anatomy. The LUT (bladder and urethra) is a division
of the renal system that functions to passively store kidney
byproducts until it is appropriate to void. To accomplish this,
the urinary bladder is a muscular and membranous organ
whose structure embodies its reservoir function. Its external
features can be organized into an apex, fundus, body, and
neck. The apex, or vertex, is on the anterior surface of the
urinary bladder and is associated with ligament remnants
attached to the umbilicus [1]. The posterior surface is the
fundus and its most inferior aspect is termed the base of the
urinary bladder [1]. The body typically represents the area
between the apex and the fundus and the bladder neck is
the most caudal aspect of the inferior bladder surface that is
perforated by the internal urethral orifice [1].

The urinary bladder wall is composed of three lay-
ers: tunica mucosa, tunica muscularis propria, and tunica
serosa/adventitia. The tunica mucosa consists of transitional
epithelium and a lamina propria. Transitional epithelial cells

in the urinary bladder are termed the urothelium and are
arranged in basal, intermediate, and apical cell layers. Basal
cells are monolayers directly attached to the basement mem-
brane [2]. Intermediate cells are generally larger in diameter
than basal cells and range from one to multiple cell layers
depending on the species [2].The apical, or umbrella, cells are
hexagonal in shape and range from 25 to 250 𝜇m depending
on urinary bladder distention [2, 3].

Several distinct features of the luminal surface of umbrella
cells establish antiadherence and an impermeable barrier
characteristic of the urinary bladdermucosa. First, tight junc-
tion complexes comprised of occludin and claudin proteins
regulate paracellular transport between adjacent umbrella
cells [3]. The apical membrane is also occupied by uroplakin,
a crystalline plaque cell surface protein that forms an asym-
metric unit membrane to maintain impermeability during
bladder expansion [4]. Lastly, a layer of proteoglycans on the
mucosal surface of umbrella cells serves as an antiadherence
factor and provides yet another physical barrier between
urinary constituents and the lamina propria [5].
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The extracellular matrix of the lamina propria is deep to
the basement membrane of the urothelium and contains a
diverse array of interstitial cells, nerve terminals, and vascula-
ture [3, 6]. It has been suggested that the lamina propria may
have an important role in integrating epithelial and smooth
muscle function due to its innervations and proximity to the
urothelium and tunica muscularis propria [6]. The tunica
muscularis propria consists of three smooth muscle layers
termed the detrusor. The internal and external layers are
arranged longitudinally, whereas those in the middle are
circular [7, 8]. The smooth muscle cells in the muscularis
propria retain their classic spindle shape and are bundled
together by collagen-rich connective tissue [7]. External to
the muscularis propria, the tunica serosa surrounds the
superior and lateral surfaces of the urinary bladder wall,
whereas the retroperitoneal aspects contain a vascular, loose
connective tissue termed the tunica adventitia [8].

Caudal to the inferior surface of the urinary bladder is
the urethra. Similar to the urinary bladder wall, the urethral
wall is composed of a tunica mucosa, tunica muscularis
propria, and tunica adventitia. The tunica mucosa consists
of transitional epithelium proximal to the urinary bladder
followed by nonkeratinized, stratified squamous epithelium
distally [8, 9]. The tunica muscularis propria is composed of
inner and outer smooth muscle arranged longitudinally and
circularly, respectively [8]. In the male urethra, the circular
smooth muscle fascicles join with urinary bladder smooth
muscle at the urethrovesical junction to form the internal
urethral sphincter [8, 9]. The smooth muscle fascicles along
the proximal female urethra, however, do not appear to
anatomically arrange into a sphincter [9]. Skeletal muscle of
the urethral wall forms the external urethral sphincter and
extends along the membranous urethra in males to generate
voluntary pressure during bladder filling [10]. The skeletal
muscle fibers in the female urethra join to form an “external”
urethral sphincter comprised of a sphincter urethrae, com-
pressor urethrae and sphincter urethrovaginalis to provide
urinary continence through urethral and vaginal closure [11].

1.2. Neural Control. The LUT is regulated by supraspinal,
spinal, and peripheral nervous system (PNS) input to main-
tain “switch-like” patterns of storage and elimination activity
and has been previously reviewed in greater detail [10].
Briefly, bladder wall mechanoreceptors initiate visceral affer-
ent (A𝛿 fibers) activity during the storage phase that synapse
on spinal interneurons [10, 12]. Spinal reflex pathways then
facilitate storage by directly enhancing thoracolumbar sym-
pathetic outflow and somatomotor discharge or ascending,
in some species, to keep metencephalic integration centers
[10, 12].

Spinal interneurons activate preganglionic sympathetic
fibers from the intermediolateral cell column of the lower
thoracic (T10) through upper lumbar (L2) spinal cord
that form thoracic and lumbar splanchnic nerves [13, 14].
The preganglionic fibers then synapse on the prevertebral
inferior mesenteric ganglia or paravertebral ganglia and
travel along the hypogastric and pelvic nerves, respectively
[10]. Adrenergic neurotransmission on the urinary bladder

smoothmuscle𝛽-adrenergic receptors promotes bladderwall
relaxation and accommodation [13]. Bladder filling is also
facilitated by the activation of 𝛼-adrenergic receptors on the
internal urethral sphincter resulting in contraction of the
urethral outlet [13]. Spinal reflex pathways not only enhance
sympathetic outflow but also 𝛼-motoneuron discharge from
Onuf ’s nucleus in the ventrolateral horn of the sacral (S2–S4)
spinal cord [12]. Propagation of this signal along the pudendal
nerve to the external urethral sphincter elicits skeletal mus-
cle contraction by activating nicotinic acetylcholine recep-
tors to provide voluntary control over urinary continence
[13].

Upon reaching the tension threshold, bladder afferents
(A𝛿 fibers) bypass local spinal reflexes and ascend to themes-
encephalic periaqueductal gray (PAG). Unlike the reflexes
underlying the storage phase, the elimination phase relies
on supraspinal circuitry as evidenced by voiding dysfunction
following lower thoracic spinal cord injury [14, 15]. After
cortical processing, the PAG sends excitatory input to a
region in the dorsolateral pontine tegmentum termed the
pontine micturition center (PMC) [16]. The PMC then sends
descending cortical projections that synapse onpreganglionic
parasympathetic neurons and inhibitory interneurons in the
sacral spinal cord [14, 16].

The preganglionic parasympathetic fibers arise from the
intermediolateral cell column of the sacral (S2–S4) spinal
cord to form pelvic splanchnic nerves. Upon coursing
through and exiting the hypogastric and pelvic plexus,
the fibers join the pelvic and pudendal nerves to synapse
on terminal ganglia and innervate the detrusor smooth
muscle and urethra [12, 13]. Cholinergic and nonadrener-
gic/noncholinergic neurotransmission on the urinary blad-
der smooth muscle promotes bladder wall contraction by
activating muscarinic acetylcholine receptors and purinergic
receptors, respectively [14]. Elimination of urine is also
facilitated by nitric oxide release onto the internal urethral
sphincter resulting in a relaxation of the urethral outlet
[14]. The PMC not only augments parasympathetic out-
flow but also attenuates preganglionic sympathetic and 𝛼-
motoneuron discharge to the LUT [16]. The descending
cortical projections terminating on inhibitory interneurons
in the sacral spinal cord prevent excitatory input into the
urethral sphincters resulting in dilation of the urethral
orifice and continuous flow of urine. As distention of the
urinary bladder decreases during the elimination phase,
ascending excitation to the dorsolateral metencephalon is
diminished and the storage phase is once again switched
on.

1.3. Symptoms and Dysfunction. The terminology used in
the following section is consistent with the standardization
report of LUT symptoms and function by the International
Continence Society and will refer to their definitions when
appropriate [17]. Similar to other clinical indications, LUT
symptoms are the patient’s qualitative representation of a
purported condition.These symptoms, in particular, refer to a
spectrum of LUT functions that include storage, elimination,
and postmicturition disturbances.
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Symptoms associated with the storage phase include, but
are not limited to, “increased frequency, urgency, and incon-
tinence” [17]. The complaint of increased urinary frequency
is prevalent among bothmen and women with LUT dysfunc-
tion and has been suggested to affect an individual’s quality
of life as demonstrated by a strong correlation between
frequency and bothersome endorsements [18]. Increased
urgency is a complaint of the “sudden compelling desire
to pass urine” that may be accompanied by pain, pressure,
or discomfort associated with the LUT [17]. Lastly, urinary
incontinence includes a complaint of the “involuntary leakage
of urine” and may manifest in various forms and severities
[17]. It is important to note that incontinence is not represen-
tative of one particular LUT dysfunction but rather can arise
from multiple sources including stress, comorbid disorders,
and congenital abnormalities [19].

Symptoms associated with the elimination phase include
“hesitancy, slow or intermittent stream, straining, and ter-
minal dribble” [17]. These symptoms generally involve com-
plaints of the initiation and continuation of voiding and
alterations to their urine stream and appear to be more
prevalent in men compared to women [17, 18]. Symptoms
associated with the postmicturition phase occur after void-
ing and include “incomplete emptying and postmicturition
dribble” [17]. Although equally bothersome, postmicturi-
tion dribble may be more prevalent in men, whereas, in
women, incomplete emptying may be more prevalent [18].
As briefly mentioned above, LUT symptoms are not confined
to urodynamic disturbances but may also include unpleasant
sensations of pain or discomfort during storage or elimi-
nation. These sensations are generally perceived to emanate
from the urogenital organs and may exacerbate storage and
elimination symptoms [20].

2. Bladder Pain Syndrome (BPS)/Interstitial
Cystitis (IC)

2.1. Background. LUT signs and symptoms resembling what
is currently termed BPS/IC have been documented through-
out history and its perspective has been previously reviewed
in detail [21]. Briefly, Drs. Philip Syng Physick and Joseph
Parish first recognized an inflammatory condition called
tic douloureux of the bladder whose symptoms included
chronic urinary frequency, urgency, and pelvic pain [22].
Skene [23] expanded the cystoscopic features of this concept
in the late 19th century and introduced the term IC which
included ulceration of the mucous membrane and inflam-
mation within the bladder wall. Focal, ulcerative bleeding in
the urinary bladder wall remained a hallmark of IC due, in
part, to the work of Hunner [24] in the early 20th century
[21]. Many patients, however, were misdiagnosed as current
estimates suggest only 5–7% of those with BPS/IC present
with bladder ulcerations [21, 25].

In the absence of a formal classification for IC, the
National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK) attempted to standardize its research
definition in 1987 by establishing a diagnostic criteria [26].
The criteria included the presence of “glomerulations on

cystoscopic examination or a classic Hunner ulcer, pain
associated with the bladder, urinary urgency” and eighteen
exclusion conditions [21, 26]. After several iterations and
international consultations, the term IC was expanded to
include BPS [27, 28]. The patient selection for BPS is based
on “chronic pelvic pain, pressure, or discomfort perceived
to be related to the urinary bladder accompanied by at least
one other urinary symptom such as persistent urge to void
or frequency,” whereas IC is “reserved for cystoscopic and
histological features” [17, 28]. At this time, the terms BPS
and BPS/IC are analogous and are defined by the American
Urological Association Interstitial Cystitis Guidelines Panel
as at least six weeks of LUT symptoms and unpleasant
sensations perceived to be related to the urinary bladder and
with no other clinically identifiable sources [27].

2.2. Epidemiology. The epidemiology of BPS/IC is limited
due to the absence of standardized definitions, markers,
and examinations [21, 25, 29, 30]. Taking into account this
variability, it is estimated that there is a 5 : 1 female-to-male
ratio among BPS/IC patients [21, 25]. It is estimated that 300
per 100,000womenworldwide suffer fromBPS/IC [21]. In the
United States alone, 3.3 to 7.9 million women are estimated
to meet the criteria for BPS/IC [30]. As expected, BPS/IC
puts an enormous financial burden on the individual and
economy as a whole. Health care costs for an individual with
BPS/IC range from 4 to 7 thousand dollars per year, while the
economic burden approaches 500 million dollars per year in
lost productivity and therapeutics [21, 31].

2.3. Pathophysiology. While the primary insult underlying
BPS/IC is not known, it has been suggested that the
pathophysiology is a “vicious circle” involving uroepithelial
dysfunction, inflammation, afferent nerve hyperexcitability,
and visceral hyperalgesia and allodynia (Figure 1) [32]. This
section will explore the said mechanisms that have been
proposed to feedforward to promote the chronicity of LUT
symptoms observed in BPS/IC [32].

The urothelium is a specialized, stratified epithelium that
when intact provides a nonadherent, passive barrier through
tight junction proteins, plaque proteins, and surface pro-
teoglycans [2]. Any perturbation to the components of this
permeability barrier may lead to increased infiltration into
the bladder wall and exposure of the interstitium to urinary
constituents [33–36]. The diffusion of urinary constituents
like potassium into the bladder interstitium may depolarize
muscle and nerve cells, inflame tissues, degranulate mast
cells, and cascade to the development of LUT symptoms
(Figure 1) [35]. Uroepithelial dysfunction specific to BPS/IC,
however, remains controversial. For example, Chelsky et al.
[37] demonstrated that the permeability in IC was compara-
ble to the variation seen in symptom-free controls, whereas
Parsons et al. [36] demonstrated abnormal permeability and
potassium absorption in those with IC [21]. The abundance
of studies for or against uroepithelial dysfunction in BPS/IC
suggests that it may not be a primary insult but rather may
occur in a subset of patients to exacerbate LUT symptoms
[21].
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Figure 1: Potential etiologic cascade and pathogenesis underlying painful bladder syndrome (BPS)/interstitial cystitis (IC). It is likely that
BPS/IC has a multifactorial etiology that may act predominantly through one or more pathways resulting in the typical symptom-complex.
There is a lack of consensus regarding the etiology or pathogenesis of BPS/IC but a number of proposals include a “leaky epithelium,” release of
neuroactive compounds at the level of the urinary bladderwithmast cell activation, “awakening” of C-fiber bladder afferents, and upregulation
of inflammatory mediators including cytokines and chemotactic cytokines (chemokines). Inflammatory mediators can affect CNS and PNS
neural circuitry including central “wind-up” and nociceptor sensitization resulting in chronic bladder pain and voiding dysfunction. BPS/IC
is associated with diseases affecting other viscera and pelvic floors. See text for additional details. Figure adapted from [32].

In addition to the uroepithelial disruption, visceral
inflammation also remains a central pathological process
in BPS/IC and has been suggested to underlie the devel-
opment of LUT symptoms (Figure 1). Inflammation within
the urinary bladder viscera is characterized by increased
vasculature, mucosal irritation that may result in barrier
dysfunction, and infiltration of inflammatory mediators [38,
39]. The proliferation and activation of mast cells, in par-
ticular, have received considerable attention in the urinary
bladder immune response [32]. Mast cells secrete vasoactive
chemicals to promote innate and autoimmunity and their
increased activity has been widely demonstrated in BPS/IC
[40–43]. The subsequent exposure in the bladder intersti-
tium to vasoactive chemicals, inflammatory mediators, and
neuropeptides from visceral inflammation may lead to affer-
ent nerve hyperexcitability and neurogenic inflammation
(Figure 1) [44–46].

The loss of inhibition on peripheral afferents (A𝛿 and C
fibers) increases input into the spinal cord andmay eventually
promote central sensitization [32]. An unregulated state of
central and peripheral reactivity causes “wind-up” which is
observed clinically as hyperalgesia and allodynia (Figure 1).
In BPS/IC, hyperalgesia and allodynia are characterized by
an elevated state of urinary bladder sensation that may cause
pain, pressure, or discomfort and may result in increased
urinary frequency and urgency [38]. The “vicious circle”
continues as mast cell degranulation and infiltration of
mediators from uroepithelial dysfunction and/or visceral
inflammation sustain peripheral and central sensitization to
establish visceral hyperalgesia/allodynia and chronic LUT
symptoms (Figure 1) [32].

2.4. Animal Models. Numerous animal models have been
implemented to determine the onset and chronicity of LUT
dysfunctions like BPS/IC. While one model cannot currently
account for the constellation of symptoms in BPS/IC, they
each aid in identifying distinct mechanisms underlying part
of its pathophysiology. This section will explore a naturally
occurring cystitis model in felines and focus its review on
experimental models of cystitis induced chemically. It is
important to note that models of BPS/IC are not limited to
what will be discussed in this section and exhaustive reviews
have been previously published [47–49].

The natural development of spontaneous LUT symptoms
has been documented in cats for several decades and is
termed feline interstitial cystitis (FIC) [47, 50]. Though the
primary insult for FIC is not known, the pathophysiology
has marked similarities to BPS/IC including uroepithelial
dysfunction and visceral inflammation. Cats with FIC have
been shown to have a disruption to the epithelial cytoar-
chitecture that increased diffusion and infiltration of uri-
nary constituents [51, 52]. Uroepithelial dysfunction in FIC
further led to a peripheral upregulation of neuropeptides
and inflammatory mediators that altered bladder afferent
soma size and increased input to the central nervous system
(CNS) [53]. As previously discussed, the alterations to central
and peripheral reactivity following uroepithelial dysfunction
and/or visceral inflammation may promote the development
of LUT symptoms that is observed in FIC and, by extension,
BPS/IC [32, 38, 53].

Despite these pathophysiological similarities, FIC as a
model for BPS/IC is limited due to its spontaneity and
epidemiology. Investigators are practically and financially
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restricted to structural and functional alterations following its
spontaneous induction and thus inadequately define insults
preceding the development of FIC [49]. Furthermore, unlike
BPS/IC, FIC occurs irrespective of biological sex [49]. While
this may be due to a misdiagnosis of BPS/IC in males, one
cannot discount hormonal differences that may affect LUT
symptoms in humans [54, 55].

LUT symptoms have also been induced by an assort-
ment of chemical irritants including, but not limited to,
hydrochloric acid, acetic acid, protamine sulfate (PS), and
cyclophosphamide (CYP). The inflammation induced by
intravesical instillation of irritants like hydrochloric acid and
acetic acid helps reveal the anatomical, organizational, and
functional alterations attributable to the visceral immune
response [47]. Specifically, the functional and histological
features following acid instillation are similar to a BPS/IC
subset and include urothelial hyperplasia, bladder ulcer-
ation, mucosal edema, inflammatory cell infiltration, and
the development of LUT symptoms [56, 57]. Though acid
instillation allows for a more controlled environment than
FIC, the studies must be interpreted cautiously as the degree
of inflammation resulting from exogenous irritants may
not be representative of the naturally occurring BPS/IC
[47].

Unlike acid instillation, PS lacks a pervasive inflamma-
tory element but rather disrupts uroepithelial barrier func-
tion by targeting bladder surface proteoglycans [58]. Similar
to the uroepithelial dysfunction observed in FIC, PS instilla-
tion is sufficient to induce LUT symptoms [59].More recently,
PS has been used in conjunction with bacterial induced
cystitis. Instillation of both PS and E. coli lipopolysaccharide
to, respectively, damage the urothelium and induce a visceral
inflammatory cascade may help clarify the interaction(s) of
multiple processes underlying LUT symptoms in BPS/IC [47,
60].

CYP is an antineoplastic prodrug that requires enzy-
matic activation to release phosphoramide mustard and the
byproduct acrolein [61, 62]. A known adverse toxicity fol-
lowing systemic CYP administration is hemorrhagic cystitis
[62]. Hemorrhagic cystitis is considered to arise from the
bladder mucosal walls contact with acrolein, which has
been shown to increase vascular permeability and result
in bladder ulceration and hypertrophy [63]. In addition to
hemorrhagic cystitis, systemic CYP treatment causes func-
tional and histological changes similar to BPS/IC including
mucosal edema, uroepithelial dysfunction, inflammatory cell
infiltration, afferent nerve hyperexcitability, and the devel-
opment of LUT symptoms [45, 64–67]. CYP administration
also produces behavioral alterations consistent with the
development of viscerosomatic pain including decreased
breathing rate, closing of the eyes, and rounded back
postures [66]. While the urinary bladder inflammatory
response following systemic CYP administration is greater
than what is observed in BPS/IC, this experimental model
of cystitis is appealing because of its route of admin-
istration (intraperitoneal) and the chronicity and repro-
ducibility of histopathological and functional alterations
[47].

3. Inflammatory Mediators in Urinary
Bladder Inflammation

We have hypothesized that pain associated with BPS/IC
involves an alteration of visceral sensation/bladder sensory
physiology. Altered visceral sensations from the urinary
bladder (i.e., pain at low or moderate bladder filling) that
accompany BPS/IC [68–72] may be mediated by many
factors including changes in the properties of peripheral
bladder afferent pathways such that bladder afferent neurons
respond in an exaggerated manner to normally innocuous
stimuli (allodynia). These changes may be mediated, in
part, by inflammatory changes in the urinary bladder
(Figure 1). Among potential mediators of inflammation,
neurotrophins (e.g., nerve growth factor, NGF) have been
implicated in the peripheral sensitization of nociceptors
[73–75]. Proinflammatory cytokines also cause sensitization
of polymodal C-fibers [74] and facilitate A-beta input to
the spinal cord [76, 77]. Several studies from our laboratory
have demonstrated increased expression of cytokines and
chemokines (chemotactic cytokines) and the beneficial
effects of receptor blockade in the urinary bladder after CYP-
induced bladder inflammation [64]. In the next sections, we
will present a summary of recent studies from our laboratory
that addresses the role(s) of two chemokine/receptor pairs
(CXCL12/CXCR4; CCL2/CCR2) and the cytokine/receptor
pair (transforming growth factor (TGF-𝛽)/TGF-𝛽 type 1
receptor) in urinary bladder inflammation and somatic
sensitivity in a CYP rat model of urinary bladder
inflammation.

Using the CYP-induced bladder inflammation model,
we aimed to characterize further the role of inflammatory
chemicals in the development and/or maintenance of neu-
ronal sensitization and chronic pain states associated with
BPS/IC. Inflammatory chemicals are released at sites of injury
and inflammation by resident and infiltrating immune cells
and endothelial and parenchymal cells. Proinflammatory
molecules act to heal the injured/inflamed area and also
to sensitize nociceptive neurons, thus increasing the pain
response in order to prevent further insult [78]. While initial
immune activation and sensitization of sensory neurons is
protective, prolonged inflammatory processes and sensory
sensitization occurring after tissue healing are associated
with chronic pain syndromes, including BPS/IC. Various
cytokines and chemokines have been detected in the urine
and urinary bladder in models of cystitis and patients with
BPS/IC and thereforemay represent novel therapeutic targets
or biomarkers for the syndrome.

4. Chemokines

4.1. Background. Chemokines are a large family of struc-
turally and functionally related proteins that are important
mediators of immune responses, inflammatory processes,
and nociception. In the immune response, chemokines facili-
tate tissue recovery by causing the extravasation of leukocytes
from blood plasma to the site of injury. Chemokine receptors
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present on leukocytes sense increasing chemotactic concen-
tration gradients and facilitate cellular motility towards them
[79].

Chemokines are small, secreted proteins of approximately
100 amino acids in length that comprise 4 subfamilies: CC,
CXC,CX3C andC (review see [80]). Each subfamily is named
for the first cysteine residue motif from its amino terminus.
Families of chemokines assert their actions by signaling via
related G-coupled protein receptors. Within each subfamily,
receptor and ligand pairing is notmutually exclusive; in other
words, multiple ligands can bind the same receptor and vice
versa (for review see [80]). The complexity of chemokine
receptor binding presents challenges when examining the
functional role of chemokine signaling. Despite difficulties,
determining the role of chemokines and their receptors in
both control and pathological states could provide insights to
possible therapeutic interventions in a variety of chronic pain
conditions including BPS/IC.

4.2. Chemokines and Peripheral Sensitization. Inflamma-
tory mediators such as proinflammatory cytokines (e.g.,
tumor necrosis- (TNF-)𝛼, interleukin- (IL-)6, IL-1𝛽), COX-
2, NGF, protons, prostaglandins, and bradykinin have been
implicated in the direct sensitization of nociceptive affer-
ents [81]. Traditionally, chemokines were not thought to
assert direct effects on primary sensory neurons. Rather,
chemokine/receptor interaction on the plasma membrane
of leukocytes was thought to stimulate leukocyte release of
nociceptive mediators via GCPR signaling mechanisms [78].
However, electrophysiological, expressional, and functional
pain studies have demonstrated the possibility of direct
chemokine-mediated neuronal hypersensitivity and pain. For
example, in vitro, exogenous chemokine application can
physiologically alter sensory neurons by changingmembrane
potentials [82], decreasing thresholds for action potential
generation [82], increasing excitability, and evoking dis-
charges [82, 83]. Various chemokines, including CXCL12,
can modulate calcium ion currents in cultured DRG cells,
potentially facilitating hyperexcitability [84–87]. In a neu-
ronal injury model, chronic compression of the DRG elicits
a depolarizing response to chemokines that was not detected
in control (noncompressed)DRG [83]. Chemokine-mediated
sensitization may involve members of the transient receptor
potential family, including TRPV1. Various chemokines and
receptors colocalize with neuronal TRPV1 as well as neu-
ropeptides released in a TRPV1-dependent manner [87–90].

Following nerve injury or inflammation, expression of
chemokines and associated receptors increases significantly
in macrophages, infiltrating T cells, sensory neurons, and
glia [79, 84, 85, 89, 91–93]. Additionally, increased neuronal
activity, as would occur during injury or inflammation, has
been shown to induce chemokine transcription in cultured
DRG neurons [94]. Cytokines such as IL-1 can increase
chemokine expression in neurons and astrocytes [95–97].
Chemokine expression in, and subsequent secretion from the
various cell types (e.g., leukocytes, endothelial cells, neurons,
or parenchymal cells) would enable chemokines, by diffusion,
to interact with functional chemokine receptors on DRG

neurons thus facilitating hyperexcitability changes such as
those described above.

4.3. Chemokines and Central Sensitization. Increased pri-
mary afferent signaling can induce organizational and neu-
rochemical changes in spinal cord synapses that underlie
the phenomenon, central sensitization, whichmay contribute
to chronic pain syndromes. During central sensitization,
intensely heightened peripheral input decreases thresholds
necessary to elicit action potentials in dorsal horn neurons.
An increase in nociceptive neurotransmitter (e.g., SP and
CGRP) release into the dorsal horn could increase the activity
of spinal neurons that mediate both local reflexes and ascend
to higher brain centers, thus facilitating the perception of pain
[78, 87, 98].

Chemokine/receptor signaling may contribute to central
sensitization via activation of either the peripheral or cen-
tral afferent limbs of pain pathways [78, 98]. Chemokine
activation of peripheral DRG neurons was described in the
previous section. Additionally, chemokine application can
evoke SP and CGRP release from DRG neurons that could
cause chemokine-mediated central effects indirectly [87, 99].
Evidence suggests that chemokines may have direct central
effects also. Jung et al. [89] detected large dense-core vesicles
containing both CCL2 and CGRP in TRPV1-expressing
DRG neurons. Dansereau et al. [88] demonstrated calcium-
evoked release of CCL2 following incubation of DRG neu-
rons with potassium or capsaicin. CCL2 may traffic antero-
gradely from the soma of peripheral sensory neurons and is
increased in the supernatant following intense stimulation
of mechanically injured DRG neurons [100]. Additionally,
CCL2 application increases the frequency of spontaneous
EPSCs in superficial dorsal horn neurons [101]. Chemokines
released from primary afferent central terminals could exert
either direct activation of superficial dorsal horn neurons
via functional chemokine receptor expression or indirect
sensitization via activation of microglia and astrocytes that
subsequently release nociceptive mediators.

Chemokine receptors, including CCR2, and chemokines
are detected in dorsal horn neurons and activated astro-
cytes and microglia in numerous models of neuropathic
pain including peripheral or central nerve damage or tissue
inflammation [102–107]. Chemokine cross signaling between
bladder sensory afferents and microglia or astrocytes could
modulate symptoms of BPS/IC especially considering that
peripheral injury or inflammation (e.g., bladder) can induce
central glial activation.

4.4. Chemokines and Nociception. Studies investigating
nociceptive behavior illustrate a strong relationship between
chemokines and pain. Exogenous administration of
chemokines induces thermal hyperalgesia and mechanical
allodynia [85, 87, 93] while certain chemokine knockout
mice fail to develop somatic sensitivity [108, 109]. Oh and
colleagues [87] published an early example of nociceptive
chemokine function when they showed that intraplantar
administration of various chemokines such as CXCL12,
CCL5, and CCL22 induce mechanical hypersensitivity
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lasting for at least 3 h. Since then numerous studies have
reported that either exogenous peripheral (e.g., intradermal)
or central (e.g., intrathecal) chemokine application induces
mechanical hypersensitivity and/or thermal hyperalgesia
[88, 90, 92, 99, 110, 111]. Intrathecal administration of
CCL2 can produce mechanical hypersensitivity within 30
minutes and hyperalgesic effects can be detected up to 4
days after administration [88]. In contrast, CCL2-induced
thermal hypersensitivity resolves 24 h after administration
[88]. Interestingly, transgenic mice lacking the CCR2
receptor (principle receptor for CCL2) are resistant to
the development of mechanical hypersensitivity following
mechanical nerve injury; however, following complete
Freund’s adjuvant- (CFA-) induced neural inflammation,
these mice display only a small, insignificant decrease in
mechanical sensitivity compared to control animals and
show no changes in thermal nociception [108]. These data
suggest specificity for chemokine function with respect to
type of injury and pain modality.

Studies utilizing antagonists against chemokine signaling
provide evidence for a therapeutic role with respect to
neuropathic pain. In two different models of HIV-1 associ-
ated neuropathy, Bhangoo et al. [85, 91] demonstrate that
antiretroviral drug- or viral coat protein-, gp120-, induced
mechanical hypersensitivity is attenuated by acute, systemic
treatment with CCR2 or CXCR4 antagonists. Other pain
eliciting models such as focal demyelination, CFA-induced
inflammation and sciatic nerve constriction have demon-
strated the therapeutic effects of chemokine receptor antag-
onists [84, 111, 112].

4.5. Chemokines and Cystitis. Clinical studies assessing
patients with various pelvic inflammatory/pain syndromes
and rodent models of visceral inflammation indicate a
role for chemokines in the initiation or maintenance of
visceral inflammation. CYP-induced inflammation increases
the expression of CXCL12/CXCR4, CX3CL1/CX3CR1,
CCL2/CCR2, and CXCL1 in the urinary bladder and CCL2
and CXCL1 in urine [113–117]. Blockade of CXCL10 signaling
reduces severity of CYP-induced bladder inflammation by
reducing hyperplasia, epithelial erosions, and infiltration of T
cells, mast cells, and killer T cells in the bladder urothelium of
rats [118]. Additionally, elevated chemokines levels have been
detected in the seminal plasma and peripheral immune cells
of patients with pelvic inflammatory/pain syndromes such
as ulcerative colitis, chronic prostatitis, chronic pelvic pain
syndrome, and BPS/IC [118–120]. Bladders from patients
with ulcerative BPS/IC have increased mRNA expression
of CXCL9, CXCL10, and CXCL11 in the interstitium and
CXCR3 in the urothelial membrane [121]. Both Tyagi et al.
[122] and Corcoran et al. [123] detected elevated chemokines,
specifically CXCL1, CXCL10, CXCL12-𝛼, and CCL7, in the
urine of patients with ulcerative BPS/IC. Interestingly, CCL7
levels decreased following hydrostatic distention and were
correlated with symptom relief [123]. Tyagi et al. [122] suggest
the presence of urinary chemokines originates from bladder
tissue because urinary CXCL10 levels are present at levels
much higher than those detected in serum.

Considering the extensive data implicating a sensory
and signaling role for the urothelium, it is possible that
urothelial-derived chemokines, especially those detected in
the urine of BPS/IC patients, contribute to symptoms of
bladder dysfunction. Recently, the functional contribution of
the urothelium has advanced beyond the view of a passive
barrier and is now suggested to have “neuron-like” proper-
ties such as plasticity and sensory transduction capabilities,
especially in the context of bladder inflammation [124, 125].
Functional receptor expression, in conjunctionwith secretion
capabilities, allows the urothelium to respond to stimuli and
reciprocally communicatewith detrusor smoothmuscle cells,
suburothelial nerve plexus, or interstitial cells [126–130]. It
is possible that chemokine signaling via receptor expression
in urothelial cells may consequently activate downstream
targets that promote either the transcription or the expression
and release of other inflammatory mediators or excitatory
amino acids. Urothelial derived mediators such as adenosine
triphosphate or nitric oxide may then influence the sub-
urothelial nerve plexus to affect micturition reflex function
[129].

5. CXCL12 and CXCR4

Our lab examined the expression and therapeutic effect with
receptor blockade of the chemokine CXCL12, and one of
its two receptors, CXCR4, in a rodent model of cystitis.
This chemokine/receptor pair was of interest because of its
demonstrated role in visceral inflammation and pathology
in other abdominopelvic organs. Mikami et al. [119] show
that CXCR4 peripheral T-cell expression was increased in
patients with ulcerative colitis and that expression levels
correlated with disease activity. Additionally, chemically
induced colitis in mice leads to an increase of CXCR4-
positive leukocytes and CXCL12 expression in colonic tissue
[119]. Administration of a CXCR4 antagonist reduced these
inflammatory effects. To address the role of CXCL12/CXCR4
signaling in normal micturition and inflammation-induced
bladder hyperreflexia, bladder inflammation in adult female
Wistar rats was induced by injecting CYP intraperitoneally
at acute (150mg/kg; 4 h), intermediate (150mg/kg; 48 h),
and chronic (75mg/kg; every third day for 10 days) time
points. CXCL12 and its receptor, CXCR4, were examined in
the whole urinary bladder of control and CYP-treated rats
using complementary approaches including enzyme-linked
immunosorbent assays (ELISAs), qRT-PCR, and immunos-
taining techniques. ELISAs, qRT-PCR, and immunostain-
ing experiments revealed a significant increase in CXCL12
and CXCR4 expression in the whole urinary bladder and
particularly in the urothelium, with CYP treatment [114].
CXCL12/CXCR4 interactions in micturition were evaluated
using conscious cystometry with continuous instillation of
saline and CXCR4 receptor antagonist (AMD3100; 5 𝜇M)
administration in control and CYP- (48 h) treated rats.
Receptor blockade of CXCR4 using AMD3100 increased
bladder capacity in control (no CYP) rats and reduced CYP-
induced bladder hyperexcitability as demonstrated by signif-
icant increases in intercontraction interval, bladder capacity,
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and void volume [114]. In these studies, AMD3100 is most
likely acting at the level of the urothelium for several reasons:
(1) both mRNA and histologic analyses showed that the
greatest expressional increase for both CXCL12 and CXCR4
following CYP treatment was in the urothelium; (2) histolog-
ically, CXCR4 had a restricted presentation being expressed
only in the urothelium in both control and CYP treated
bladders; (3) repeated attempts did not demonstrate CXCL12-
or CXCR4-IR in the suburothelial nerve plexus [114]. These
results suggest a role for CXCL12/CXCR4 signaling in both
normal micturition and with bladder hyperreflexia following
bladder inflammation.

6. CCL2/CCR2

The chemokine, CCL2 (monocyte chemoattractant protein-
1, MCP), and its high-affinity receptor, chemokine (C–C
motif) receptor 2 (CCR2), have been implicated in hyper-
sensitivity following neuronal inflammation or mechanical
injury [88, 92, 99, 101, 108, 131, 132] in the central (i.e., spinal
cord) and peripheral (i.e., DRG) nervous system. Block-
ade of CCR2 reduces established pain behaviors resulting
from chronic nerve injury [88, 99, 101, 132] and exogenous
application of CCL2, either centrally or peripherally, can
elicit exaggerated sensory behavioral responses in rodents
[88, 92, 99, 101, 132]. In addition, CCR2 null mice fail to
develop somatic sensitivity following partial sciatic nerve
ligation [108] whereas mice with CCL2 overexpression in
astrocytes develop exaggerated thermal hyperalgesia fol-
lowing complete Freund’s adjuvant-induced inflammation
[131].

Our recent studies demonstrate novel findings with
respect to the contribution of CCL2/CCR2 interactions with
bladder inflammation-induced changes in bladder function
and somatic sensitivity in female rats. We demonstrate that
CYP-induced cystitis increases (1) CCL2 andCCR2 transcript
and protein expression in the rat urinary bladder and (2) the
number of bladder-associated CCR2-immunoreactive blad-
der afferent cells in the lumbosacral DRG [113]. Blockade of
CCR2 receptor interactions with the highly selective receptor
antagonist, RS504393 (5𝜇M), at the level of the urinary blad-
der, increased bladder capacity, decreased void frequency,
and reduced somatic sensitivity of the hindpaw and pelvic
region following CYP treatment [113]. These results extend
previous findings [83, 88, 92, 133, 134] by demonstrating
that CCL2/CCR2 interactions contribute to inflammation-
induced bladder dysfunction and increased referred somatic
sensitivity.

CCL2/CCR2 interactions at the level of the urothelium
and suburothelial nerve plexus in the urinary bladder are
likely to contribute to bladder dysfunction and increased
somatic sensitivity following CYP-induced cystitis. Intrav-
esical instillation of RS504393 likely makes direct contact
with the urothelium that expresses CCR2 and the increased
urothelial permeability due to CYP treatment makes it likely
that intravesical RS504393 also contacts suburothelial nerves.
Our studies did not differentiate between direct urothelial

and nerve-mediated CCR2 effects versus indirect urothelial-
mediated communication with the detrusor smooth mus-
cle, suburothelial nerve plexus, and/or interstitial cells as
previously suggested [126, 127]. It is possible that urothelial
CCL2/CCR2 signaling facilitates the release of urothelial-
derived mediators such as adenosine triphosphate or nitric
oxide that may then influence underlying structures such
as the suburothelial nerve plexus and/or detrusor smooth
muscle [126, 127, 129].

Alternatively, or in addition to urothelial-mediatedmech-
anisms, CCL2/CCR2 interactions in bladder associated DRG
neurons may contribute to inflammatory-induced changes
in bladder sensory physiology and function. CYP treatment
triggered a robust increase in the percentage of bladder
afferent cell bodies expressing CCR2-IR [113]. These results
complement previous findings demonstrating an increase in
the percentage of primary sensory afferent cells expressing
CCL2 and/or CCR2 following focal nerve demyelination,
sciatic nerve ligation, or chronic constriction injury [83,
84, 89, 92, 133, 135]. Jung and Miller [94] demonstrate
that depolarization of cultured sensory neurons is suffi-
cient to induce CCR2 mRNA expression suggesting that
heightened sensory neuron activity during states of injury
or inflammation may contribute to elevated levels of neu-
ronal CCR2 expression. Increased receptor expression may
explain why peripheral nerve damage or inflammation can
also change the functional properties of sensory neuron
populations such that an increasing percentage of DRG
neurons responds to CCL2 application or neurons respond
with increased intracellular calcium ion currents and/or
frequency of EPSCs [82–84, 99, 101, 135]. Therefore, it is
possible that CCL2 released, in vivo, by DRG neurons, glial
cells, and urothelial cells could contribute to nociceptive
sensations/behaviors by autocrine or paracrine signaling
mechanisms.

7. Cytokines

In addition to the chemokine family, ample evidence sug-
gests that other cytokines contribute to the development of
hyperalgesia and allodynia following injury or inflammation
[79, 136]. Cytokine receptors have been detected in neu-
rons and glial cells, especially after peripheral neuropathy
[136]. Cytokine/receptor interactions can activate signaling
pathways that induce transcription and release of other
proinflammatory/nociceptive mediators including NGF and
other cytokines and chemokines from peripheral neurons
or glial cells [95–97, 137]. Cultured human detrusor smooth
muscle cells secrete low levels of cytokines (IL-6 and IL-
8) and chemokines (CCL2 and CCL5) and exposure to
the inflammatory cytokines, IL-1𝛽 and TNF-𝛼, increases
this release [138, 139]. The expression of cytokines, alone
or in combination with other cytokines, growth factors, or
other mediators, may form a bidirectional communication
network between the nervous system and the immune system
[140].
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Studies examining cytokine expression using a CYP
model of cystitis have detected elevated IL-6, IL-1𝛼, and IL-
4, among others, protein and mRNA levels in the urine and
urinary bladder [64, 115]. Cytokine transcription and expres-
sion increase in the urinary bladder of patientswith ulcerative
BPS/IC [121, 123, 141]. Certain cytokine mRNAs, including
IL-6 and TNF-𝛼, have been detected in the interstitium and
urothelium of these biopsies [121, 141]. Additionally, reports
have repeatedly detected elevated IL-6 in the urine of patients
with ulcerative BPS/IC. Increased levels have been suggested
to indicate either severity of inflammation [39] or correlate
with pain scores and nocturia [141, 142]. Lotz et al. [141]
propose that the bladder is the primary source of urinary IL-6
because it was not detected in ureteral urine.

Recently we examined the expression and function of
another cytokine, TGF-𝛽, in the urinary bladder with inflam-
mation. TGF-𝛽 has an extensive role in the immune system
and has been implicated in nociception and detected in
the urine and urothelium of rats treated with CYP-induced
cystitis [143].

8. Transforming Growth Factor-Beta (TGF-𝛽)

8.1. Background. The TGF-𝛽 superfamily is comprised of at
least 35 pleiotropic proteins belonging to four subfamilies
grouped by their sequence homology—decapentaplegic-Vg-
related (DVR), activin/inhibin, TGF-𝛽 sensu stricto, and
other divergent members [144]. Even though TGF-𝛽 super-
family members have distinct expression patterns and reg-
ulate a variety of functions, they are each translated as a
preproprotein that contains a peptide sequence signaling to
the endoplasmic reticulum, a N-terminal prodomain, and a
C-terminal mature protein [144, 145]. After proteolytic pro-
cessing and posttranslational modifications, the C-terminal
fragment is either secreted as amature protein dimer or forms
a latent complex by maintaining a noncovalent bond to the
prodomain [144, 145].

The canonical members of TGF-𝛽 sensu stricto are one
such proprotein to form a latent complex. The interactions
between the N-terminal prodomain, termed latency asso-
ciated peptide (LAP), and the mature TGF-𝛽 dimer are
sufficient to sequester its extracellular activity [146]. Addi-
tionally, LAP associates with a latent TGF-𝛽 binding protein
(LTBP) that regulates TGF-𝛽 bioavailability by chaperoning
the complex to the extracellular matrix [147].The subsequent
activation of latent TGF-𝛽 in the extracellular matrix via
LAP cleavage occurs by protease-dependent or protease-
independent (protons, integrins, reactive oxygen species,
etc.) mechanisms [145, 148–151].

After its secretion, the mature or activated protein dimers
process a signal through transmembrane Ser-Thr receptor
kinases [144]. The TGF-𝛽 family of receptors is comprised
of type I and type II receptors. Type II receptors selectively
bind their respective ligands to define part of the specificity
of signal transduction [144]. Ligand binding can either be
“sequential” or “cooperative” and may involve an accessory
receptor (type III) to enhance ligand presentation [152].
Following receptor-ligand interaction, the type II receptor

forms a heterotetrameric complex with the type I receptor to
transphosphorylate residues of the Gly-Ser (GS) box [152].
The activated type I receptors then phosphorylate Smad-
dependent or Smad-independent substrates to regulate the
transcription of target genes [153].

Smad proteins exist in three families: receptor-activated,
common mediator, and inhibitory. Receptor-activated (R-)
Smads dock onto type I receptors and are phosphorylated
on distal serine residues following receptor activation [153].
Phosphorylated R-Smads dissociate from the receptor and
interact with commonmediator Smad4 [153].The oligomeric
R-Smad/Smad4 complex then translocates to the nucleus
where it alters the transcription of target genes [153]. Type
I receptors not only function through Smad signaling but
may also directly activate Smad-independent pathways such
as TGF-𝛽-activated kinase 1 (TAK1), Ras, nuclear factor-
𝜅B (NF-𝜅B), and the mitogen-activated protein kinase
(MAPK) subfamily members [154–159]. The variety of direct
and context-dependent downstream signaling pathways pre-
serves the multifunctional role(s) of TGF-𝛽 superfamily
ligands while providing the specificity required to control
distinct target genes.

8.2. Immune Response. The canonical members of TGF-𝛽
sensu strictomaintain immunological function by regulating
the initiation and resolution of the immune response and a
comprehensive review has been previously published [160].
Briefly, activated TGF-𝛽 at the site of injury may initiate a
proinflammatory milieu characterized by matrix remodeling
and the recruitment and activation of leukocytes [160, 161].
TGF-𝛽 may then aid in resolving the primary immune
response and support a milieu for tissue repair and immuno-
logical memory to progress by suppressing the proliferation,
differentiation, and survival of a subset of lymphocytes [160].

To initiate an immune response, TGF-𝛽 may mobilize
monocytes, mast cells, and granulocytes to the site of injury
and influence their adhesion to the extracellular matrix [160,
162–164]. While TGF-𝛽 may also recruit monocyte-derived
macrophages, their activation and function are typically
inhibited to help resolve the immune response [161, 165, 166].
Since immune cells continue to infiltrate the site of injury,
the extracellular matrix undergoes pathological remodeling
characterized by protease secretion and matrix degradation
[167]. TGF-𝛽 supports the remediation and repair of these
tissues by increasing the deposition of matrix proteins and
inhibiting protease activation [168].

To sustain the resolution of the immune response, TGF-𝛽
may regulate T-cell proliferation, differentiation, and survival
[169]. TGF-𝛽 promotes T-cell growth arrest by suppressing
interleukin-2 in areas of subthreshold antigen presentation
[160, 170]. During the polarizing conditions of the immune
response, TGF-𝛽maintains peripheral immunological toler-
ance by inducing the transcription factor FoxP3 to promote
CD4+ CD25+ T-cell differentiation to regulatory T cells
[160, 171]. CD4+ T-cell differentiation to the T helper (Th)
1 and Th2 cell lineages, however, is inhibited by TGF-𝛽
mediated repression of the transcription factors T-bet and
GATA-3, respectively [169, 172]. In addition to its effects



10 BioMed Research International

on CD4+ T cells, TGF-𝛽 may also attenuate the cyto-
toxicity of CD8+ T cells by inhibiting its cytolytic genes
[173].

TGF-𝛽 not only stabilizes T-cell expression and function
to resolve the immune response but also regulates B-cell pro-
liferation, survival, and development [174]. TGF-𝛽 inhibits
both the proliferation and cell cycle progression of B cells
through Smad-dependent or Smad-independent pathways
[160, 175–177]. TGF-𝛽 utilizes comparable B-cell growth
arrest pathways, as well as a distinct Smad-independent
pathway, to induce the apoptosis of B cells [160, 178]. Lastly,
TGF-𝛽 may regulate the maturation and activation of B
cells through its induction of isotype switching, suppres-
sion of B-cell antigen receptor signaling, and inhibition of
immunoglobulin secretion [160, 179, 180].

8.3. Nociception. The members of TGF-𝛽 sensu stricto con-
tribute to both the peripheral and central processing of
noxious stimuli. TGF-𝛽1 and TGF-𝛽2 have been demon-
strated to increase de novo neuropeptide synthesis in the
DRG that may directly sensitize primary afferent nociceptors
[181, 182]. TGF-𝛽 may also influence DRG excitability by
regulating several ion channels including the voltage-gated
potassium (Kv) channel andTRPV-1. Application of recombi-
nant TGF-𝛽1 in vitro has been demonstrated to downregulate
KCNA4 gene expression and decrease A-type Kv currents
in primary DRG cultures [183]. Additionally, TGF-𝛽1 Smad-
independent signaling may phosphorylate TRPV-1 on Thr
residues and potentiate capsaicin-evoked calcium influx in
theDRG [184, 185].The subsequent prolonged depolarization
and an impaired repolarization may lead to an amplification
of nociceptive transmission and CNS input.

Unlike its role in the periphery, TGF-𝛽 in the CNS
appears to be neuroprotective by regulating neuronal and
nonneuronal response to inflammatory injury [186]. Non-
neuronal glial cells have recently been recognized to enhance
the proinflammatorymilieu and facilitate the central process-
ing of nociception [187]. Activated TGF-𝛽 in the CNS may
inhibit the proliferation and activation of these spinal glial
cells to attenuate the induction of neuropathic pain [188–
190]. TGF-𝛽 may further reduce excitatory synaptic trans-
mission of second-order neurons by directly suppressing the
proinflammatory milieu in the spinal cord [189]. As a result
of its biphasic and modulatory role in the peripheral and
central transmission of nociception, TGF-𝛽 appears to have a
profound impact on the perception of pain and may initiate,
in part, pathological pain syndromes.

8.4. Role(s) in Cystitis. TGF-𝛽 ligands and its cognate recep-
tors are expressed at low, basal levels in rat urinary bladder
tissues [191]. Following chemically (CYP) induced cystitis of
varying durations, TGF-𝛽 ligand, and receptor expression
appears to display a time- and tissue-dependent regulation.
TGF-𝛽 exhibits a delayed, but sustained, increase in uri-
nary bladder gene and protein expression 8–48 h after CYP
treatment [143, 191, 192]. Furthermore, urinary excretion of
active and latent TGF-𝛽1 is increased up to 100-fold 24 h after
acute CYP treatment [143]. The aforementioned regulation

of TGF-𝛽 gene and protein expression has been suggested to
be more pronounced in the afferent limb of the micturition
reflex suggesting a possible role in the development of LUT
symptoms [191]. Its role in micturition reflex dysfunction
was confirmed following the pharmacological inhibition of
aberrant TGF-𝛽 signaling with cystitis. Inhibition of TGF-
𝛽 type I receptors 48 h after CYP-induced cystitis decreased
urinary frequency and increased bladder capacity, void vol-
ume, and intercontraction intervals [191]. These studies raise
the possibility of targeting TGF-𝛽 at the level of the urinary
bladder to alleviate voiding dysfunction with cystitis.

9. Perspectives and Future Directions

Blockade of cytokine/receptor and chemokine/receptor sig-
naling may represent a potential therapeutic target for
inflammation-associated bladder dysfunction. In addition,
the presence of certain inflammatory molecules in patient
urine may be useful biomarkers for BPS/IC or other blad-
der disorders such as overactive bladder (OAB). Similar
to BPS/IC, the etiology of OAB remains elusive; however,
based on patient biopsies an inflammatory contribution
has been suggested [193–195]. Tyagi et al. [196] detected a
10-fold increase of CCL2 and the soluble fraction of the
CD40 ligand (CD40L) in the urine of OAB patients versus
controls. Various cytokines, epidermal growth factor (EGF),
and the oncogene GRO-a were also elevated (3-5-fold) in the
urine of OAB patients [196]. Whether certain inflammatory
mediator/receptor interactions and downstream signaling
pathways are redundant or unique across diverse bladder
dysfunction or pelvic pain syndromes remains to be deter-
mined. Identification of urinary biomarkers in BPS/IC, OAB,
or other bladder dysfunctions would improve diagnostic
strategies and reduce invasiveness to the patient, improving
exclusionary criteria, reducing time to diagnosis and aid in
patient selection for pharmacological trials.
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