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Abstract

Background: Differentiated cells that arise from stem cells in early development contain DNA methylation features
that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the
proportion of cells in a mixture of cell types that are of fetal origin and are reminiscent of embryonic stem cell
lineage. Here we implemented the FCO signature estimation method to compare the fraction of cells with the FCO
signature in tumor tissues and their corresponding nontumor normal tissues.

Methods: We applied our FCO algorithm to discovery data sets obtained from The Cancer Genome Atlas (TCGA)
and replication data sets obtained from the Gene Expression Omnibus (GEO) data repository. Wilcoxon rank sum
tests, linear regression models with adjustments for potential confounders and non-parametric randomization-
based tests were used to test the association of FCO proportion between tumor tissues and nontumor normal
tissues. P-values of < 0.05 were considered statistically significant.

Results: Across 20 different tumor types we observed a consistently lower FCO signature in tumor tissues
compared with nontumor normal tissues, with 18 observed to have significantly lower FCO fractions in tumor tissue
(total n=6,795 tumor, n =922 nontumor, P < 0.05). We replicated our findings in 15 tumor types using data from
independent subjects in 15 publicly available data sets (total n =740 tumor, n =424 nontumor, P < 0.05).

Conclusions: The results suggest that cancer development itself is substantially devoid of recapitulation of normal

embryologic processes. Our results emphasize the distinction between DNA methylation in normal tightly regulated
stem cell driven differentiation and cancer stem cell reprogramming that involves altered methylation in the service

of great cell heterogeneity and plasticity.
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Background

Many cancerous tumors have long been known to acquire
histologic characteristics devoid of the defining features of
the tissue of origin. This process of dedifferentiation is
characterized by cell regression from a specialized func-
tion to a simpler state reminiscent of stem cells [1]. The
dedifferentiation of normal cells has long been one theory
of the cellular origin of cancers, with the process of dedif-
ferentiation posited to give rise to cancer stem cells; an
alternative suggests that cancer stem cells arise from adult
stem cells present in the tissues [2]. These cancer stem
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cells, then, have been suggested to be a subpopulation of
malignant cells similar to normal stem cells, having many
characteristics of stemness, including self-renewal, differ-
entiation, and proliferative potential [3]. They have been
posited to be responsible for genesis of all of the tumor
cells in a malignancy and thus been known as “tumor-ini-
tiating cells” or “tumorigenic cells” [4, 5]. Putative cancer
stem cells have been identified in a number of solid tu-
mors, including breast cancer [6], brain tumors [7], lung
cancer [8], colon cancer [9], and melanoma [10]. Studies
have shown that cancer stem cells play a crucial role in
the genesis of resistance to chemotherapeutic agents, sug-
gesting that these cells may be responsible for disease re-
currence [11, 12]. Cancer stem cells are also implicated in
serving as the basis of metastases [13, 14].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-019-5932-6&domain=pdf
http://orcid.org/0000-0002-2302-1600
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Karl_Kelsey@brown.edu

Zhang et al. BMC Cancer (2019) 19:711

Studies focusing on somatic cell reprogramming have
underscored the similarity between cancer stem cells and
induced pluripotent stem cells [15, 16], and the acquisition
of pluripotency during the reprogramming process is rem-
iniscent of the dedifferentiation long observed during the
process of carcinogenesis [17]. Moreover, studies have
shown that cancer stem cells and embryonic stem cells
(ESC) have similar cell surface markers [18, 19]. It has been
hypothesized that the similarities shared by cancer stem
cells and embryonic stem cells might relate to their shared
patterns of gene expression and gene regulation [20]. In an
effort to account for the self-renewing properties of cancer
stem cells, several investigators have defined ‘embryonic
stem cell specific expression’ signatures, and these have
been analyzed and found in multiple cancers [21-23]. Can-
cer stem cells exhibit ESC-like signatures that include acti-
vation of the oncogene ¢-MYC and similar alterations to
important loci responsible for the genesis of pluripotency
such as: SOX2, DNMT1, CBX3 and HDACI [19, 20]. Pro-
gramming the cancer stem cell phenotypes are genetic
alterations and epigenetic changes in chromatin structure
and DNA methylation [24, 25]. The consequence of cancer
stem cell epigenetic alterations is to unleash cellular plasti-
city that favors oncogenic cellular reprogramming [26].

During normal development stem cell maturation can
be traced using DNA methylation. Recently, we devised
the fetal cell origin (FCO) DNA methylation signature to
estimate fractions of cells that are of fetal origin using 27
ontogeny informative CpG loci [27]. The fetal origin cells
are defined as cells that are differentiated from fetal stem
cells as compared to adult stem cells. Using a fetal cell ref-
erence methylation library and a constrained quadratic
programming algorithm, we demonstrated a high propor-
tion of cells with the FCO signature in diverse fetal tissue
types and, in sharp contrast, minimal proportions of cells
with the FCO signature in corresponding adult tissues
[27]. The FCO signature is highly reminiscent of embry-
onic stem cell lineage and is observed in high levels
among embryonic stem cell lines, induced pluripotent
stem cells, and fetal progenitor cells [27]. The FCO signa-
ture represents a stable phenotypic block of CpG sites that
are transmitted from stem cell progenitors to progeny
cells across lineages. As such the FCO is a mark of epige-
nome stability in differentiating tissues. Here, we imple-
mented the FCO signature to infer and then compare the
fetal cell origin fractions in thousands of tumor tissues,
comprising different cancer types, as well as correspond-
ing nontumor normal tissues. Given the longstanding hy-
pothesis that dedifferentiation in the development of
malignancies involves the generation of cancer stem cells,
along with the similarities between embryonic stem cells
and tumor cells, we hypothesized that the fetal cell origin
signal in tumor tissue would be increased compared to
nontumor normal tissue.
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Methods

Discovery data sets

Level 3 Illumina Infinium HumanMethylation450 Bead-
Chip array data collected on tumor tissues and nontumor
normal tissues from 21 TCGA studies were considered in
our analysis. This included: bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical squa-
mous cell carcinoma and endocervical adenocarcinoma
(CESC), cholangiocarcinoma (CHOL), colon adenocarcin-
oma (COAD), esophageal carcinoma (ESCA), glioblastoma
multiforme (GBM), head and neck squamous cell carcin-
oma (HNSC), kidney renal clear cell carcinoma (KIRC),
liver hepatocellular carcinoma (LIHC), pheochromocytoma
and paraganglioma (PCPQG), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), pancreatic adeno-
carcinoma (PAAD), prostate adenocarcinoma (PRAD), rec-
tum adenocarcinoma (READ), sarcoma (SARC), stomach
adenocarcinoma (STAD), thyroid carcinoma (THCA),
thymoma (THYM) and uterine corpus endometrial carcin-
oma (UCEC). Among the 21 candidate TCGA studies, five:
THYM, PCPG, CESC, GBM and STAD, had fewer than 3
nontumor normal samples with available DNA methylation
data. To increase the number of samples with methylation
profiles in nontumor normal tissue for the five previously
mentioned studies we scanned the Gene Expression Omni-
bus (GEO) data repository to locate data sets we could
draw on to enrich the numbers of nontumor normal sam-
ples. We were able to add nontumor normal samples of
cervix, brain, adrenal gland and stomach from GEO data
sets GSE46306 [28], GSE80970 [29], GSE77871 [30] and
GSE103186 [31] to cervical squamous cell carcinoma and
endocervical adenocarcinoma, glioblastoma multiforme,
pheochromocytoma and stomach adenocarcinoma projects
on TCGA. As we were unable to find additional nontumor
normal samples with DNA methylation profiling of the thy-
mus, the thymoma data set was excluded from our final
analysis. In total, 20 TCGA studies, including DNA methy-
lation profiling of 6,795 primary tumor tissue samples and
922 nontumor normal tissue samples were included in our
analysis.

Comparison of predicted FCO between tumor tissue and
nontumor normal tissue

We first estimated the FCO based on the DNA methyla-
tion signatures for each of the 6,795 primary tumor tis-
sue samples and 922 nontumor normal tissue samples.
FCO was estimated based on a previously described pro-
cedure [27] using 25 of the 27 CpGs comprising the
FCO library because two probes were removed in TCGA
methylation data due to quality control. A Wilcoxon
rank sum test was fit independently to each TCGA study
and used to compare the predicted FCO in tumor versus
nontumor normal tissue. As patient-level clinical/demo-
graphic characteristics could confound the association
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between the predicted FCO and tumor/nontumor status,
we also fit a series of linear regression models to examine
the association between predicted FCO and tumor/nontu-
mor status adjusting for potential confounders. Linear re-
gression models were fit independently to each TCGA
study and modeled predicted FCO as the response against
tumor/nontumor status, with adjustment for age, gender,
race and vital status, provided these data were available and
relevant to adjust for. All four of the previously mentioned
variables were adjusted for in linear regression models fit to
the BLCA, BRCA, CHOL, COAD, ESCA, HNSC, KIRC,
LIHC, LUAD, LUSC, PAAD, SARC, READ and THCA
data sets. As all samples in the UCEC came from female
subjects, only age, race and vital status were adjusted for in
the analysis of this data set. For READ, only age, gender
and vital status were adjusted for due to the lack of race in-
formation. For GBM only age and gender were adjusted for
due to the lack of information on race and vital status. As a
large number of patients in the STAD, PCPG and CESC
studies were missing information on gender, race, age and
vital status, unadjusted linear regression models were fit to
these studies. In examining the assumptions for the linear
regression model, we found that homoscedasticity and nor-
mality of errors did not appear to hold for some of the
TCGA studies (Additional file 1: Figure S9, Additional file 1:
Figure S10). Consequently, in addition to reporting p-
values obtained from fitting linear regression models
to each TCGA study, we also designed and applied a
non-parametric randomization-based test for testing
the association between predicted FCO and tumor/
nontumor status and report the resulting p-values
from this method as well. To obtain randomization-
based p-values, we first constructed an empirical null
distribution of test-statistics under the null hypoth-
esis of no association between predicted FCO and
tumor/nontumor status. Specifically, for each TCGA
study, we randomly permuted tumor/nontumor sta-
tus, fit a linear regression model adjusted for age,
gender, race, and vital status (where available and
relevant) with the permutated class label as an
explanatory variable, and recorded the resulting test-
statistic for the coefficient on tumor/nontumor sta-
tus. This process was repeated 50,000 times within
each TCGA study and used to obtain the empirical
null distribution. Finally, we compared the observed
test-statistic for the coefficient on tumor/nontumor
status to the empirical null distribution of this statis-
tic and computed the two-sided randomization-based
p-value.

Replication data sets

To replicate our findings, we used tumor and nontumor
normal samples from 15 GEO data sets: (1) GSE49656
[32] contains 32 cholangiocarcinoma samples and 4
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normal bile duct samples; (2) GSE53051 [33] contains 35
colon cancer samples and 18 normal colon samples, 9
lung cancer samples and 11 normal lung samples, 14
breast cancer samples and 10 normal breast samples, 29
pancreatic cancer samples and 12 normal pancreas sam-
ples, 70 thyroid cancer samples and 12 normal thyroid
samples; (3) GSE52068 [34] contains 24 nasopharyngeal
carcinoma and 24 normal nasopharyngeal epithelial sam-
ples; (4) GSE52826 [35] contains 4 esophageal squamous
cell carcinoma samples, 4 paired adjacent normal sur-
rounding tissues and 4 normal esophagus mucosa from
healthy individuals; (5) GSE52955 [36] contains 17 renal
tumor samples and 6 normal kidney samples, 25 bladder
tumor samples and 5 normal bladder samples, 25 prostate
tumor samples and 5 prostate normal samples; (6)
GSE54503 [37] contains 66 hepatocellular carcinoma sam-
ples and 66 adjacent non-tumor tissue; (7) GSE56044 [38]
contains 124 lung cancer samples 12 normal lung samples;
(8) GSE75546 [39] contains 6 rectal cancer samples and 6
normal rectal samples; (9) GSE77871 [30] contains 18 ad-
renal cortical cancer samples and 6 normal adrenal sam-
ples; (10) GSE85845 [40] contains 8 lung cancer samples
and 8 adjacent non-tumor samples; (11) GSE76938 [41]
contains 73 prostate cancer samples and 63 normal pros-
tate samples; (12) GSE112047 [42] contains 31 prostate
cancer samples and 16 adjacent non-tumor samples; (13)
GSE101961 [43] contains 121 normal breast samples; (14)
GSE72245 [44] contains 118 breast cancer samples; (15)
GSE106600 [45] contains 12 hematopoietic cell samples
from patients with chronic phase chronic myeloid
leukemia and 12 normal hematopoietic cell samples.

Data processing and quality control

Level 3 Illumina Infinium HumanMethylation450 Bead-
Chip array data on TCGA contains beta values calculated
from background-corrected methylated (M) and unmethy-
lated (U) array intensities as Beta=M/(M + U). In these
data, probes having a common SNP within 10 bp of the in-
terrogated CpG site or having overlaps with a repetitive
element within 15bp from the interrogated CpG site are
masked as “NA” across all samples, as were probes with a
non-detection probability (P> 0.01) in a given sample. Rep-
lication data sets, GSE52826 [32] and GSE54503 [34] con-
tain average beta values processed by BeadStudio software;
GSE49656 [29], GSE52955 [33] and GSE77871 [46] contain
average beta values processed by the GenomeStudio soft-
ware; GSE52068 [31], GSE75546 [36], GSE106600 [42] and
GSE85845 [37] contain normalized average beta value proc-
essed by the GenomeStudio software; GSE56044 [35] and
GSE72245 [41] contain peak-based normalized beta values;
GSE53051 [33] and GSE112047 [39] contain normalized
beta values by using the minfi package in Bioconductor;
GSE101961 [40] contains normalized beta values by using
the Subset-Quantile Within Array Normalization (SWAN);
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GSE76938 [38] contains normalized beta values using
ComBat normalization. We previously evaluated the stabil-
ity of the FCO estimations by excluding some of the 27
FCO markers using a leave-one-out combination, leave-
two-out combination, until five probe combinations were
removed. The results showed that though the poten-
tial error increases per probe removed, the estimates
are stable in the absence of a small number of the
probes [27]. For the purpose of quality control, we
included only samples with at least 25 out of 27
CpGs in the FCO library. FCO was estimated in dis-
covery data sets by using 25 CpGs in the FCO li-
brary due to quality control and in replication data
sets, the full set of 27 CpGs constituting the FCO li-
brary was used.

Sensitivity analyses for the decrease of FCO in tumor

As per the method of Qin etal [47], we evaluated the
tumor purity of tumor tissue samples on TCGA and exam-
ined the correlation between FCO and tumor purity. Fur-
thermore, we used the TCGA tumor pathology tissue slide
data on Biospecimen Core Resource (BCR) to examine the
correlation between the percentage of leukocytes infiltra-
tion and the fractions of cells with FCO signature.
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Results

To describe the relative prevalence of fetal origin cells in
human tumors compared with adjacent nontumor nor-
mal tissues, we applied our FCO signature to DNA
methylation Infinium 450 K array data from TCGA. The
analyses included 20 different tumor types studied by
TCGA, and consisted of 6,795 primary tumor samples
and 922 nontumor normal samples (Table 1).

We first applied the FCO algorithm to nontumor normal
tissue samples to infer the proportion of fetal origin cells
across normal tissues. In our previous study, we showed
the high FCO fraction in diverse fetal tissues and in sharp
contrast, the minimal representation of the FCO signature
in adult tissues [27]. Also, we demonstrated the high vari-
ability of the FCO across different types of fetal tissues and
adult tissues respectively [27]. Consistent with our prior re-
port [27], the fraction of fetal origin cells varied widely
across different types of normal tissues. The mean FCO
fraction varied from as low as 0% for prostate to as high as
44.9% for kidney (Fig. 1). We previously observed a global
decrease of FCO cell fraction in blood leukocytes over the
lifespan [27] and, therefore, we tested whether the inverse
correlation between proportion of cells with the FCO signa-
ture and age would also exist in normal tissues. Across the
19 different types of normal tissues, there were six in which

Table 1 Baseline characteristics of TCGA tumor projects included in the study

TCGA Tumor Abbreviation Tumor n Nontumor Mean age (sd) Male White Black Asian Other race
normal n n (%) n (%) n (%) n (%) n (%)
BLCA 418 21 68.60 (10.60) 319 (72.7) 351 (83.6) 25 (6.0) 44 (10.5) 0 (0.0
BRCA 791 97 5872 (13.34) 9 (1.0) 668 (76.6) 164 (18.8) 39 (4.5) 1(0.1)
CESC 307 23 48.77 (13.79) 0 (0.0) 213 (77.7) 31 (11.3) 20(7.3) 10(3.6)
CHOL 36 9 65.07 (12.46) 22 (48.9) 40 (88.9) 2 (44 3(6.7) 0 (0.0)
COAD 313 38 66.21 (13.21) 188 (53.9) 240 (75.7) 65 (20.5) 1(35) 1(03)
ESCA 185 16 6341 (11.87) 168 (83.6) 130 (71.8) 5(28) 46 (254) 0 (0.0
GBM 140 140 6044 (12.72) 81 (58.3) 107 (81.7) 24 (183) 0 (0.0) 0 (0.0)
HNSC 528 50 61.54 (11.82) 424 (734) 495 (88.1) 54 (9.6) 11 (2.0) 2 (04)
KIRC 324 160 62.54 (11.71) 316 (65.3) 1(88.1) 55(11.5) 2 (04) 0 (0.0
LIHC 377 50 60.15 (13.79) 285 (66.7) 1(534) 24 (5.8) 167 (40.3) 2 (0.5
LUAD 473 32 65.37 (10.29) 236 (46.7) 392 (86.2) 57 (12.5) 6(1.3) 0 (0.0)
LUSC 370 42 68.23 (8.85) 303 (73.5) 308 (90.3) 25(7.3) 8(23) 0 (0.0
PAAD 184 10 6546 (11.10) 108 (55.7) 170 (89.5) 8 (4.2) 12 (6.3) 0 (0.0
PCPG 148 8 5094 (3.12) 66 (44.0) 126 (86.3) 14 (9.6) 534 1(0.7)
PRAD 502 50 61.64 (6.77) 552(100.0) 195 (94.2) 10 (4.8) 2010 0 (0.0)
READ 98 7 63.57 (12.30) 56 (53.8) 76 (92.7) 56.1) 1(1.2) 0 (0.0
SARC 261 4 61.52 (14.62) 120 (45.3) 232 (90.6) 18 (7.0) 6(23) 0 (0.0)
STAD 395 63 65.78 (10.68) 259 (65.2) 255 (71.2) 13 (36) 89 (24.9) 1(03)
THCA 507 56 47.64 (15.94) 150 (26.6) 372 (80.7) 33(7.2) 55(11.9) 1(0.2)
UCEC 438 46 64.54 (11.19) 0(0.0) 8 (72.1) 105 (23.8) 90 90
Total 6795 922 61.85 (13.60) 3730 (48.9) 5330 (80:4) 737 (11.1) 536 (8.1) 28 (04)
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Fig. 1 Distribution of predicted FCO (%) across different types of
nontumor normal tissues
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a significant inverse correlation between FCO and age was
observed, and notable variation in the correlation across tis-
sue types with correlation coefficients varying from - 1 for
cervix to 0.037 for breast (Additional file 1: Figure S1).

Next, the FCO signal was estimated in tumor samples
and compared with nontumor normal samples. Univari-
ate analyses identified significantly lower proportions of
cells with the FCO signature across all tumor types (P <
0.05), with the exception of prostate carcinoma and
pheochromocytoma (Fig. 2). In prostate, the mean FCO
was 0% in both normal tissue and tumor, and in pheo-
chromocytoma, the FCO varied from 0 to 86%. We next
tested the relationship of the FCO signature with tumor
tissue status using linear models adjusted for potential
confounders (e.g., age, gender, race and vital status)
where possible, given the data available in the TCGA,
and observed the same statistically significant differences
of FCO between tumor and nontumor normal tissues
(Table 2). To ensure that our results are robust to de-
parture from model assumptions, we designed and ap-
plied a non-parametric randomization-based test which
revealed little differences as compared to those obtained
from the linear regression model, with 17/18 tumor
types remaining statistically significant (Table 2). The
one exception was sarcoma where randomization-based
p-value was not significant, but approached significance,
p =0.06L.

To investigate whether the decrease of FCO in tumor
tissues is a result of leukocyte infiltration (which, in
adults, have a very small FCO) [27, 48], we used direct
estimates of leukocyte infiltration from TCGA. Where
data were available, the correlation between the FCO
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signature proportion and proportion of infiltrating
monocyte, lymphocyte, and neutrophils, for each tumor
type indicated both that the FCO was not inversely cor-
related with any leukocyte infiltration in any tumor type
and that the infiltration percentage was generally low
(Additional file 1: Figure S2, Additional file 1: Figure S3,
Additional file 1: Figure S4). In addition, we tested
whether normal cell contamination of tumor tissue sam-
ples biased the proportion of cells with an FCO signa-
ture. We applied the InfinjumPurify function designed
for estimating tumor purity based on DNA methylation
Infinium 450 k array data to tumor tissue samples from
TCGA [47]. The tumor purity varied across different
tumor types (Additional file 1: Figure S5), and a signifi-
cant inverse correlation between tumor purity and FCO
was observed in nine tumor types, while the remaining
showed little correlation (Additional file 1: Figure S6).
The significant inverse correlations between FCO
and tumor purity remained in eight tumor types
after adjusting for age, gender, race and vital status,
provided these data were available and relevant to
adjust for (Additional file 1: Table S1). Although the
FCO fraction decreases as tumor purity goes up in
some tumor types, suggesting that normal cell con-
tamination altered the FCO estimation in tumors to
some extent, the significant drop of FCO in tumor
compared to nontumor normal is still valid.

We next examined whether the FCO is associated with
tumor stage and histological subtypes. Across 20 tumor
projects in our study, eight (CHOL, GBM, KIRC, LIHC,
PAAD, PCPG, STAD and THCA) have nonzero inter-
quartile range (IQR) of FCO and thus were included in
the analyses. Among these 8 tumor types, pheochromo-
cytomas (PCPG) lacked tumor stage information and
glioblastomas (GBM) by definition are all stage IV. Only
kidney renal clear cell carcinoma (KIRC) of the
remaining 6 tumor types showed a significant negative
association between FCO and tumor stage (P = 3.79e-14,
Additional file 1: Figure S7). Tumor histological subtype
data was available for 4 (CHOL, GBM, PAAD, THCA)
out of 8 tumor types with IQR of FCO larger than zero,
however we found no statistically significant association
between FCO and histological subtype among these
tumors.

To replicate our findings, we accessed multiple inde-
pendent data sets deposited in Gene Expression Omni-
bus (GEO) that included DNA methylation Infinium
450 K array measurements on tumor and nontumor nor-
mal tissues. Specifically, we applied our approach to
infer the proportion of cells with the FCO signature in
15 GEO data sets, including 15 different tumor types,
which comprised 740 primary tumor tissue samples and
424 normal tissue samples (Table 3). These data con-
firmed our previous results in that among the 15 tumor
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Fig. 2 Kernel density plots of predicted FCO (%) in tumor and nontumor normal samples across different TCGA studies
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types forming our replication data, a significantly lower
FCO was observed in tumor versus normal tissue in 14
of the 15 tumor types (Table 3, Fig. 3). Consistent with
our TCGA analysis, FCO in prostate tumors was indis-
tinguishable from normal tissue.

Finally, since cancer stem cells share properties and sur-
face markers with embryonic stem cells [18] we sought to
directly examine their FCO. We applied the FCO algo-
rithm to GEO data sets GSE80241 [49], representing 6
pancreatic ductal adenocarcinoma stem cell samples, and
GSE92462 [50], including 22 glioma stem cell samples.
FCO estimates were zero in both pancreatic ductal adeno-
carcinoma stem cells and in all but one glioma stem cell
sample (Additional file 1: Table S2). Further, among 27
FCO CpGs, 3 (cgl10338787, cg17310258 and cgl6154155)
are associated with EZH2. We plotted the methylation
beta values of these three loci in pancreatic carcinoma
samples, normal pancreatic tissue samples and pancreatic
cancer stem cell samples from GEO data sets GSE53051

[33] and GSE80241 [49]. We examined methylation pro-
portions in 29 pancreatic carcinoma samples, 12 normal
pancreatic tissue samples and 6 pancreatic cancer stem
cell samples. The profiles of EZH2 related CpGs in
pancreatic cancer stem cells are distinguished from
pancreatic tumor and normal samples as those loci are
largely methylated in pancreatic cancer stem cells
(Additional file 1: Figure S8).

Discussion

We observed significant variation in the FCO signature
in multiple normal tissues, consistent with our prior
work [27]. Since the FCO signature was designed to re-
flect the proportion of cells that are of fetal origin [27],
this suggests that normal tissues vary with respect to
their cellular components that retain embryonic lineage.
One example of this that could explain the relatively ele-
vated FCO in normal kidney is the known large propor-
tion of tissue-resident macrophages found in the kidney
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Table 2 P-values based on comparisons of the predicted FCO (%) between tumor and nontumor normal samples across different
TCGA studies. P-values were obtained using a non-parametric Wilcoxon rank sum test, multiple linear regression model, and a non-
parametric randomization-based testing procedure. P-values in PRAD are NA because FCO (%) in tumor and nontumor normal

samples are both 0%

Tumor Wilcoxon rank Linear Randomization-
sum test regression based test
BLCA 1.60E-12 6.57E-08 0.00052
BRCA 3.60E-15 5.59E-22 <2E-05
CESC 4.30E-27 1.34E-51 <2E-05
CHOL 5.55E-06 8.63E-06 0.00016
COAD 723E-41 1.16E-61 <2E-05
ESCA 361E-11 221E-13 <2E-05
GBM 1.51E-23 794E-14 <2E-05
HNSC 4.52E-40 2.77E-58 <2E-05
KIRC 1.20E-68 9.05E-146 <2E-05
LIHC 9.65E-26 8.48E-17 <2E-05
LUAD 4.80E-12 0.00236 0.0216
LUSC 6.16E-34 2.78E-19 <2E-05
PAAD 0.00135 0.000307 0.00128
PRAD NA NA NA
PCPG 0.396 3.84E-01 033
READ 7.62E-10 9.03E-09 0.00032
SARC 0.0254 0.00757 0.0607
STAD 3.64E-20 2.79E-13 <2E-05
THCA 447E-22 7.22E-26 <2E-05
UCEC 1.90E-37 2.32E-56 <2E-05

[51, 52]. These macrophages are embryonically-derived
and would therefore be excellent candidates for having a
high FCO. If this were the case, the elevated FCO in this
constituent component of the kidney would drive the
normal tissue signal to be elevated. In addition, the
mechanism(s) responsible for the inverse correlation be-
tween FCO and age in multiple tissues remains unclear.
It might arise as a result of the selective loss of constitu-
ent cells that are of embryonic lineage, such as the resi-
dent macrophages [53]. The FCO fraction varied from as
low as 0% for prostate to as high as 44.9% for kidney is
of interest; we posit that cells that retain the FCO signa-
ture might contribute to repair and regeneration in a
given tissue. A further understanding of this awaits dir-
ect investigation of the FCO of the individual cellular
components of normal tissues.

Though the types of cells that specifically account for
the fetal origin signal remain unclear, there are several
possible explanations for our findings in tumors them-
selves; it could be that most cancer cells are free of any
FCO signal and that the rapid proliferation of cancer
cells replaces the normal cells that are of fetal origin
(with a higher FCO signal). This conforms with the
prominent paradigm for explaining tumor heterogeneity

— the hierarchical cancer stem cell model. The cancer
stem cells acquire pluripotency during carcinogenesis.
As a result, it seems likely that only a small number of
cancer cells would retain any embryonic-like state and
thus, have a high FCO. As those embryonic-like cancer
cells differentiate and proliferate, the FCO signal might
decrease in the progeny cells. The origin of cancer stem
cells is not well established, but it is hypothesized that
the cancer stem cells can arise from adult stem or pro-
genitor cells, or possibly, the dedifferentiation of mature
somatic cells [17]. Regardless of their origin, the dedif-
ferentiation process that gives rise to the cancer stem
cells could generate cells with a high FCO signal that is
not retained in their progeny cancer cells. In this sce-
nario, the low FCO signal in tumor samples indicates
the rarity of cancer stem cells. While this remains a for-
mal possibility, the limited data analyzed here suggest
that cancer stem cells do not have consistently high
ECO signals, making this scenario less plausible.

Cancer proliferation models proposed over several de-
cades include the hierarchical cancer stem cell model
and the stochastic clonal evolution model [54]. The
former model is supported by recent research indicating
that heterogeneous tumor cells develop over time as
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Table 3 Comparisons of the predicted FCO (%) between tumor and nontumor normal samples from GEO replication data sets

Cancer Tumor n Nontumor Wilcoxon rank Mean Male n Female n Data source
normal n sum test age
p-values (sd)
Adrenal Cortical Cancer 18 6 0.01657 NA NA NA GSE77871
Bladder Cancer 25 5 0.00162 NA NA NA GSE52955
Breast Cancer 132 131 5.86E-39 4731 0 252 GSE53051,
(14.74) GSE72245,
GSE101961
Cholangiocarcinoma 32 4 0.00108 NA NA NA GSE49656
Chronic Myeloid Leukemia 12 11 0.0027 NA NA NA GSE106600
Colon Cancer 35 18 3.00E-09 6747 5 2 GSES53051
(11.26)
Esophageal Squamous Cell Carcinoma 4 8 0.00737 NA 8 4 GSE52826
Hepatocellular Carcinoma 66 66 1.30E-13 NA 100 32 GSE54503
Lung Cancer 141 31 2.30E-12 63.50 8 2 GSE53051,
(8.50) GSE56044
Nasopharyngeal Carcinoma 24 24 2.30E-04 42.96 30 18 GSE52068
(10.28)
Pancreatic Cancer 29 12 7.71E-03 63.20 7 3 GSES53051
(16.24)
Prostate Cancer 129 84 0.159 60.21 213 0 GSE52955,
(7.77) GSE76938,
GSE112047
Renal Cancer 17 6 8.80E-04 NA NA NA GSE52955
Rectal Cancer 6 6 2.50E-02 65.50 (8.80) 4 8 GSE75546
Thyroid Cancer 70 12 8.30E-07 4835 (14.90) 21 61 GSE53051
Total 740 424

cancer stem cells differentiate via genetic and epigenetic
alterations [55-58]. As the FCO signature is contained
at a high level in induced pluripotent stem cells [27], the
embryonic-like character of cancer stem cells and the
striking similarities between tumor development and the
generation of induced pluripotent stem cells might sug-
gest that tumors would display an increase in the FCO
signal. However, our findings are at odds with this; we
found a decrease in the FCO arises in almost all tumors
that cannot be explained by either leukocyte invasion or
normal tissue contamination, and we observed a very
low FCO signal in pancreatic ductal adenocarcinoma
stem cells and glioma stem cells. This would perhaps
suggest that cancer stem cells do not employ the normal
embryonic lineage pathways in the process of malignant
degeneration.

Further, our observation of a diminished FCO in tu-
mors is seemingly at odds with reports that DNA hyper-
methylation in cancer preferentially targets the subset of
polycomb repressor loci in cancer stem cells that are de-
velopmental regulators [59]. This seeming contradiction
might suggest that either the cancer stem cells are quite
rare in any tumor and that the cancer stem cell progeny
quickly lose methylation or that the cancer stem cells

differ in their driver gene content by tissue such that our
library would not capture their character (as they are
not invariant).

The major cancer stem cell specific pathways, includ-
ing phosphatidylinositol 3-kinase (PI3K)/Akt/mamma-
lian target of rapamycin (mTOR), maternal embryonic
leucine zipper kinase (MELK), NOTCHI, and Wnt/p-ca-
tenin, and genes (including CD133, CD24, CD44, OCT4,
SOX2, NANOG and ALDHIAI), maintain cancer stem
cell properties [60]. However, the major genes and path-
ways identified in FCO signature [27] do not have sub-
stantial overlaps with these pathways. The FCO genes
and pathways are primarily related to embryonic devel-
opment and embryonic stem cell epigenetic marks and
these are distinct from those driving cancer features,
such as: tumor progression, apoptosis resistance, chemo-
and radiotherapy resistance and tumor recurrence. The
single gene identified as overrepresented in both FCO
signature loci and cancer stem cell is EZH2. EZH2 is a
component of the polycomb repressor complex, which is
responsible for maintaining stemness, and it has also
been reported to be involved in the genesis of numerous
malignancies [46, 61]. Thus, its role in both embryogen-
esis and cancer may be somewhat unique.
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Another observation we found interesting is the large
range and variation of FCO in pheochromocytoma. The
FCO fraction in pheochromocytoma varied from 0 to 86%
and the significant difference of FCO between tumor tissue
and nontumor normal tissue we observed in other cancer
types didn’t hold true for pheochromocytoma. One possible
explanation for that is the origin of tumor cells differs in
different tumor subtypes. Pheochromocytoma is derived
from chromaffin cells of the adrenal medulla [62]. Perhaps
the large variation of FCO in pheochrocytoma is attributed
to the differences in the proportion of FCO cells in adrenal
medulla vs the cortex. In addition, we observed that adrenal
cortical tumor, which has a low fraction of FCO, is a more
common tumor subtype than pheochromocytoma, which is
a medullary tumor and has a large range and variation of
FCO. Further investigations on how FCO distribution in an
organ is related to the process of carcinogenesis are needed.

The FCO signature is designed to trace fetal origin
cells; the CpGs included in the FCO signature library are
putatively inherited from embryonic stem cells [27].
Given the observation that the FCO signal is low in can-
cer stem cells and majority of tumor cells, one possible
explanation is that tumors only arise from cells not car-
rying the FCO signature; an alternative would be that tu-
mors could arise from cells with FCO signature and the
FCO change during carcinogenesis is attributed to the
amount of FCO cells presented in the original site of the

malignancy or the FCO signature is unstable during the
process of carcinogenesis and thus lost. In sum, our
findings suggest that tumors contain a relatively small
fraction of cells of embryonic lineage if the FCO signa-
ture is stable during the malignant degeneration of a cell,
at least from the perspective of DNA methylation.

While our results point to a significant absence of FCO
in tumor tissues, we recognize some limitations. The major
body of cancer tissue and normal tissue we analyzed came
from TCGA and were based on the Infinium Human-
Methylation450K BeadChip array. Our FCO deconvolution
algorithm used a library of 27 CpGs that represents a
phenotypic block of differentially methylated regions for es-
timating the proportion of cells in a mixture of cells that
are of fetal origin. Among 27 CpGs in the FCO library, two
were removed in TCGA methylation data. As a result, we
used 25 CpGs in the library to do the FCO estimation. We
previously demonstrated that the alteration of FCO estima-
tion is minimal in the absence of a small number of probes
in the FCO library [27]. Furthermore, the GEO data, which
contains the full set of 27 CpGs, were used to validate the
absence of FCO signal in tumor tissue.

Another limitation of our study is the mixed
normalization protocols used in the data. The FCO algo-
rithm was developed based on DNA methylation beta
values normalized by the Funnorm function in minfi Bio-
conductor package. Consequently, the most appropriate
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normalization protocol to apply to DNA methylation
array data in order to be consistent with FCO algorithm is
Funnorm. However, the Level 3 TCGA used in this study
did not include such normalization. While the methyla-
tion data on TCGA are raw average beta values, the
normalization protocols applied on methylation data re-
trieved from GEO varied across studies. In spite of this,
we believe that the differing normalization protocols had a
minimal effect on FCO estimation as we have showed the
reliability of the algorithm by applying it to multiple differ-
ent GEO data sets regardless of the normalization proto-
col in our FCO development paper [27]. Also, the same
approach was applied to tumor and nontumor specimens,
which would limit normalization-based biases from
impacting our results.

Finally, the limited numbers for some of the tumor
types examined could lead to bias. We have
attempted to mitigate this problem by adding add-
itional analysis of publically available data sets, where
possible.

Conclusions

Future studies are needed to interrogate the specific types
of cells that show a high FCO signal. The variation in
FCO across different types of normal tissues likely reflects
the underlying cellular composition of these tissues. Aging
may change the FCO as a result of selective loss of cells of
embryonic lineage. The process of carcinogenesis essen-
tially universally diminishes the FCO; the precise mecha-
nism(s) responsible for this are unclear but our data
suggest that cancer development itself is substantially de-
void of recapitulation of normal embryologic processes.
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