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Percentage mammographic breast density (MBD) is one of the most notable biomarkers.

It is assessed visually with the support of radiologists with the four qualitative Breast

Imaging Reporting and Data System (BIRADS) categories. It is demanding for radiologists

to differentiate between the two variably allocated BIRADS classes, namely, “BIRADS

C and BIRADS D.” Recently, convolution neural networks have been found superior

in classification tasks due to their ability to extract local features with shared weight

architecture and space invariance characteristics. The proposed study intends to

examine an artificial intelligence (AI)-based MBD classifier toward developing a latent

computer-assisted tool for radiologists to distinguish the BIRADS class in modern

clinical progress. This article proposes a multichannel DenseNet architecture for MBD

classification. The proposed architecture consists of four-channel DenseNet transfer

learning architecture to extract significant features from a single patient’s two a

mediolateral oblique (MLO) and two craniocaudal (CC) views of digital mammograms.

The performance of the proposed classifier is evaluated using 200 cases consisting

of 800 digital mammograms of the different BIRADS density classes with validated

density ground truth. The classifier’s performance is assessed with quantitative metrics

such as precision, responsiveness, specificity, and the area under the curve (AUC).

The concluding preliminary outcomes reveal that this intended multichannel model

has delivered good performance with an accuracy of 96.67% during training and

90.06% during testing and an average AUC of 0.9625. Obtained results are also

validated qualitatively with the help of a radiologist expert in the field of MBD. Proposed

architecture achieved state-of-the-art results with a fewer number of images and with

less computation power.

Keywords: breast cancer, BIRADS Density Classification, DenseNet, deep learning, multichannel architecture,

mammographic breast density
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INTRODUCTION

Breast cancer has its reputation as a deadly disease and it is
the second most frequent event of departure for the women
community in society. It is frequently diagnosed in women with
12.3% compared to the average population (1–4). The incidence
of breast cancer is associated with many biomarkers such as
calcifications, masses, mammographic breast density (MBD), and
architectural distortion. Advanced apprehension and proactive
strategy are the unique alternatives to protect the lives of breast
cancer cases and regress their subconscious shock (5–8). MBD
is an essential biomarker in interpreting digital mammograms
and preparing a systematic mammography screening program.
According to epidemiological investigations, females with highly
dense breast tissue risk developing breast malignancy (9, 10).
MBD is a radiographically visible density on the mammogram,
consisting of lobular elements, ducts, and fibrous connective
tissue compared to the lucent fatty tissue in the breast (11). The
reports are prepared during the digital mammography screening
program as per the American College of Radiology Breast
Imaging Reporting and Data System (ACR BIRADS) catalog.
This catalog was last modified in November 2015 (12, 13). As per
the BIRADS, MBD gets classified into the four significant groups
of mammographic breast density as class A, class B, class C, and
class D, which reduces the sensitivity of digital mammography
(14). Figure 1 depicts all the MBD BIRADS classes.

Different scientific studies have revealed that digital
mammograms’ sensitivity strongly depends on the density
class of the breast tissue. In dense breasts, the sensitivity
of mammograms is as low as 63%, while in the low-
density breast, there is an exponential rise of 87%. Hence,
patients with high-density breasts have to go for additional
imaging such as tomosynthesis, ultrasound, or breast MR
to enhance cancer detection chances (15). Researchers
have proposed many semiautomatic and automatic
approaches for measuring breast density from the last two
decades. However, the assessment of mammographic breast
density (MBD) is subjective, which expert radiologists do
(16). Despite this labeling, due to poor interreader and
intrareader reproducibility, MBD classification has many
limitations (17).

For an automatic objective assessment of MBD classification,
many study efforts have been in progress from the last
few decades. The initial study focuses on image processing
techniques such as area-based thresholding, region growing,
and clustering algorithms. A significant step formulated was
the emergence of the machine learning (ML) algorithms
based on different extracted image topographies from the
histogram, texture intensities, patterns, and image acquisition
parameters. Nowadays, deep learning algorithms provide yet
another leap forward in MBD classification. Deep learning
algorithms can go substantially deeper and discover all
the significant features from the image. Due to system
architecture and hardware improvements, it is possible to
train deep learning architecture intensely. This improvement
makes deep learning architecture an excellent tool for
medical image analysis. Many deep learning architectures

such as LeNet, (visual geometry group) VGG19, highway
networks, residual networks, and DenseNet are recorded
in literature.

Nevertheless, before every deep learning network lets more
intelligence, a new study intricacy happens, the “vanishing
gradient problem.” DenseNet (dense convolutional network)
provides unique insight to secure the best data flow between
layers to solve the connectivity problem. This interface
immediately combines all the layers, agreeing on characteristic
map dimensions in feed-forward type; hence, the individual
layer receives input from all the previous layers also transfers
its distinct map to all the farther layers. Thus, the DenseNet
concatenate feature map passes through all the subsequent layers
instead of summarizing features such as ResNet. This concept
includes L (L+1)/2 connections instead of L connections,
identifying a dense connectivity pattern (18). The consequence
of this connectivity guide, i.e., DenseNet architecture, provides
the following advantages:

1. Effective solution for gradient vanishing.
2. Consolidation in characteristic distribution.
3. Provision of feature recycle.
4. Significant reduction in training parameters.
5. Easy to train and offers better parameter efficiency.

Due to these advantages, it is helpful to use this model without
pretraining for medical image analysis.

The elemental aspiration behind this study is to investigate
the use of multichannel DenseNet architecture for MBD
classification and analyze the proposed architecture compared
with different existing methods. Figure 2 depicts the proposed
multichannel architecture for MBD classification.

The key feature of this architecture is classifier performance
that is evaluated with 800 digital mammograms among the
diverse BIRADS density categories. Results are confirmed
exclusively by expert radiologists and objectively with
classification accuracy and the area under the curve (AUC).
Various sections described in this article are as below. Related
study section covers unique existing deep learning algorithms for
MBD classification, Study dataset section presents the aspects of
the source dataset, Proposed methodology section represents the
proposed architecture, and Analysis of experiment and outcomes
section introduces the empirical outcomes. Finally Discussion
section discusses the future scope and Segment 7 concludes
this study.

RELATED STUDY

Mammographic breast density classification is a long-lasting
study area due to more thought-provoking and challenging
image preprocessing, segmentation, and classification tasks.
Successful deep learning classifiers such as ResNet, VGGNet,
and GoogLeNet give brand-new pathological imaging and
investigation prospects. This section describes the remarkable
of such existing methods used for MBD classification. In
summation, these classifiers offer better results on different
imaging modalities for image classification. Intrinsically, high
interreader fluctuations are the prime problem in MBD
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FIGURE 1 | The proposed multichannel architecture for mammographic breast density classification.

FIGURE 2 | BIRADS classification-(A) fatty-class A (B) fat with some fibro glandular tissue -class B (C) heterogeneous dense-class C (D) extremely dense-class D

(Image courtesy: Densebreast-info.org).

assessment. To overwhelm this problem, Ciritsis et al. (19)
suggested deep learning architecture with 11 convolutional
layers, three fully connected layers, and an output SoftMax layer
to distinguish breast density into two classes and four classes.
Two expert radiologists marked density ground truth during
this classification task. A combination of mediolateral oblique
(MLO) and craniocaudal (CC) (left or right) views (20,578)
digital mammograms were used to train the proposed model.
During the training, to enhance the model’s performance and
desist overfitting, the convolutional layers are zero-padded and
used a dropout rate of 50%. Batch size and the highest number of
epochs used during training are 40 and 120, respectively. Input
data segmented as 70% for training and 30% for validation. This
model is validated independently on CC andMLO views for two-
class classification and achieved an overall classification accuracy
of 89.9 and 86.6%.

Predominantly, fat appears darker than fibroglandular tissue
in MBD assessment. Hence, the pixel intensity of the histogram
acts as an essential feature for classifier training. Wu et al.
(20) suggested this technique for MBD classification. In this
method, the SoftMax regression classifier is used to learn pixel
intensity histograms. Four regular views [left CC (LCC), right CC

TABLE 1 | Input dataset used for testing and validation of proposed algorithm.

BI_RADS Density Class Number of images

Class-A 200

Class-B 200

Class-C 200

Class-D 200

Total 800

(RCC), left MLO (LMLO), and right MLO (RMLO)] of 2,00,000
screening images were given individually to train the prototype.
The proposed architecture is deep and consists of 100 hidden
units between input and output layers. All the hidden layers use
Rectified Linear Unit (ReLU) as an activation unit. This model
is tested for two- and four-class classification and achieved 81.1
and 82.5% classification accuracy. Thus, this model provides
moderate classification accuracy despite an extensive dataset.
Lizzi et al. (21) suggested a residual convolutional network for
MBD classification. The recommended design consists of 41
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convolutional layers formed in residual blocks with 2 million
parameters. The first block of this architecture consists of a
convolutional layer, a batch normalization layer, a leaky ReLU
as an activation function, and a two-dimensional (2D) max
pooling. A series of four sections consisting of three residual
modules uses the output features of the input block. Leaky
ReLU with α = 0.2 activation functions was used to train
the architecture. Categorical cross-entropy as a loss function
validates the performance of the model. Maximum accuracy
with four-class classification is 78% and the two-class accuracy
is 89.4%.

In a comparative study for evaluating the performance of deep
learning and transfer learning on a similar dataset, Lee et al.
(17) proposed both the approaches on 22,000 mammographic
images. In this approach, expert radiologists marked density
ground truth for the input images. Initially, the model’s training
starts with 500 images with the AUC of 0.942 and the final
value of the AUC is 0.9882 reported on the whole dataset.
Then, the proposed model is cross-validated with the transfer
learning (ImageNet) application and obtained the overall AUC
of 0.9857. Thus, this study shows that both the deep learning
and transfer learning applications provide almost identical results
on the equivalent dataset. The requirement of a larger dataset
for training is an essential need of deep learning architecture.
Shi et al. (22) proposed optimized lightweight deep learning
architecture to optimize deep learning performance on smaller
datasets. This architecture combines three convolutional neural
networks (CNNs), one dense layer, and an output layer with the
SoftMax function. Data augmentation is done with additional
image processing to increase the numbers in the dataset.
This architecture was trained and tested on the 322 mini-
Mammographic Image Analysis Society (MIAS) dataset. This
architecture provides overall accuracy of 83.6% on four-class
classification. The main limitation of lightweight architecture on
smaller datasets is the low stability of the network, which may
occasionally cause large and significant variations in the accuracy.
Data augmentation can enlarge the dataset in this method, but it
is still challenging to get well-trained convolutional layers due to
little diversity between the original and generated datasets. In the
literature, there are two ways that are recorded to enhance the
model performance with a smaller dataset, which are generative
adversarial network (GAN) and another is transfer learning (23).

Recently, different researchers proposed the concept of
transfer learning on a smaller dataset. For example, Kaiser et al.
(24) proposed new architecture that can take all the four views
of single patients to classify MBD into two-class classification
(dense and nondense). For this purpose, the author proposed
four-channel VGGNet architecture to extract all the features with
average global pooling from input mammograms. Before the
classification layer, to concatenate all the input layer features,
two dense layers are used. Then, the proposed model is trained
with 5-fold cross-validation and recorded 88% classification
accuracy with the AUC of 0.954. Finally, subjective assessment
is done with a panel of 32 radiologists to compare interobserver
variability. In this approach, interobserver variability for
breast density assessment is observed even high in two-class
classification. Thus, the automated processes forMBD can help to

minimize interobserver variability. Despite different automated
approaches, MBD assessment is subjective and consists of
intra- and interobserver variations. Objective evaluation of
other commercially viable methods consists of mixed evaluation
results. Another fundamental limitation is that most of existing
deep learning methods need a higher dataset and validated
density ground truth; hence, data acquisition becomes difficult
for researchers. In addition, mammographic images are vendor
specific, making deep learning more robust; training the deep
learning model through different vendor-specific samples is
required, another bottleneck in MBD classification. All the
limitations mentioned above result in moderate objective MBD
classification accuracy.

The primary motivation behind this study is to investigate
the transfer learning application of DenseNet architecture
toward enhancing the classification accuracy of MBD. A
significant contribution is the design and development of
multichannel architecture to utilize four mammographic views
of a single patient.

STUDY DATASET

The intended study utilizes the openly available dataset from
digital database for screening mammography (DDSM) (25),
consisting of 2,620 samples of various classes labeled as benign,
normal, and malignant with confirmed pathogeny data. The
aimed algorithm uses 200 Right-MLO, 200 Left_MLO, 200
R_CC, and 200 L_CC views. A total of 800 mammograms are
used for training and testing purposes. The ground truth of each
class is labeled with the help of specialist radiologists team into
four classes as 0, 1, 2, and 3 as a four MBD classes. All the density
groups consist of 200 cases of different images (MLO, LMO,
R_CC, and L_CC). Table 1 presents the details of the ground
truth input dataset used in this proposed study.

PROPOSED METHODOLOGY

This segment explains the proposed MBD classification
technique and divided into three subsections as
presented subsequently.

Segmentation of Pectoral Muscle
Instead of using raw images for models’ training, the proposed
method preprocesses both the LMO and MLO views. Input
mammographic images consist of high-intensity marks of
artifacts and tags and pectoral muscle. Those fields in the breast
region can reduce the MBD classification accuracy (26, 27).
The proposed method uses the depth-first search algorithm, our
previous study (28), to remove pectoral muscle, artifacts, and tags
from all theMLO and LMOviews. This preprocessing study helps
the model to classify all the BIRADS classes correctly with less
input images. Depth-first search (DFS) algorithm identify all the
unwanted high-intensity areas (artifacts and pectoral muscle) of
MLO and CC views and removes them, which further help the
model to make the correct decision. Figures 3, 4 depict the input
and output images after preprocessing.
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FIGURE 3 | Input raw images- (A) Left_MLO (B) Left_CC (C) Right_MLO (D) Right_CC.

FIGURE 4 | Output Images after segmentation and cropping - (A) Left_MLO (B) Left_CC (C) Right_MLO (D) Right_CC.

FIGURE 5 | Contrast enhancement of input images.

Contrast Enhancement
Mammographic breast density classification is a function of
the density of fibroglandular tissues inside the breast. Contrast
enhancement helps to improve the visibility of fibroglandular
tissues. Subsequently, it helps to improve the classification
accuracy of deep learning models. In literature, many contrast
enhancement methods are recorded to enhance the quality of
medical images. These methods are “histogram equalization
(HE),” “adaptive histogram equalization (AHE),” and “wavelet
transform (WT) coefficients” (29–31). But, these documented

practices take ample processing time and are less effective in noise
reduction. Another recorded method is the “unsharp masking
(USM) method,” which enhances the local contrast inside the
image by limiting the global contrast. Still, this technique creates
artifacts in the image. Due to this, the image looks artificial;
therefore, it is not fitting for the enrichment of the medical
images (32–34).

In contrast to gain agreement for the high-frequency element
of the image, which is the basic principle behind “adaptive
contrast enhancement (ACE),” it consists of limitation in terms of
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high processing time (32–38). In MBD classification, local details
are more important than global features and reduce processing
time; the proposed architecture uses the contrast limited adaptive
histogram equalization (CLAHE) algorithm for limited contrast
enrichment of fibroglandular tissues (39–41). The first merit of
this method helps to minimize the edge shadowing effect and

FIGURE 6 | Conversion of grayscale image appears as an RGB.

noise produced in homogeneous input digital mammograms.
Second, small images known as tiles are used instead of the
entire image to perform the CLAHE operation. Hence, contrast
enhancement of each tile histogram matches with exponential
distribution or Rayleigh distribution. Moreover, to overcome
artificial-induced borders, neighboring tiles are connected
by bilinear insertion. This advanced CLAHE technique is
outlined under:

1. Initially, all the input mammograms are divided into 8 × 8
non-overlapping contextual fields of equal sizes and later a
histogram of various contextual regions is calculated.

2. The clip limit (β) is the threshold parameter used to alter the
contrast of the image, which is calculated by Equation (1).

β =
M × N

L
(1+

∝

100
(Smax − 1)) (1)

Where β is the clip termination, calculated as eight by several
experiments, M × N is the number of pixels in each field, L is
the number of gray scales, and α is a clip factor (0–100). It is the
highest allowable slope, which is set to be 4 for this analysis.

3. Each histogram is aligned, so that its maximum does not
surpass further than the clip boundary.

FIGURE 7 | The proposed multichannel Dense-Net Framework for BIRADS classification.
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4. The transformation function, which is described below, is
used to modify the histogram.

t (rk) =
∑

k
j=0 pr

(

rj
)

(2)

Where pr
(

rj
)

=
nj

n
(3)

Equations (2) and (3) describe the probability function of input
image gray scale value j, n is a total number of pixels in input
mammogram image, and nj is input pixel number of gray value j.

5. The adjacent tiles were joined by bilinear interpolation and
the image gray scale values were altered according to the
revised histograms.

In this method, the contrast factor is limited to 0.01 to prevent
oversaturation of the image, specifically inhomogeneous areas
for optimized output. Furthermore, the number of bins for
the histogram structure is restricted to 64 over the uniform
distribution for contract enhancing transformations. Figure 5
depicts the result of contrast enhancement of the CLAHE
algorithm on input images.

Multichannel Model Development
This article proposes the feature learning ability of multichannel
DenseNet architecture presented by Huang et al. (18) toward
MBD classification. The proposed method uses four independent
DenseNet architecture as four-channel architecture known as
multichannel architecture. This architecture is competent in
taking all the four views of an individual patient for the
classification of MBD.

Conversion of Gray Scale Image Into RGB
TheDenseNetmodel is pretrained on red, green and blue channel
(RGB) images, but the proposed study uses the gray scale image as
the input image. To appear gray scale image as an RGB, perform
repetition of image array three times due to which the same
image appears on the channels. Then, after duplication of the
input image, all the input images are resized into 320 × 320 ×

3. Figure 6 depicts the conversion of the gray scale image into a
three-channel RGB.

Input Convolutional Layer
The four input channels of the proposed architecture are
marked as L_CC, L_MLO, R_CC, and R_MLO. The fundamental
merit of this combination is that all the four views of digital
mammography are processed concurrently. Each input layer of
DenseNet architecture consists of a convolution layer of the
kernel of 7 × 7 with a stride of 2. This convolution operation
reduces the input size of the images to 112 × 112 × 3. Input
image further passes through a pooling layer of 3 × 3 maximum
pooling with stride 2× 2. Thus, the input layer’s convolution and
pooling operation reduce the input image size to 56× 56× 3 and
before passing to the dense blocks. Figure 7 depicts the proposed
multichannel architecture.

Design of DenseNet Neural Structure
The DenseNet architecture consists of different design variants
such as DenseNet121, DenseNet169, DenseNet 201, and
DenseNet 264. The DenseNet architecture’s fundamental merit
is the structure of dense layers precisely designed to take care
of downsampling and feature concatenation. Therefore, out of
four variants, the proposed architecture uses the DenseNet121
network structure, consisting of a combination of dense block
layers and transition layers. Thus, the proposed model uses
58 convolutional layers and a growth rate (k = 12), including
four dense and two transition layers. In addition, the proposed
model consists of comparatively fewer parameters hence, saving
computational memory and reducing the overfitting.

Dense Block Layer
In four dense blocks, the individual layer is responsible for
forming a k-characteristic map after convolution, which also
maintains feature maps of each layer are in the same size.
K convolution kernels extract all the features from the layers.
Parameter k is known as a hyperparameter in DenseNet,
which is the growth rate of the network. Each dense layer
receives the different inputs from previous layers to reduce
computation and enhance the efficiency of the dense block.
The dense block internally uses the bottleneck layer (1 × 1
convolution layer between batch normalization, ReLU, and 3 ×

3 convolution layer).

Transition Layer
This section consists of a batch normalization layer and a one ×
one convolution layer followed by a two × two average pooling
layer. This layer combines two nearby dense block layers to
reduce the feature map size. A combination of 4 dense blocks and
transition layers converts the image size into 7 × 7 × 3, further
provided to the output layer. Each layer connects to the previous
stage as an input described by Equation (4):

Xl = Hl(
[

x0, x1, . . . . . . , xl−1
]

) (4)

A non-linear transformation function Hl (.) is responsible
for combining series output of batch normalization, ReLU,
pooling, and convolution operation. Figure 8 depicts the design
architecture of dense layer.

Output Classification Layer
The output layer of the proposed architecture consists of
a specific average pooling layer for each channel to extract
meaningful features. Extracted features are flattened by the flatten
layer and are given to the individual dense layer. MBD features
received from four-channel are concatenated together with two
concatenation blocks. Subsequently, the third concatenation
block joins all the proposed method features together. The
three dense layers accept all the features collected together and,
finally, the classification layer receives the output of three dense
layers for classification. The proposed method uses the SoftMax
classifier to classify output into four classes as per the BIRADS
Density Classification. Table 2 presents the specifications of the
proposed method.
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FIGURE 8 | The architecture of dense layer.

ANALYSIS OF EXPERIMENT AND
OUTCOMES

The experimentally proposed design is trained and tested
upon the PyTorch framework on Google Colaboratory, a free
online cloud-based Jupiter notebook environment. The proposed
method input dataset is not sufficient to split into the train,
validate, and test data sets; hence, training and testing of the
model are done in two phases. Figure 9 depicts the image data
distribution during training (phase I) and training and testing
(phase II).

Phase I
The entire model is trained with stochastic gradient descent
(SGD) algorithm using batch sizes 4 and 30 epoch on the whole
dataset. SGD is an optimization algorithm that estimates the
error gradient for the model’s current state with an example of
a training set; after this, it updates the weights of the model
using backpropagation (35–37). Equation (5) describes weight
updating mechanism in SGD algorithm.

wnew = Wold
− n∇Qi(wnew ) (5)

Where wnew is new weight, is weight at previous iteration is
learning rate and weight gradient. The primary merit of this
algorithm is that it updates parameters for each training example
and performs one update at one time. Thus, SGD is faster
and can also learn online. The weight updating step size is the
learning rate of the model. The learning rate is a configurable
hyperparameter that controls the speed by which the model
learns. The initial learning rate for thismodel is 0.1 (default value)
and further divided by ten at 50 and 75% of the total training
epochs. The categorical cross-entropy acts as a loss function in

this model, quantifying the difference between four probability
distributions. This loss function works well with the SoftMax
activation function in multiclass classification. Equation (6)
describes the categorical cross-entropy mathematically, which is:

C.E. = −

∑

c
i tilog(si) (6)

Where C.E. is cross-entropy ti and si ground truth and the
convolutional neural network (CNN) score for each class i in c.
Table 3 presents the setting of different hyperparameters used to
obtain the optimized results of the proposed architecture.

During the training on the entire dataset, the best classification
accuracy score was 96.35% at 18 epochs with a loss factor of
0.1344. Figure 10 depicts the training phase results on the dataset
as a whole.

Phase II
After training the model on the entire dataset, the proposed
model performance is validated by spitting the image dataset
in a ratio of 80% as training and 20% as testing. The
proposed model performed significantly well on all the BIRADS
density classes during the testing phase and recorded the
best classification accuracy, 90.00%, with a validation loss of
0.3814. Figure 11 depict the outcomes of validation over the
training model.

Results Evaluation
The proposed multichannel DenseNet architecture performance
is analyzed from the confusion matrix of the model on the
test dataset. Figure 12A shows the proposed architecture’s
heat map (confusion matrix) on the test dataset. The heat
map helps to analyze which category is correctly classified
by the proposed architecture. The main diagonal darker
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TABLE 2 | Technical specification of proposed architecture.

No. of channels 04

Layers/Channel Output size/channel Block description/Channel

Convolution 112 by 112 Kernel 7 × 7 stride 2

Pooling 56 by 56 3 × 3 Max.Pooling, stride 2 × 2

Dense block 1 56 by 56 [1 × 1 Conv] × 6

[3 ×3 Conv] × 6

Transition 1 56 × 56 Batch normalization layer and a

1 × 1 convolution layer followed

by 2 × 2 average pooling layer

28 × 28

Dense block 2 28 × 28 1 × 1 Conv] × 12

[3 × 3 Conv] × 12

Transition 2 28 × 28 Batch normalization layer and a

1 × 1 convolution layer followed

by 2 × 2 average pooling layer

14 × 14

Dense block 3 14 × 14 1 × 1 Conv] × 24

[3 × 3 Conv] × 24

Transition layer 3 14 × 14 Batch normalization layer and a

1 × 1 convolution layer followed

by 2 × 2 average pooling layer

7 × 7

Dense block 4 7 × 7 1 × 1 Conv] × 16

[3 × 3 Conv] × 16

Classification layer 1 ×1 7 × 7 global average pool

1000D fully connected, SoftMax

FIGURE 9 | The distribution of image data.

version indicates a better classification rate. Although it
is clear that the model is working well in classes A, C,
and D, there is some confusion in classifying category
class B. Still, this model correctly classifies heterogeneous
dense (C) and extremely dense (D), which is the essential
bottleneck behind MBD classification. Figure 12 depict
the heat map and the AUC curve, respectively, of the
proposed model.

Evaluation of the classification results of the intended
architecture is performed in terms of precision, recall, the F1-
score, and classification accuracy. Among those parameters,
precision is the proportion of samples with optimistic predictions
concerning the total number of correct positive samples. The
recall ratio of correctly predicted samples to the whole samples

TABLE 3 | Setting of hyperparameters used during experiment.

Hyper parameters Value

Model Multichannel-Dense Net

No. of channel 04

Model initial learning rate 0.1

Image size 320 × 320 × 3

Batch size 04

Target labels Ground Truth

Data augmentation Not used

Loss function Categorical cross-entropy

Optimization algorithm Stochastic gradient decent

Validation parameter Classification accuracy

FIGURE 10 | Training phase performance of the model (A) model accuracy

and (B) model loss.

and the F1-score are the precision and recall weight. Finally,
classification accuracy is the total correct predictions to the total
number of samples. Equations (7) to (10) define precision, recall,
the F1-score, and classification accuracy, respectively:

Acc =
NA + NB + NC + NC

NAll
(7)

F1− score =
2PR

P + R
(8)
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FIGURE 11 | Validation results of the proposed model in phase-II (A) model

accuracy (B) model loss.

WhereNAll is the total number of images andNa,Nb,Nc, and Nd
signify the number of images in MBD classes A, B, C, and D.

P =
Nt

Ni
× 100 (9)

R =
Nt

Nf
× 100 (10)

Where, Nt is the correct number of predictions of a specific
category and Ni is all the number of forecasts of a class and
indicates the actual number of the category, among them are
precision and recall, respectively. The model accuracy is the
ratio of the sum of the diagonal elements to all the elements.
Thus, it acts as an indicator of the overall prediction of the
model. Table 4 presents the model’s overall performance in detail
and variation in precision rate, the recall rate, and the F1-score
rate under different categories. The number (or percentage) of
accurate positive samples for all the four BIRADS density classes
are 92, 75.5, 92.2, and 94.7% of their respective totals. From the
results shown in Table 4, there is no confusion between classes A
and C, B and C, and C and D. The proposed algorithm results
are consistent with the results evaluated by the radiologists,
which are a positive sign that indicates that deep learning models
are helpful for the classification of MBD. Another graphical
technique utilized to investigate the realization of computer-
aided diagnostic methods is the receiver operating characteristic
(ROC), as shown in Figure 12B. This curve analysis performance

FIGURE 12 | (A) The Heat map (B) and the ROC curve of the proposed

model.

of the prototype should be in terms of true positive rate (TP) and
false positive rate (FP). The AUC value refers to the area enclosed
by the ROC curve in the [0, 1] period and the X-axis. The higher
the AUC content, the more reliable the realization of the model.
It additionally highlights the ability of the model to differentiate
among the classes.

DISCUSSION

Inconsistency in MBD assessment is the fundamental reason
behind unnecessary extra screening procedures and cause for
patient anxiety (41–43). Due to improved system architecture
and hardware capability, the deep learning model can be an
alternative for medical image classification. Still, the need for a
larger dataset and vanishing gradient are the primary bottleneck
issues to obtain state-of-the art results from deep learning
models (44).

Advantages of Proposed Method
This study article proposes multichannel DenseNet architecture
for MBD classification to investigate the performance of
DenseNet architecture on a smaller dataset. The proposed
architecture has recorded good classification performance
in four-class classification. Furthermore, the visualization
results show that the model can distinguish between
all the BIRADS density classes, especially in “scattered
density” and “heterogeneously dense category of the
BIRADS.” Thus, this model can help the radiologists to
classify the BIRADS density classes quickly. The main
reasons for the excellent performance of this model are
as follows:
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TABLE 4 | Performance parameter of the proposed method.

BIRADS density classes Precision Recall F1-score Overall classification accuracy Overall AUC

Predominantly fatty-class A 1 0.866 0.92 0.9006 0.9625

Fat with some fibro glandular tissue class B 0.77 0.77 0.755

Heterogeneous dense-class C 0.857 1 0.922

Extremely dense-class D 0.90 1 0.947

TABLE 5 | Comparative status of the proposed method with current state-of-the-art methods.

References Dataset Proposed method Classification accuracy

Wu et al. (20) 2,00,000 A deep convolutional network with 100 layers. 0.825 on Four views

Ciritsis et al. (19) 20,578 A deep convolutional network with 11 layers and performed analysis separately on

CC and MLO views.

0.897 On CC views and 0.866 on

MLO views.

Kaiser et al. (24) 8,150 A multichannel architecture with transfer learning by VGG-Net. 0.88 on all four views

Shi et al. (22) 322 A light-weight deep learning architecture with 3 convolutional layers. 0.836 On MLO views.

Deng et al. (36) 18,157 A single channel architecture with transfer learning by Dense Net 121 combined with

SE-Attention network.

0.9179 on all Four views

Proposed method 800 A multichannel architecture with transfer learning with Dense Net 121 0.90 on Four views

1. Instead of using raw images, the proposed architecture uses
preprocessed images. Hence, there are no high-density areas
such as pectoral muscle and tags on mammograms, which
are helpful to increase the classification accuracy of the
proposed architecture.

2. The proposed method uses a contrast
enhancement technique to improve the quality of
training data.

3. The model contains four DenseNet branches, which extract
the features of mammograms from four views of the single
patient, so that the network can focus on a broader range of
spatial information.

4. Due to multichannel architecture, it is possible to process all
the views of a single patient simultaneously.

5. Subsequently, with multichannel and multiview architecture,
it is probable to consolidate all the features collectively;
consequently, the performance of the intendedmodel is found
more reliable than single-view classification.

Comparison With Existing Methods
While there are variations in related datasets and evaluation
methods, the straightforward comparison is challenging to
researchers. This section compiles the proposed algorithm’s
comparison state with existing classifications. To study the
interobserver variation in MBD assessment, N Kaiser et al.
(24) proposed the novel multichannel VGG architecture.
This approach uses a total of 8,150 digital mammograms,
divided into 600 cases. This method recorded 88% two-class
classification accuracy (dense and nondense) with the AUC
of 0.954. Besides, these results are also compared with the
32 individual radiologist’s panel’s density ground truth. This
study reveals that the deep learning approach performs better
than average radiologists. Thus, we only need to refine the
deep learning model for MBD classification. However, the

fundamental limitation of this method is that the gradient
flows from the final layer to the initial layer; hence, vanishing
gradient problem takes place, which increases training time and
reduces the classification accuracy. In the proposed method, due
to DenseNet architecture, all the layers are directly connected
in feed-forward nature, acting as an effective solution for
vanishing gradient and reducing training time. Thus, the results
of the proposed algorithm outperform this method on a
smaller dataset.

Another method directly comparable to the proposed method
is the optimized lightweight deep learning architecture proposed
by Shi et al. (22). The elemental focus of this method is to
overcome the requirement of the larger dataset and vanishing
gradient problem of the deep learning algorithm. This method
combines three CNN layers, one dense layer, and an output
layer to classify MBD. This architecture is tested on the 322
mini-MIAS dataset with different data augmentation techniques
and recorded 83.6% classification accuracy. However, due to
the smaller dataset, this architecture has limitations regarding
moderate classification accuracy and low stability of the network.
Therefore, the proposed method used the concept of transfer
learning and multichannel architecture to overcome these
limitations. As a result, the proposed model outperforms this
method in classification accuracy on a smaller dataset. Table 5
provides the comparative state of the proposed method with
other different existing methods.

Limitations and Future Study
Even though the proposed method has improved the
classification performance of the BIRADS density classes,
some issues still need to be addressed. First, this study uses
a smaller amount of image data and no image enhancement
strategies are used to expand the dataset. Hence, model
performance, especially stability during validation, is affected
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due to limited image data and model found it a little confusing
to classify classes A and B. Therefore, in future study, data
enhancement techniques will improve the model’s performance.
Second, the proposed study addresses only one type of dataset;
hence, this approach does not address the robustness of the
model. Future study will address the robustness of the model by
training the model with different vendor-specific image datasets
and testing results of all the mentioned state-of-the-art methods
with the proposed method with the same work environment.
The proposed study will be undoubtedly helpful in addressing
the issues mentioned above.

CONCLUSION

In summary, the primary objective behind this study is to
classify MBD as per the BIRADS classification. This study
proposes the novel approach of multichannel architecture
with DenseNet121 for the objective assessment of MBD. The
proposed framework uses the four views of a single patient
to enhance feature learning ability through a multiview
approach. In the method, image contrast enhancement and
preprocessing of the input image are implemented to enhance
the condition of the training image data. The input images
are processed through multichannel architecture to extract
and fuse all the features. Analysis of the results suggests
that the proposed model successfully distinguishes between
all the BIRADS density classes, but is predominantly found
superior in the two most distinctive and challenging BIRADS
categories: “BIRADS_C” and “BIRADS_D.” Classification

accuracy of the proposed model is recorded at 96.67% during
training and 90.06% during testing and the average AUC of
0.9625. The introduced design consists of some weaknesses
discussed and will be addressed in future study; with certain
modifications, the proposed method is suitable for application
in clinical workflow in breast cancer screening to avoid
false recalls.
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