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Abstract

Viruses lie in a continuum between generalism and specialism depending on their ability to infect more or less hosts. While generalists
are able to successfully infect a wide variety of hosts, specialists are limited to one or a few. Even though generalists seem to gain an
advantage due to their wide host range, they usually pay a pleiotropic fitness cost within each host. On the contrary, a specialist
has maximal fitness within its own host. A relevant yet poorly explored question is whether viruses differ in the way they interact
with their hosts’ gene expression depending on their degree of specialization. Using a genome-wide association study approach, we
have identified host genes whose expression depends on whether hosts were infected with more or less specialized viral strains.
Four hundred fifty natural accessions of Arabidopsis thaliana were inoculated with Turnip mosaic potyvirus strains with different past
evolutionary histories and that shown different degrees of specialization. Three disease-related traits were measured and associated
with different sets of host genes for each strain. The genetic architectures of these traits differed among viral strains and, in the case of
the more specialized virus, also varied along the duration of infection. While most of the mapped loci were strain specific, one shared
locus was mapped for both strains, a disease-resistance TIR-NBS-LRR class protein. Likewise, only putative cysteine-rich receptor-like
protein kinases were involved in all three traits. The impact on disease progress of 10 selected genes was validated by studying the
infection phenotypes of loss-of-function mutant plants. Nine of these mutants have altered the disease progress and/or symptoms
intensity between both strains. Compared to wild-type plants six had an effect on both viral strains, three had an effect only on the
more specialized, and two were significant during infection with the less specialized.
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1. Introduction
Viruses are constantly facing heterogeneity in the hosts they
infect. They face species with different response to infection or
in many instances differences in immune status among indi-
viduals within the same host species. Some viruses adapt to
a particular host species, genotype, or even cell type in which
they efficiently complete their reproductive cycle (Turner and
Elena 2000; Cooper and Scott 2001; Cuevas, Moya, and Elena
2003; Bedhomme, Lafforgue, and Elena 2012; Hillung et al. 2014;
Navarro et al. 2020). These viruses are called specialists. Specialist

viruses pose a great threat e.g. to monocultured crops since well-
adapted viruses usually show enhanced within-host replication
rates that are often associatedwith stronger symptoms (Roossinck
2010; Lacroix et al. 2014; Stobbe and Roossinck 2016). Examples of
specialist viruses are Dengue flavivirus andMumps orthorubulavirus,
among mammalian viruses, and Barley stripe hordeovirus from
plants (Elena, Agudelo-Romero, and Lalić 2009; Roossinck 2010).
Other viruses infect hosts from widely different cell types, geno-
types, species, or even higher taxonomical units and are dubbed
generalists (Elena, Agudelo-Romero, and Lalić 2009). Cucumber
mosaic cucumovirus (that infects more than 1,000 plant species)
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2 Virus Evolution

and the Alphainfluenzavirus (that infects birds, humans, and other
mammalian species) are examples of generalist viruses (Elena,
Agudelo-Romero, and Lalić 2009).

Each host range strategy comeswith advantages and disadvan-
tages. By hyperspecializing in a single host, a virus can limit inter-
specific competition and better access limited resources (Elena,
Agudelo-Romero, and Lalić 2009; Bedhomme, Hillung, and Elena
2015). The advantage of generalism is the successful infection of
multiple hosts. However, there is an obvious limitation to gen-
eralism: by being able to infect multiple hosts a virus does not
maximize fitness in any particular one, conforming to the jack-of-
all-trades is a master of none hypothesis (Whitlock 1996; Bedhomme,
Hillung, and Elena 2015). It is proposed that selection favors spe-
cialist viruses because there is a trade-off limiting the fitness of
a generalist virus in any of the alternative hosts and evolution
proceeds faster in narrower niches (Woolhouse 2001). Antagonis-
tic pleiotropy, where beneficial adaptations to a particular host
could be disadvantageous in another (Lalić, Cuevas, and Elena
2011), is the most commonly claimed mechanism to explain this
trade-off. Furthermore, to infect multiple hosts, viruses might
need to encode for additional genetic information that would
slow down their replication and increase theirmutational fragility.
Also, mutations that are fixed in order to compensate for antag-
onistic pleiotropy limit access to alternative evolutionary paths
towards global maxima in the fitness landscape, reducing evolv-
ability (Cervera, Lalić, and Elena 2016). All these characteris-
tics make specialists capable of faster evolution and adaptation
than generalists in the face of perturbations or new environ-
ments (Bedhomme, Hillung, and Elena 2015; Bono, Draghi, and
Turner 2020). Although specialists tend to adapt faster to single
hosts, generalists usually outcompete them in fluctuating envi-
ronments by being more prepared to survive and reproduce as a
consequence of having similar fitness in different hosts (Kassen
2002; Dennehy et al. 2013). This allows generalist viruses to have
higher initial fitness compared to specialists when infecting novel
host species, making them most likely emerging and re-emerging
pathogens (Woolhouse and Gowtage-Sequeria 2005; Turner et al.
2010). Indeed, this theory has widespread support by experiments
in which viral lineages being sequentially exposed to different
hosts for long periods of time maximize their fitness in all hosts
to the same extent as the corresponding specialist, thus over-
coming the expected costs of generalism (Turner and Elena 2000;
Duffy, Turner, and Burch 2006; Deardorff et al. 2011; Bedhomme,
Lafforgue, and Elena 2012; Remold 2012).

Before moving forward, we would make a remark about def-
initions: specialist and generalists are usually defined by many
authors as the two sides of a coin, as discrete events. That is, a
virus would be defined as a specialist if and only if it infects one or,
at best, a few closely related host species (or genotypes). In contra-
position, a virus would be a generalist if and only if it infects more
than one host species (or genotypes). This binary definition, how-
ever, does not fully reflect the complexity of interactions between
parasites and their potential hosts. Specialism and generalism
are broad terms that can be applied to different levels; viruses
that are able to infect only one or more different hosts species,
cell types, or genotypes (Turner and Elena 2000; Cooper and Scott
2001; Cuevas, Moya, and Elena 2003; Bedhomme, Lafforgue, and
Elena 2012; Navarro et al. 2020). Let us take a very simple numeri-
cal example that easily illustrates this inconsistency. Imagine that
a viral strain infects 100 different hosts (species, genotypes, or cell
types) but, in 99 of them, produces few, say 10, new viral parti-
cles, whilst, in the remaining one host, it produces 1010 new viral
particles. Now imagine a second viral strain that infects the same

100 different hosts but produces ∼105 new viral particles in all
of them. According to the binary definition, both strains must be
considered as generalists. However, in our view the first strain is
much closer to the specialist end while the second strain is much
closer to the generalist end of a continuum of possible interac-
tions. In this study, we would take this second definition and refer
to specialist and generalist (or less specialist) viral strains of TuMV
not on the basis of whether they infect one ormore host genotypes
but on the basis of how well they do across accessions.

The genetic basis of the observed differences between gener-
alist and specialist viruses is actually poorly understood, at least
from the perspective of the interaction of these two strategies with
the host’s gene expression. Differences between the genomes of
generalist and specialist viruses have been previously described
(Takeuchi et al. 1991; Llamas-Saiz et al. 1996; Remold, Rambaut,
and Turner 2008; Deardroff et al. 2011; Hillung et al. 2014; Navarro
et al. 2020). However, so far just one study has sought to explore
differential host responses associated with each virus strategy
(Hillung et al. 2016).

Here, we aim to explore whether viral strains with different
degrees of specialization affect the plant physiology and disease
progress in different ways, identifying differentially responding
candidate host genes. To reach this goal, we have undertaken
a genome-wide association study (GWAS) approach. GWAS has
gained popularity over the last 20 years due to the increasing
number of genome sequences available for a wide range of organ-
isms (Cantor, Lange, and Sinsheimer 2010; Bush and Moore
2012). The basis of GWAS is capturing single-nucleotide poly-
morphisms (SNPs) along the genome of an organism and using
statistical methods (such as linear mixed models) to infer the
association of SNPs with the trait being analyzed. The common
disease-common variant hypothesis posits that common inter-
acting alleles at multiple disease-predisposing loci underlie the
most common diseases (Bush and Moore 2012). This hypothe-
sis would justify the use of GWAS in the identification of alleles
associated with specific phenotypes. This connection permits the
identification of genetic risk factors for disease, such as suscepti-
bility and resistance to viral infections (Korte and Farlow 2013).
One of the most relevant inferences from GWAS is trait heri-
tability, which indicates how much of the observed phenotypic
variation is explained by genotypic variation (SNPs) relative to the
contribution of environmental factors (Zaitlen and Kraft 2012).

Identifying host factors responsible for resistance or permis-
siveness to infection is amajor goal when studying host–pathogen
interactions, as this knowledge will help in better management of
diseases. Here, we have characterized the infection of two strains
of turnip mosaic virus (TuMV; species Turnip mosaic potyvirus,
genus Potyvirus, Family Potyviridae) that differ in their degree of
specialization in 450 natural accessions of A. thaliana (L.) Heynh.
TuMV infects mostly Brassicaceae and is widespread worldwide
causing important economical loses by damaging several impor-
tant crops (Ohshima et al. 2002; Yasaka et al. 2017). One of the
natural hosts of TuMV is A. thaliana (Pagán et al. 2010). This plant
is undoubtedly one of the most suitable organisms for GWAS.
It has over 1,000 natural accessions genotyped and described
so far from Eurasia, North America, and North Africa (1001
Genomes Consortium 2016). Genotypes can bemaintained by self-
fertilization for an unlimited number of generations, facilitating
GWAS and making phenotyping highly reproducible (Korte and
Farlow 2013). The viral strains used in this study were obtained by
Navarro et al. (2020) after experimental evolution of anA. thaliana-
naïve ancestral TuMV isolate. This ancestral TuMV was evolved in
plant genotypes deficient in different disease signaling pathways



A. Butković et al. 3

or in the presence of recessive susceptibility genes, resulting in
two particular strains that largely differed in their experimental
degree of specialization (see Section 2.2 below for details on the
evolutionary history of these two strains).

In summary, the response to infection of 450 A. thaliana natu-
ral accessions from different geographic regions was phenotyped
in a controlled common garden setting. These accessions were
inoculated with two TuMV strains that differ in their degree of
specialization. Infection data were analyzed using GWAS, specifi-
cally looking for SNPs differentially associated with infection with
each strain. The genetic architecture of the phenotyped disease-
related traits was also studied using the Bayesian sparse linear
mixed model (BSLMM).

2. Materials and methods
2.1 Plant material and growth conditions
Four hundred and fifty A. thaliana accessions (Supplementary
File S1) from the 1,001 Arabidopsis genome collection (https://
1001genomes.org last accessed 29 June 2021; 1001 Genomes
Consortium 2016) were phenotyped. The accessions were repre-
sentative of the global species distribution. To ensure all the acces-
sions were at a similar growth stage and to reduce the noise that
large differences in vegetative development could cause, we con-
firmed that all selected accessions reached growth stage 3.2–3.5 in
Boyes et al. (2001) scale ∼21days after germination in our experi-
mental growth conditions [16h day/8h night with temperature of
24◦C day/20◦C night, 45per cent relative humidity and 125µmol
m−2s−1 of light intensity (1:3 mixture of 450nm blue and 670nm
purple light-emitting diode)].

2.2 Virus inoculum and inoculation procedure
The two strains of TuMV used in this study were obtained after
12 passages of experimental evolution in mutant genotypes of the
A. thaliana accession Col-0, as detailed in Navarro et al. (2020).
Among all the resulting viral lineages, lineage L4 evolved in the
enhanced disease susceptibility 8 (eds8-1) mutant, hereafter referred
as TuMV-G, and lineage L4 evolved in the jasmonate insensitive 1
(jin1) mutant, referred as TuMV-S, showed strikingly different host
ranges. The eds8-1 plants lacked the EDS8 protein, causing the
reduction of the expression of plant defensin genes and reduced
induced systemic resistance but enhanced systemic acquired
resistance (SAR). The jin1 plants lacked the JIN1 protein, causing
the loss of jasmonic acid (JA) signaling that is a negative regulator
of salicylic acid (SA)-dependent signaling. This results in a con-
stitutive expression of SAR. The eds8-1 plants turned out to be
the most resistant ones to TuMV infection, while the jin1 plants
were the most susceptible ones. TuMV-G was able to infect all
plant genotypes tested by Navarro et al. (2020) with equal fitness,
while TuMV-S infected only jin1 well. Indeed, Navarro et al. (2020)
calculated Blüthgen’s d’ specialization indexes (Blüthgen, Menzel,
and Blüthgen 2006) for these two strains, finding that TuMV-G
had d’=0 (no specialization) while TuMV-S had d’=1 (complete
specialization). In agreement with previous potyvirus-A. thaliana
studies (Hillung et al. 2014; González, Butković, and Elena 2019),
more permissive hosts (herein jin1) were selected for specialist
viruses while more restrictive hosts (in this case, eds8-1) were
selected for generalist viruses. At the genomic level, TuMV-G and
-S differed in a total of seven pointmutations (Navarro et al. 2020).
Relative to the ancestral naïve TuMV strain, TuMV-G contains
three nonsynonymous mutations, all affecting the VPg protein
(H33Y, D113N, and K121E). Likewise, TuVM-S has two synonymous

mutations (HC-Pro/C1760U and P3/U3269C) and two nonsynony-
mous ones (VPg/R118H and CP/S70N). Therefore, TuMV-S and -G
lie at two different locations in the specialist—generalist contin-
uum. While TuMV-S behaves more like a specialist, showing high
fitness only in its local host genotype, TuMV-G would better be
described as a generalist that infects and induces similar disease
severity across multiple host genotypes.

TuMV-G and -S infected plant tissues were frozen in liquid
N2 and homogenized and mixed with 10 volumes of inoculation
buffer (50mMKH2PO4 pH 7.0, 3 per cent polyethylene glycol 6,000,
10per cent carborundum) right before the mechanical inocula-
tions. The two TuMV strains were mechanically inoculated into
healthy A. thaliana plants that were between 21 and 25days old.
The inoculation started from the plants that were the largest
(8–12 leaves) giving the smaller plants extra time to grow, so all
the accessions got inoculated at a similar size (Boyes’ 3.2–3.5).
Three middle sized leaves were mechanically inoculated with 5µl
of infectious sap prepared in inoculation buffer. To further mini-
mize differences due to inoculation efficiency all the inoculations
were done by the same researcher. Hence, we assume that the
inoculation failure rate would be the same among all accessions.

Eight plants per accession for each TuMV strain were inocu-
lated, resulting in a total of 16 plants phenotyped and two mock-
inoculated control plants per accession. Accessions were split into
two blocks because of chamber space and workforce capacity.
The inoculation procedure took about 3–4days per block, where
on consecutive days different accessions underwent the inocula-
tion procedure because (1) it was not possible to inoculate all the
plants on the same day due to the sheer number of them and (2)
this way all the plants got synchronized in size at the moment of
inoculation. The first block was inoculated from 6 May 2019 to 8
May 2019 and the second block was inoculated from 11 September
2019 to 14 September 2019. Three hundred and one hundred and
fifty accessions were inoculated in each block. Pot trays contained
four accessions inoculated with each viral strain along with their
corresponding mock-inoculated controls. To reduce spatial corre-
lations due the relative position of plants in the growth chamber,
pots trays were translocated to a new random position everyday.

Col-0 loss-of-function (LOF) mutant genotypes that were used
to confirm GWAS results (Supplementary File S2) were seeded
on 3 June 2020 and inoculated, as described above, with the
two TuMV strains on 23 June 2020. All LOF mutants and wild-
type (WT) control plants were analyzed in one block in the same
growth chamber with 10 plants per virus and per genotype and
two mock-inoculated controls per combination.

2.3 Phenotyping
Three phenotypic traits were measured (Supplementary File S3):
(1) symptoms severity: on a scale from 0 to 5 (Fig. 1) measured
at intermediate (14days post-inoculation—dpi) and late (21dpi)
infection times so as to explore time-dependent differences in

Figure 1. Symptoms scale that was used to evaluate the severity of
symptoms in the plants during the 21days period post inoculation. 0: no
symptoms or healthy plant, 1: mild symptoms without chlorosis, 2:
chlorosis is visible, 3: advanced chlorosis, 4: strong chlorotic symptoms
and beginning of necrosis, and 5: clear necrosis and death of the plant.

https://1001genomes.org
https://1001genomes.org
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gene expression. Therefore, the status of plant infection was
assessed by visual inspection for symptoms. Out of 450 accessions
only two had less than 50per cent of symptomatic plants, making
the symptom development a good indication of virus infection.
All the infected plants showed clear symptomatology associated
with TuMV infection. The intensity of symptoms was also visu-
ally quantified, as the degree of damage TuMV causes correlates
with its detrimental effects on the host. TuMV is a sterilizing agent,
which directly impacts host reproduction (Vijayan et al. 2017). For
a plant, the intensity of symptoms is an evolutionarily relevant
trait, since the degree of damage on the vegetative organs and
fruit development directly impacts its fitness (Pagan et al. 2007;
Vijayan et al. 2017). (2) Infectivity: number of infected plants out
of the total number of inoculated plants after 21dpi. (3) Disease
progress, calculated as the area under the disease progress stairs
(AUDPS) (Simko and Piepho 2012). This measures the number of
infected plants from the total number of inoculated plants each
day during 21days and combines it into a single value.

In the characterization of LOF mutant response to infection,
AUDPS and symptoms intensity progression step (AUSIPS) curve
(Kone et al. 2017) weremeasured. AUSIPS is calculated similarly to
AUDPS and it summarizes the progression of the symptomatology
through time. Every day during 21days the severity of symptoms
(scale shown in Fig. 1) was measured for all plants from each LOF
mutant.

2.4 Genome-wide association mapping
Association analyses were done with a Python program based
on LIMIX (Lippert et al. 2014) written by Prof. Magnus Nord-
borg’s group. LIMIX is a linear mixed model (LMM) that was used
for single-trait analysis where SNPs and covariates were treated
as fixed effects while the population structure and noise were
treated as random effects. The kinship matrix (identical-by-state,
IBS matrix) and the genotype data come from the 1,001 Genome
project in A. thaliana (1001 Genomes Consortium 2016), consisting
of the SNPs for the 1,135 genome accessions plus imputed SNPs
of a set of accessions that were genotyped with a 250k SNP chip.
Kinship measures the degree of genetic relatedness between indi-
viduals and is used to remove confounding factors that decrease
power and increase the false positive rate in GWAS.

Data were explored with SPSS version 25 (IBM Corp., Armonk
NY, USA) and deviations between the phenotypic values were
observed between the two blocks, therefore the block effect was
accounted for in the GWAS analysis through the covariates option
in LIMIX. Untransformed phenotypic data was used in the GWAS,
since transformed phenotypic data did not show much improve-
ment comparedwith the untransformed data. The untransformed
AUDPS and infectivity distributions were characterized by sig-
nificantly negative skewness (in all cases, g3 ≤−1.378 ±0.082,
P<0.001) and leptokurtosis (i.e. fatter tails than the Normal; in all
cases, g4 ≥1.907±0.163, P<0.001). In the case of symptoms sever-
ity, the distributions were significantly skewed toward positive
values (in all cases, g3 ≥0.631 ±0.082, P<0.001) but significantly
leptokurtic only at 14dpi (g4 =2.253 ±0.163, P<0.0001). In all
cases, a one-sample Kolmogorov-Smirnov test rejected the null
hypothesis of Normal distribution (in all casesD≥0.112, P<0.001).

Out of ∼10 million SNPs (Seren 2018), 1,815,154 had a minor
allele frequency higher than 0.05 for all phenotypes. To minimize
false positives due to multiple testing (type I errors), we used
the false discovery rate (FDR) or the −logP≥5 threshold, what-
ever value was more conservative. FDR was calculated using the
fdrBH function (with q=0.001) of the mSTEM R package version
1.0. The exact FDR values used were as follows: for TuMV-GAUDPS

21dpi FDR=2.73×10−10, infectivity 14dpi FDR=6.32×10−13 and
21dpi FDR=1.78×10−8, and symptoms 14dpi FDR=9.59×10−10.
While for TuMV-S it was calculated only for symptoms at 14dpi
FDR=1.49×10−12 and 21dpi FDR=1.15×10−9. Manhattan and
quantile–quantile (QQ) plots were drawn using rMVP R package
(Yin et al. 2020).

Each significant SNP was tested for linkage disequilibrium (LD)
within a 10kb window by calculating r2 with the help of PLINK 1.9
(www.cog-genomics.org/plink/1.9/). Furthermore, the r2 results
were examined for indications of any SNPs in strong LDwith other
significant SNP outside of the region of the significant gene. A
10kb window was taken because in A. thaliana LD decays rapidly
within 10kb (Kim et al. 2007; Gan et al. 2011).

2.5 Bayesian sparse LMM
To determine whether many variants with small effects or a
small number of large effects (sparse) variants were contribut-
ing to the disease-related traits variability, the BSLMM method
implemented in GEMMA was used to infer the genetic architec-
ture of the measured phenotypic traits (Zhou and Stephens 2012;
Zhou, Carbonetto, and Stephens 2013). BSLMMmodels the genetic
contribution as the sum of a sparse component and a highly poly-
genic component. The proportion of genetic variance explained
by sparse effects is represented by the parameter PGE ∈ [0, 1].
The second parameter in themodel is the total variance explained
(PVE ∈ [0, 1]) by additive genetic variants. PVE is a flexible Bayesian
equivalent of the narrow sense heritability (h2) estimated by more
classical linear mixed models (LMMs). Raw values were used for
symptoms severity (discrete variable), whileAUDPS and infectivity
(continuous variable) were normalized by block using a univariate
general linear model in SPSS. The block effect on the phenotypes
was not incorporated as a covariate in GEMMA, as it was done
in LIMIX, because the optimization algorithm in GEMMA causes
errors if some covariates are identical for some genotypes. In
all cases, Markov chain Monte Carlo (MCMC) were run with the
default settings (burn-in at 100,000, sampling steps at 1,000,000,
and recording every 10 steps) and minor allele frequency cut-off
set at 5 per cent.

The posterior inclusion probability (PIP) for an SNP is the prob-
ability of including this SNP as causal in the MCMC analysis,
estimated from posterior samples of a gamma distribution that
reflects the sparse effects (Schaid, Chen, and Larson 2018). PIP can
be used as a measure of the strength of the association that an
SNP has with the corresponding phenotype. Variants with a large
effect in at least 25per cent of the MCMC samples were diagnosed
as significant (PIP≥0.25).

2.6 Validation of GWAS associations
Ten genes identified with the GWAS were selected for further
study of their LOF effect on disease progress (Supplementary
File S2). The 10 chosen Col-0 T-DNA insertion LOF mutants were
selected on the criteria that (1) a candidate gene per each of the
phenotypic traits per virus was included and (2) they were avail-
able as homozygous lines in Nottingham Arabidopsis stock center
(NASC) (https://arabidopsis.info/BrowsePage last accessed 29 June
2021). AUDPS and the AUSIPS were calculated using the number
of infected plants, and their symptomatology was measured dur-
ing 21dpi for each individual plant. For statistical comparisons, a
bootstrap approach was taken. One thousand pseudo-replicated
matrices, of equal dimensions to the original one (rows repre-
senting individual plants and columns representing dpi), were
generated per experimental condition. The matrix rows were
replaced, and thus, the temporal correlations across time points

https://.www.cog-genomics.org/plink/1.9/
https://arabidopsis.info/BrowsePage
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Table 1. Non-parametric two-ways analysis of variance (Scheirer–Ray–Hare) test of the two main effects and their interaction for each
of the three disease-related traits experimentally determined.

Symptoms severity (S) AUDPS Infectivity (i)

Source of variation df Ha P H P H P

Virus genotype 1 191.414 <0.001 7.711 0.006 7.183 0.007
Dpi 1 250.766 <0.001 1,122.420 <0.001 0.257 0.612
Virus genotype by dpi 1 14.984 0.001 0.021 0.883 0.037 0.847

aH statistic follows a χ2 distribution.

were preserved. This algorithm, implemented in R, generated ker-
nel distributions for AUDPS and AUSIPS. The 89per cent highest
density intervals (HDIs) were calculated using the bayestestR R
package in (Makowski, Ben-Shachar, and Lüdecke 2019).

R version 3.6.1 (Core Team 2020) in RStudio version 1.2.1335
(RStudio Inc., Boston MA, USA) was used for all the analyses
mentioned in the previous paragraphs.

3. Results
3.1 Characterization of infection traits in natural
accessions
The 450 A. thaliana accessions (Supplementary File S1) infected
with the two TuMV strains varying in their degree of specialization
were phenotyped for disease-related traits. Three disease-related
traits were characterized by visual inspection and are shown in
Fig. 2 (raw data provided in Supplementary File S3). Table 1
shows the results of the Scheirer–Ray–Hare test used to evalu-
ate the effect of virus genotype, dpi, and their interaction on
each disease phenotype. First, highly significant differences exist
between the two viruses, with TuMV-G showing larger median val-
ues than TuMV-S for the three traits (median ±IQR for TuMV-G
vs TuMV-S, respectively: symptoms severity 2.354 ±3.000 vs 1.779
±4.000; AUDPS 11.692 ±8.822 vs 11.162 ±9.447; and infectivity
0.950 ±0.000 vs 0.936 ±0.000) (Fig. 2). Second, a highly signifi-
cant effect has been observed associated with dpi for symptoms
severity and AUDPS (median ±IQR at 14 vs 21dpi, respectively:
symptoms severity 1.721 ±4.000 vs 2.412 ±3.000; AUDPS 8.148
±3.388 vs 14.708 ±3.625) but not for infectivity, indicating that
the number of plants diagnosed as infected based on the presence
of symptoms did not increase during the last seven days, while
symptoms got more severe (Fig. 2). Third, a significant interac-
tion between both factors has only been observed in the case of
symptoms severity (Table 1), which in this case suggests that the
difference between the two viral strains for this trait was larger
at 21dpi (relative change in means ∼40per cent) than at 14dpi
(relative change in means ∼25per cent) (Fig. 2).

Furthermore, it is well known that in the case of TuMV the set of
A. thaliana genes differentially expressed changes along the stage
of infection (Sánchez et al. 2015; Corrêa et al. 2020). Guided by
these previous experiments, the infection traits were studied both
at 14 and 21dpi to account for potential differences between the
viral strains at different stages. Accordingly, GWAS of the infection
traits was performed at both time points.

3.2 Genetic architecture of disease-related traits
The 450 accessions accounted for 431,323 SNPs that were tested
in both viral strains at both 14 and 21dpi (Supplementary File S4)
using the BSLMM analysis. This analysis evaluates how much of
the observed PVE is explained by the genotyped SNPs and how
important are the contributions of sparse effects to the PGE.

Figure 2. Distribution of the three disease-related traits characterized
for each viral strain (TuMV-G in yellow and TuMV-S in green) infecting
the 450A. thaliana natural accessions at 14 (left) and 21dpi (right).
(A) Severity of symptoms, (B) infectivity, and (C) AUDPS.

AUDPS, infectivity and symptoms severity had low PVE values
(Supplementary File S4). The lowest PVE value was obtained for
AUDPS [median 0.08 and 89per cent HDI (0.03, 0.14)] and infec-
tivity [median 0.08 and 89per cent HDI (0.03, 0.13)] for TuMV-G at
14dpi and for TuMV-S at 21dpi [median 0.08 and 89per cent HDI
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(0.03, 0.14)], while the largest value was obtained also for AUDPS
measured at 14dpi but for TuMV-S [median 0.28 and 89per cent
HDI (0.19, 0.38)]. In all other instances, PVE values were similar for
both strains and between the two time points.

Regarding PGE (Supplementary File S4), on one hand, the small-
est value was observed for the severity of symptoms induced by
TuMV-G at 14dpi [median 0.33 and 89per cent HDI (0, 0.82)] and
21dpi [median 0.33 and 89per cent HDI (0, 0.81)] and by TuMV-S
at 21dpi [median 0.33 and 89per cent HDI (0, 0.81)]. On the other
hand, the largest PGE value was estimated for TuMV-G infectiv-
ity measured at 21dpi [median 0.92 and 89per cent HDI (0.71, 1)].
The percentage of PVE explained by large sparse effect variants
(PGE) indicates that major effect loci account for between 50 and
90per cent of PVE in AUDPS and infectivity traits, in both time
points for both viruses (median values reported in Supplemen-
tary File S4). The number of variants with large effect size, the
SNPs that explainmost of the phenotype among the 431,323 SNPs,
was low for infectivity and symptoms severity at 14dpi for both
viruses as well as for AUDPS and infectivity at 21dpi also for both
viruses (Supplementary File S4). To detect large-effect SNPs that
might be contributing the most to the variance in disease-related
phenotypes, a PIP≥0.25 threshold was imposed in the BSLMM
model in GEMMA. With this constrain, three highly significant
SNPs have been detected. The firstwas detected for TuMV-SAUDPS
estimated at 21dpi. This SNP was mapped within the gene encod-
ing for AT2G04440, a MutT/Nudix family protein (Supplementary
Fig. S1). The second significant SNP was found for TuMV-G infec-
tivity at 21dpi within locus AT3G19350 that corresponds to the
gene MATERNALLY EXPRESSED PAB C-TERMINAL (MPC). The third
significant SNP was also observed for TuMV-G infectivity at 21dpi
and corresponds to position 6,685,977 of an intergenic region on
chromosome 3 (Supplementary Fig. S1). Chromosome 3 inter-
genic position 6,685,977 is between loci AT3G19290, which corre-
sponds to the gene ABA-responsive element binding protein 4 (ABF4),
and AT3G19280, which corresponds to the gene fucosyltransferase
11 (FUT11). Interestingly, the chromosome 3 intergenic position
6,685,977 shows a strong LD (r2 =1; in a 10kb window) with
FUT11.

Next, we ran an LD analysis to discover SNPs at different loci
that might be significantly associated. A total of four pairs of SNPs
located at different loci showed significant LD values (r2 >0.5 in all
cases; Supplementary File S5). The rest of SNPs showed strong LD
only with other SNPs within the same locus. All four significant
pairs involved protein coding genes. Three of the four pairs of SNPs
in LD were mapped for TuMV-S.

In summary, for this host-pathogen system, the genetic archi-
tecture of AUDPS and infectivity phenotypes is relatively sim-
ple, involving few small-effect SNPs along with one large effect
SNP that is being responsible for the majority of variance in the
observed phenotypes. Symptoms severity, however, is geneti-
cally more complex and involves many more small effect SNPs.
For both viral strains, all the disease phenotypes have a simi-
lar genetic architecture between the two temporal stages (14 and
21dpi).

3.3 GWAS identifies genetic loci associated with
disease-related phenotypes differentially induced
by virus strains that differ on their past
evolutionary history and degree of specialization
The significantly associated SNPs for the three disease-related
traits were visualized using Manhattan plots in (Fig. 3). The QQ-
plots for infection traits showed no detectable population struc-
ture (Supplementary Fig. S2). Using the FDR or the −logP≥5

thresholds determined for each of the traits (Supplementary File
S5), a total of eight significant SNPswere identified for TuMV-G and
19 for TuMV-S infection (Supplementary File S5). Some of these
SNPs were positioned within seven genes for TuMV-G and 12 for
TuMV-S (Table 2 and Supplementary File S5). Most of the identified
genes were unique to plants infected by TuMV-G or TuMV-S, with
only one locus shared both at 14 and 21dpi, for symptoms sever-
ity: AT2G14080, a TIR-NBS-LRR class family disease resistance
protein (Fig. 4A).

Comparing the results at 14 and 21dpi for TuMV-G, genes at
14dpi seem more related to a general disease response whilst
genes at 21dpi are more specific and involved in ubiquitin-related
processes. Such temporal difference is not seen for TuMV-S. This
may suggest that plants responses to the less specialized strain
change more dynamically than when infected with the more
specialized one, in which case the response seems unchanged
between the two time points studied. Fig. 4B shows that most
of the identified genes (17) had an effect only in one of the
disease-related traits. However, locus AT4G23280 that encodes
for the putative cysteine-rich receptor-like protein kinase 20 (CRK20)
was involved both in AUDPS and infectivity. Interestingly, locus
AT4G04540 mapped for symptoms severity also encodes for a
putative rich receptor-like protein kinase 39 (CRK39).

3.4 Experimental validation of identified genes
Ten of the identified genes were selected for a validation study
in which the corresponding LOF mutants were inoculated with
both viral strains and the disease progress was characterized
(Fig. 5 and Supplementary File S6). Out of the 10 genes, one was
shared between the two viral strains, two were unique for plants
infected by TuMV-G and seven were unique for plants infected by
TuMV-S. More genes were validated for TuMV-S because the GWAS
mapped more significant SNPs upon infection with this strain.
The selected LOF mutants were jal14, nudx5, nudx6, at2g14080,
at3g12850, t9a4.1, mee55, cplepa, ddm1, and at4g02580. To evaluate
differences in infection dynamics between the mutants and the
WT plants, AUDPS and AUSIPSwere calculated using the data col-
lected along the 21dpi. A comparation between the WT and LOF
mutant values for each viral strain was done (Fig. 5, Supplemen-
tary File S6) based on the inferred 89per cent HDIs. Differences in
most of the LOFs were found when comparing the AUDPS values
of the two viral strains with the WT (Supplementary File S6).

Evaluating the mutant AUDPS intervals, lower 89per cent HDIs
compared to the WT imply that these mutants have slower dis-
ease progress because the LOF gene is positively involved in the
viral cycle and the virus uses it to aid its replication, translation,
assembly, or movement. For the TuMV-S and TuMV-G infection,
there are four mutants that have lower 89per cent HDI compared
to the WT: at4g02580, cplepa, nudx5, and nudx6.

Observing LOF mutants with AUDPS intervals higher than the
WT suggests that the corresponding genes are involved in plant
defense response against infection, removing them enhanced dis-
ease progress beyond the one observed for the WT plants. In
TuMV-G infection, ddm1 had 89per cent HDI higher than the WT.
In plants infected with TuMV-S only t9a4.1 had higher 89per cent
HDI compared to the WT.

For AUSIPS, if mutant values had higher intervals than the WT
it meant that the virus causes stronger symptoms in the absence
of these host genes. This is the case for at2g14080 and nudx6 plants
infected with TuMV-G. In the case of TuMV-S this happened in
at3g12850 and, as for TuMV-G, in at2g14080 plants. An interest-
ing observation was made for nudx6 mutant for AUDPS, where it
showed an opposite effect in comparation with AUSIPS.
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Figure 3. Manhattan plots of the analyzed disease-related traits. Data for TuMV-G are indicated in yellow and for TuMV-S in green. Peaks marked on
the plots correspond to the most significant SNP values of the genes selected for the mutant analysis. SNP density shows how many SNPs are
genotyped for a particular chromosomal region. The dashed lines indicate the significance threshold (FDR or −logP=5 whenever computing FDR was
not possible).

Therefore, significant differences in AUDPS confidence inter-
vals between WT and mutant plants confirm the role in infection
of the genes that were knocked-out. When the mutant had lower
AUDPS values (e.g. at4g02580, cplepa, nudx5, and nudx6 for both
viral strains), it confirmed the positive function of the gene in the
viral replication. In contrast, mutants with values higher than
those of the WT (e.g. ddm1 mutants for TuMV-G and t9a4.1 for
TuMV-S) confirmed the role of the gene in the host defense. Com-
parations of AUSIPS values between WT and mutant plants also
confirm the role of most of the studied genes in symptoms sever-
ity. The at4g02580 plants had lower AUSIPS interval in the TuMV-G
infection. Therefore, plants defective in an NADH-ubiquinone
oxidoreductase susceptibility factor had a milder symptoma-
tology than WT ones. Mutants at4g02580 and nudx5 also had
lower AUSIPS intervals when infected with TuMV-S. Differences in

symptoms severity progression were also significant between the
two viral strains in the WT, at2g14080, at4g02580, cplepa, ddm1,
jal14, mee55, nudx5, and nudx6. This difference indicates that the
two viral strains cause different symptomatology in the WT and
the majority of the mutants.

4. Discussion
Pathogens will have different virulence and induce different
responses in their hosts depending on their adaptation history. For
example, in the whole-genome transcriptomic study by Hillung
et al. (2016), they compared the transcriptomic responses of six
A. thaliana accessions infected with generalist or specialist strains
of Tobacco etch potyvirus. They showed that the generalist virus
manipulated a similar set of host genes across the experimental
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Table 2. Significant genes detected using GWAS for the three disease-related traits during the course of infection with each viral strain.

Trait dpi Gene Description −log P

TuMV-G
Symptoms severity 14 and 21 AT2G14080 Disease resistance protein (TIR-NBS-LRR class)

family
9.02

Symptoms severity 21 AT3G21660 PUX6 Plant UBX domain-containing protein 6 5.54
Symptoms severity 21 AT3G46590 TRP2 Telomere repeat-binding protein 2 5.09
Symptoms severity 21 AT4G04540 CRK39 Putative cysteine-rich receptor-like protein kinase

39
5.65

Symptoms severity 21 AT4G32660 AME3 Serine/threonine-protein kinase AME3 5.22
AUDPS 14 AT1G57570 JAL14 Jacalin-related lectin 14 5.01
Infectivity 21 AT5G66750 DDM1 ATP-dependent DNA helicase DDM1 8.00

TuMV-S
Symptoms severity 14 and 21 AT2G14080 Disease resistance protein (TIR-NBS-LRR class)

family
11.83

AUDPS 21 AT4G23280 CRK20 Putative cysteine-rich receptor-like protein kinase
20

5.73

AUDPS 14 and 21 AT2G04450 NUDX6 Nudix hydrolase 6 6.45
AUDPS 14 and 21 AT2G04440 MutT/nudix family protein 6.11
AUDPS 21 AT3G07470 Transmembrane protein 5.20
AUDPS 14 AT3G12850 COP9 signalosome complex-related/CSN

complex-like protein
5.18

AUDPS 14/21 AT5G08650 CPLEPA Translation factor GUF1 homolog, promotes
efficient protein synthesis in chloroplasts

5.14

AUDPS 14 AT2G04430 NUDX5 Nudix hydrolase 5 5.02
infectivity 14 and 21 AT4G23280 CRK20 Putative cysteine-rich receptor-like protein kinase

20
6.52

infectivity 14 and 21 AT3G21980 CRRSP27 Cystein-rich repeat secretory protein 27
infectivity 14 AT4G02580 NADH dehydrogenase [ubiquinone] flavoprotein 2 5.64
infectivity 21 AT4G13345 MEE55 Serine-domain containing serine and sphingolipid

biosynthesis protein
5.32

infectivity 21 AT4G10130 T9A4.1 DNAJ heat shock N-terminal domain-containing
protein

5.22

Figure 4. Venn diagram showing the number of unique and shared
genes. (A) Genes mapped for each viral strain and disease-related traits.
(B) Genes mapped for all disease-related traits pooling together both
viral isolates.

host range, while the specialist virus showed a more heteroge-
neous response. In our GWAS study, similar conclusions can be
reached by comparing host genes associated with infection by
the two TuMV strains differing in their degree of specialization.
In the case of the less specialized strain, TuMV-G, fewer host
candidate genes were identified compared to the more specialist
strain, TuMV-S. This difference might have emerged as a conse-
quence of the different evolutionary strategies of the two viruses
or as a consequence of the limitations of the GWAS analysis,
such as inability to identify all genetic determinants of com-
plex traits that is a common problem in all similar methods.

If we focus on the different evolutionary strategies of the two
strains, we can say that selection has driven the less special-
ized (this is to say, the more generalist one) virus to manipulate
a similar set of host genes across the host range for successful
infection. In contrast, host-specific selective pressures modu-
lated the evolution of the more specialized strain; hence, more
genes associated with TuMV-S have been found by the GWAS
analysis.

Mapped genes in the GWAS belonged to categories such as
F-box proteins, kinase, hydrolase, LRR family proteins, disease
resistance proteins, transcription factors, lectins, helicases, ubiq-
uitin proteases, proteins involved in iron metabolism, pentatri-
copeptide repeat-containing, GTPases, and berberines, all of them
being involved in the plant response to infection, the viral cycle
or RNA metabolism (Ge and Xia 2008; Lee 2008; Corrêa et al.
2013; Manna 2015; Li et al. 2016; Guo et al. 2020; Herlihy, Long,
and McDowell 2020; Huang et al. 2020). Locus AT2G14080 was
identified as significant for both viral strains in the analysis of
symptoms severity. AT2G14080 belongs to NBS-LRR genes that
are the most numerous class of the R (resistance) genes in A.
thaliana. Their effector recognition LRR domains recognize spe-
cific pathogens and can lead to a hypersensitive immune response
(HR) or to an extreme resistance against the virus infection. An
HR restricts the pathogen at the primary infection site caus-
ing cell death followed by SAR that increases SA accumulation
and expression of pathogenesis-related genes (Meyers et al. 2003;
Marone et al. 2013). There were also some strain-specific hits
that were previously characterized as involved in plant defense
or in some important part of the viral cycle. Indeed, host genes
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Figure 5. 89per cent HDI calculated for AUDPS and AUSIPS for each viral strain on each LOF mutant plant genotype. Not overlapping 89per cent HDI
between a given mutant and the WT plants is indicated by an arrow. Arrows pointing up indicate a significant positive difference in medians, while
arrows pointing down indicate the opposite trend. Brackets and asterisks indicate significant differences between TuMV-G and TuMV-S disease
progress or severity in the LOF mutant plant genotype being considered.
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that differ between the two strains could be targets of differential
selection during their experimental evolution. For example, ubiq-
uitin protease and telomere repeat-binding protein 2 were specific
responses of the plant to TuMV-G infection. While the Nudix
hydrolase, NADH dehydrogenase and DNAJ heat shock proteins
were specific for plants infected with TuMV-S strain.

Loci AT4G04540 and AT4G23280 both encode for cysteine-rich
receptor-like protein kinases (CRK39 and CRK20, respectively).
CRKs are the only genes mapped in common for all three disease-
related phenotypic traits. CRK genes are induced upon pathogen
infection in A. thaliana via the SA signaling pathway, result-
ing in HR (Chen et al. 2004). In general, receptor-like protein
kinases (RLKs), a large family with more than 600 members, are
central players in the plant receptor kinase-mediated signaling
involved in hormonal responses pathways, cell differentiation,
plant growth and development, self-incompatibility, and symbi-
otic and pathogen recognition (Liang and Zhou 2018). Given their
upstream role in the MAPK signaling cascades, it is not surprising
that RLK expression has many pleiotropic effects on diverse plant
phenotypes.

There was one gene that came up in the GWAS of both strains,
AT2G14080 that had a significant effect on the mutant involved
with the two strains and it appears to be involved in plant defense.
Two of the 10 genes selected for the mutant analysis came from
TuMV-G analysis and seven came from the TuMV-S analysis. Eight
of the selected host genes had a significant effect on the virus
disease progress and/or symptoms maternal effect embryo arrest
55 (MEE55, encodes for a serine and sphingolipid biosynthesis
protein) and AT1G57570 (JAL14, encodes for a member of the
mannose-binding lectin superfamily protein) apparently had no
significant effect on either viral strain under our experimental
conditions. There were five host genes that had an effect in
both viral strains: AT2G14080, AT4G02580, CPLEPA, NUDX5, and
NUDX6. AT2G14080 is an NBS-LRR resistance gene. These pro-
teins monitor the status of plant proteins targeted by pathogens
and activate a series of defense responses (McHale et al. 2006).
By removing this host gene, viruses managed to induce stronger
symptoms AT4G02580 is a susceptibility factor and could aid viral
pathogenesis (Kant et al. 2019). CpLEPA is a highly conserved
chloroplastic translation factor that could assist viral transcrip-
tion in the cytoplasm by enhancing the translation of chrolopastic
proteins involved in photosynthesis to compensate for the nega-
tive side-effects of infection in chloroplasts activity (Ji et al. 2012;
Li et al. 2013; Sanfaçon 2015). Mutants nudx5 and nudx6 are defi-
cient in proteins that form part of the Nudix hydrolase family,
which act as positive regulators in plant immunity (Ge and Xia
2008; Yoshimura and Shigeoka 2015), thus leading to a stronger
anti-pathogen response. In both viral strains, they seem to have
important roles for disease progress by enhancing viral replication
or gene expression since viruses replicated worse when these two
genes where knocked-out. Suggesting the possibility that these
two Nudix hydrolases could have additional functions besides the
one described in defense. This role for the two hydrolases in viral
infection was not described before.

Genes that had an effect on the LOFmutant analysis forAUDPS
for virus TuMV-G were DDM1 and T9A4.1. Corrêa et al. (2020)
showed that ddm1 plants were more resistant to two different
strains of TuMV. This might be because induction of SA-mediated
defense in ddm1 mutants may be an explanation of their resis-
tance to TuMV. The opposite has been noticed for geminiviruses
where ddm1mutant showed hypersusceptibility to infection (Raja
et al. 2008). The reason for this was the methylation of viral
genomes that is a plant defense mechanism; when methylation

is reduced, plants are more susceptible (Raja et al. 2008). Dif-
ferences in adaptation history of TuMV-G and the strains studied
by Corrêa et al. (2020) might explain why TuMV-G replicates bet-
ter in this mutant in our study. For TuMV-G, the lack of DDM1
might help the virus replicate better since defense genes are
not properly methylated and henceforth their expression deregu-
lated. Another significant gene in themutant analysis was T9A4.1,
which is involved in peptidyl-diphthamide biosynthetic processes
and tRNAwobble uridinemodification. Both of these processes are
involved in translation modifications and this protein might have
a role in an anti-pathogenic response.

For the strain TuMV-S in the AUSIPS values, one host gene had
a significant effect on the mutant analysis, AT3G12850, which
is involved in regulation of JA levels. Viruses infecting at3g12850
plants replicate better. AT3G12850-encoded protein is a COP9 sig-
nalosome complex-related/CSN complex-like protein. The tomato
yellow leaf curl Sardinia virus (TYLCSV) C2 protein interacts with
CSN5 resulting in a reduction of JA levels. As previously shown,
treating A. thaliana plants with exogenous JA disrupts TYLCSV
infection (Lozano-Durán et al. 2011). It is known that plant viruses
and herbivores have strategies to manipulate JA levels as this
hormone confers defenses to the plant against biotic and abiotic
stresses (Wu and Ye 2020). This means that in our pathosystem
the JA is negatively affecting the viral replication.

A GWAS of TuMV infection in A. thaliana in a natural set-
ting was recently performed by Rubio et al. (2019). None of the
genes found by these authors were pinpointed in our study but
this could simply reflect three major experimental differences: (1)
Rubio et al. (2019) grew their plants in a natural setting where
they were exposed to a changing environment. The highly com-
plex natural setting can lead to much more heterogeneous gene
regulations, as opposed to a controlled environment that min-
imizes external abiotic and biotic stressors. It has been shown
before that abiotic stresses influence the response of the plant
to viruses (Xu et al. 2008; Hily et al. 2016; González et al. 2021).
Multiple stresses affecting the plant at the same time can be prob-
lematic when trying to identify genes responsible for the specific
response of plants to virus infection. (2) The evolutionary histories
of the TuMV strains used in both studies were largely different.
While Rubio et al. (2019) used the UK1 isolate, we used strains
derived from the YC5 isolate originally obtained from calla lily
plants (Chen et al. 2003). (3) In our study, the 450 accessions
were chosen to represent the world-wide genetic diversity of the
species, while French accessions were largely overrepresented in
Rubio et al. (2019) study. Rubio et al. (2019) identified six new genes
above a threshold of −logP≥4 in their GWAS analysis:restriction to
tobacco etch virus movement 3, a DEAD box RNAhelicase 1 candidate
gene, eukaryotic translation initiation factor 3b, a protein with a pleck-
strin homology domain, a protein containing a TIM barrel domain,
and a key enzyme involved in the glutamate pathway. Our study
identified 13 genes specificallymapped for viral infection response
(Table 2), of which eight were experimentally confirmed as hav-
ing roles in the plant response to TuMV-S and TuMV-G (Fig. 5).
Despite the lack of matching genes mapped between both studies,
there are similarities at the functional level: for both studies there
were genes mapped that belonged to ATP-dependent DNA heli-
case, DnaJ domain superfamily protein and ubiquitin associated
proteins.

Looking at the analysis of the underlying genetic architec-
ture of each phenotyped trait, it was evident that some disease-
related phenotypes were explained by few SNPs (infectivity and
symptoms severity at 14dpi for both viruses and AUDPS and
infectivity at 21dpi for both viruses as well), while some traits
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were highly polygenic and explained by a large number of SNPs
(AUDPS for TuMV-S at 14dpi). SNPs that passed the PIP thresh-
old were mapped within locus AT2G04440 (MutT/Nudix family
protein) for AUDPS of TuMV-S at 21dpi and position 6,685,977
in an intergenic region on chromosome 3, along with gene MPC
for infectivity of TuMV-G at 21dpi (Supplementary Fig. S1). All
had possible roles in the viral infection. AT2G04440 was previ-
ously characterized as an important player in the plant immune
response (Ge and Xia 2008). MPC is an important translation ini-
tiation factor that binds to the viral VPg and the RNA-dependent
RNA polymerase (RdRP) NIb of TuMV, affecting the viral RNA accu-
mulation (Dufresne et al. 2008). The noncoding intergenic region
at position 6,685,977 on chromosome 3 could be a promoter region
involved in regulation of the expression of both ABF4 and FUT11.
ABF4 controls the ABA-dependent stress response. It was previ-
ously shown that Wheat yellow mosaic potyvirus disturbs the ABA
signaling pathway through the interaction between the viral RdRp
and the wheat’s light-induced protein TaLIP thus facilitating virus
infection (Zhang et al. 2019). There is no clear description of FUT11
in plant virus infection, but it is involved in protein N-linked gly-
cosylation and the intergenic position 6,685,977 shows a strong LD
(r2 =1; in a 10kb window) with this gene.

Since the genome of A. thaliana is highly polygenic and is gov-
erned by small effect loci (as shown by the BSLMM analysis),
our study might have missed some of the genes described in the
literature as being involved in the potyvirus infection. Other expla-
nation for the absence of previously described geneswould be that
they were not important in the context of our virus strains that
were preadapted in specific mutants of A. thaliana.

Altogether, this work (1) describes differences between two
strains whose past evolutionary history determined differences
in their degree of specialization, (2) identifies and characterizes
genes involved in the infection with more or less specialized viral
strains, and (3) illustrates the variability of the genetic elements
involved in a viral infection depending on the evolutionary history
of the viral strain.
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sfelena/TuMV-specialist-generalist-GWAS, last accessed June 29th
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