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Simple Summary: The high-grade pattern (micropapillary or solid pattern, MPSol) in lung adeno-
carcinoma affects the patient’s poor prognosis. We aimed to develop a deep learning (DL) model for
predicting any high-grade patterns in lung adenocarcinoma and to assess the prognostic performance
of model in advanced lung cancer patients who underwent neoadjuvant of definitive concurrent
chemoradiation therapy (CCRT). Our model considering both tumor and peri-tumoral area showed
area under the curve value of 0.8. DL model worked well in independent validation set of advanced
lung cancer, stratifying their survival significantly. The subgroup with a high probability of MPSol
estimated by the DL model showed a 1.76-fold higher risk of death. Thus, our DL model can be
useful in estimating high-grade histologic patterns in lung adenocarcinomas and predicting clinical
outcomes of patients with advanced lung cancer who underwent neoadjuvant or definitive CCRT.

Abstract: We aimed to develop a deep learning (DL) model for predicting high-grade patterns
in lung adenocarcinomas (ADC) and to assess the prognostic performance of model in advanced
lung cancer patients who underwent neoadjuvant or definitive concurrent chemoradiation therapy
(CCRT). We included 275 patients with 290 early lung ADCs from an ongoing prospective clinical
trial in the training dataset, which we split into internal–training and internal–validation datasets. We
constructed a diagnostic DL model of high-grade patterns of lung ADC considering both morphologic
view of the tumor and context view of the area surrounding the tumor (MC3DN; morphologic-view
context-view 3D network). Validation was performed on an independent dataset of 417 patients
with advanced non-small cell lung cancer who underwent neoadjuvant or definitive CCRT. The area
under the curve value of the DL model was 0.8 for the prediction of high-grade histologic patterns
such as micropapillary and solid patterns (MPSol). When our model was applied to the validation set,
a high probability of MPSol was associated with worse overall survival (probability of MPSol >0.5 vs.
<0.5; 5-year OS rate 56.1% vs. 70.7%), indicating that our model could predict the clinical outcomes of
advanced lung cancer patients. The subgroup with a high probability of MPSol estimated by the DL
model showed a 1.76-fold higher risk of death (HR 1.76, 95% CI 1.16–2.68). Our DL model can be
useful in estimating high-grade histologic patterns in lung ADCs and predicting clinical outcomes of
patients with advanced lung cancer who underwent neoadjuvant or definitive CCRT.

Keywords: lung adenocarcinoma (ADC); heterogeneity; high-grade pattern; histology; prognosis; re-
currence
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1. Introduction

Invasive lung adenocarcinoma (ADC) has been classified by the 2011 classification
system of International Association for the Study of Lung Cancer (IASLC), American Tho-
racic Society (ATS), and European Respiratory Society (ERS) into five distinct histological
patterns: lepidic, acinar, papillary, micropapillary, and solid [1]. Lung ADC is divided into
low-, intermediate, and high-grade prognostic groups according to the most predominant
pattern detected by histopathology [2–4]. However, even among lung ADCs with the same
most predominant pattern, the spectrum of actual prognosis varies widely [3,5–7]. More-
over, regardless of the predominant pattern, the presence of any high-grade pattern such
as a micropapillary and solid pattern is known to have a poor prognosis [6,8]. Therefore,
identifying the presence of any high-grade pattern in lung ADCs before surgery can help
predict a patient’s prognosis and determine a treatment policy. Especially in inoperable
patients, which account for 80% of all lung cancer patients [9], it is difficult to determine the
histologic pattern of the entire tumor with a very small biopsy sample. Therefore, there is a
growing need for imaging biomarkers that can noninvasively predict high-grade patterns
in lung ADCs.

In recent years, deep learning (DL) has become a powerful method of representation
learning, decreasing the need for handcraft feature engineering [10]. DL technology is
an artificial intelligence system based on neural networks that simulate the human brain
using a simulation model called perceptron. Multi-layered perceptrons are constructed
by creating and arranging layers of perceptrons in which all nodes of the model are fully
connected in order to solve more complex problems.

Currently, DL is regarded as state of the art technology and is used to solve numerous
problems in various fields [11]. In particular, in the field of biomedical science, the use
of DL to identify an essential genes or create models that predict specific proteins offers
the potential to replace cost- and time-consuming laboratory-based research [12,13]. Its
effectiveness has been demonstrated in medical imaging analysis as well, such as detection
of pulmonary nodules [14], classification of benign and malignant nodules [15], and
prediction of tumor invasiveness [16,17]. However, few studies have used deep learning to
classify histologic patterns in lung ADCs, which is difficult to perform with human eyes.
Ding et al. trained two different deep learning models to predict a micropapillary pattern
using LeNet and DenseNet, and showed an overall accuracy of 92 and 72.9% [18]. Wang
et al. reported that combined radiomics and a deep learning model for the prediction of
high-grade patterns in lung ADCs manifested as ground-glass opacity nodule (GGN) and
resulted in an overall accuracy of 91.3% [19]. However, both studies are limited in that
they only showed the technical success of the model. Therefore, our study attempted to
evaluate not only the technical success of the model, but also how well the model can be
applied in clinical situations.

The purpose of this study was to develop a deep learning model for predicting any
high-grade pattern in lung ADCs and to assess the prognostic performance of this model
in advanced lung cancer patients who underwent neoadjuvant concurrent chemoradiation
therapy (CCRT) or definitive CCRT.

2. Methods
2.1. Study Design and Data Sources

Data from a prospective clinical trial of early-stage lung ADC patients who under-
went preoperative contrast enhanced CT scans (NCT01482585) were used for the training
dataset. The training dataset that was used to build the deep learning model consisted
of 275 patients with 290 early lung ADCs recruited from Samsung Medical Center (SMC)
between December 2011 and January 2017. Some patients had synchronous lung cancer, so
the number of lesions was greater than the number of patients. The inclusion criteria were
clinical stage I or II lung ADC with a performance status of 0 to 1 on the ECOG scale and
age of 20 years or older. Patients with a history of previous radiation or chemotherapy and
poor cardiopulmonary reserve were excluded.
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For the validation dataset, we retrospectively evaluated an independent dataset of
416 patients with advanced non-small cell lung cancer (NSCLC) who underwent neoad-
juvant concurrent chemoradiation therapy (CCRT) or definitive CCRT at SMC between
February 2010 and January 2019. We included patients with stage I A to III B lung ADC
who had matched contrast-enhanced CT images performed within 90 days before and after
biopsy. Only CT images using thicknesses within 3 mm were included. Patients who were
diagnosed with NSCLC of a cell type other than ADC or had CT images that did not meet
the above criteria were excluded. Cases in which primary tumors were not clearly seen
in the lung or only lymph node metastases were observed were also excluded. Finally,
416 patients were included in the validation dataset. All these patients’ inclusion processes
are illustrated in Figure 1A,B. All patients provided written informed consent, and study
approval was obtained from the Institutional Review Board of SMC, Seoul, Korea.
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Any high-grade pattern inside the tumor predicted by the DL model was denoted as
MPSol. MPSol is defined as the presence of more than 5% micropapillary or solid histologic
patterns inside the tumor.

Overall survival (OS) was calculated from the date of the surgery or radiation therapy
to that of death from any cause. Disease-free survival (DFS) was calculated from the
date of surgery to that of tumor recurrence or the data of the last follow-up. Progression-
free survival (PFS) was calculated from the date of radiation therapy to that of tumor
progression or the date of the last follow-up.

2.2. Preprocessing

The CT scans were obtained from the SMC. The scanning matrix was set to 512 ×
512 pixels. For training cohort, the slice thickness was 1.0 mm. For the validation cohort, it
ranged from 1 to 3 mm.

AVIEW Corelinesoft software (Coreline Soft, Seoul, Korea) was used to label the
tumors in the images. The target lesion was marked by an experienced radiologist (5 years
of experience in chest CT diagnosis) as 3D segmentation mask. Then, a cuboid bounding
box that tightly covered the target lesion was created.

There were preprocessing steps of image as follows. Every 2D slices of DICOM images
were stacked to create 3D pixel matrix with Hounsfield Units (HU) as pixel value. The
3D pixel matrix was then resampled to have 1.5 mm × 1 mm × 1 mm (depth × width ×
height) resolution with linear interpolation. Pixel values were clipped to have both the
lung window (−1400 HU, 200 HU) and the mediastinal window (−125 HU, 225 HU) and
then rescaled to between 0 and 1. Both views are concatenated channel-wise before being
fed into the deep learning model, allowing the model to observe both the lung window
and the mediastinal window as a human radiologist does.

Two types of 3D patches were extracted from the target lesion. One is what we call
the context-view, which is cropped from a 144 mm × 160 mm × 160 mm (depth × width
× height) region around the target lesion and resampled to have 48 × 80 × 80 pixels
containing a broad background area around the lesion. The other is the morphologic-view,
which is tightly cropped as cuboid patch from the target lesion, then resampled to have
40 × 60 × 60 pixels. The detailed procedure is shown in Figure 2A.

Unlike the conventional radiomics research, we did not apply any feature extraction
steps such as binning, intensity histogram (IH), gray-level co-occurrence matrix (GLCM) to
let our deep learning model to learn to extract relevant features by itself.

When training our model, we applied multiple augmentation techniques to increase
amount of data by adding slight modification on images [20]. Specifically, brightness and
contrast jittering, resizing, bounding box jittering were applied on images every time by
modifying 5% before feeding the images into model. For example, contrast jittering was
applied by multiplying the number drawn randomly between 0.95 and 1.05 on pixel values
of image with different random number for every iteration. Moreover, random flipping
was also applied in axial, horizontal, and vertical axis by 50% of probability, respectively.
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Figure 2. (A) Deep learning workflow. (B) Performance of the model. ROC curves generated from different models to
predict any high-grade pattern of lung ADCs. The basic-3D-CNN model takes only one 3D patch from target lesion with
a model architecture consisting of one residual block for each level (AUC = 0.69). The Morphologic-view Context-view
3D network (MC3DN) is introduced. The MC3DN (shallow) model takes both the context and morphologic views from
the target lesion while having the same model architecture as Basic-3D-CNN (AUC = 0.73). A larger model architecture is
adopted for MC3DN with three residual blocks for each level (AUC = 0.77). A multitasking strategy is applied with the
segmentation task and pathology size prediction task, respectively, on MC3DN (AUC = 0.78). Finally, both of the tasks are
applied on MC3DN simultaneously (AUC = 0.8).
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2.3. Model Architecture
Model: MC3DN

Our model was developed to focus on the morphologic characteristics of the target
lesion as well as contextual information observed around the lesion (Figure 2A). We
call our model the morphologic-view context-view 3D network (MC3DN). Two feature
extractors are separately assigned to the context view and the morphologic view. The
3D convolutional model showed great success in the video classification task [21]. We
employed it for our feature extractor which has some modifications as follows. It consisted
of one convolution layer which takes a 3D image and the following three levels of three
residual blocks. Each residual block consists of two 3D convolution layers. Two down
sampling layers are located at the end of the first and the second levels, respectively. This
results in 19 3D convolution layers in total, which is a very deep 3D neural network. The
feature vectors produced from each feature extractor are concatenated in channels and fed
into a classifier layer to predict a probability score between 0 and 1 for each lesion that
indicates whether the target lesion is MPSol or not. Before we fed the feature vectors into
the classifier layer, we applied global average pooling on the both the context view and the
morphologic view to produce feature vectors. For the context-view, we cropped the feature
vector around the target lesion as given by the annotation in the form of bounding box to
separate the target lesion from other lesions which may present in the context view due
to its broad field of view. Hyperparameters for the model were searched such as learning
rate, learning schedule, network size, level of augmentation, etc. by conducting multiple
experiments to find the best performance model.

2.4. Multitask Learning

Joint training of a main task with auxiliary tasks can be a very effective method to
improve performance in the main task, especially when only small number of training
samples are present [16,22]. Two additional auxiliary tasks are included in our training
process. One is pathologic invasion size prediction and the other is a lesion segmentation
task. Invasion size was estimated from pathology images by a pathologist. We assigned an
additional classifier which takes the final feature vector produced from feature extractors
to predict invasion size. For the segmentation task, two additional 3D convolutional layers
are branched out from the initial residual block. The final segmentation mask was half
the size of the context view. Our loss functions were given as cross-entropy loss after
soft-max function for MPSol and segmentation mask prediction and smoothed-L1-loss
for pathologic invasion size prediction. As the auxiliary tasks only help our main task
(MPSol prediction), tasks are weighted 10:1:1 (MPSol prediction: pathologic invasion size
prediction: lesion segmentation).

The research was performed with 8 Nvidia Titan xp graphics processing units (GPU).
Our models were developed with Python 3.7 and PyTorch 1.0.1 on an Ubuntu 16.04 plat-
form.

2.5. Activation Mapping of the Deep Learning Model

To investigate whether the DL model is capable of understanding histologic patterns
from CT images, we visualized the region that the model considered important on CT
images for the given lesion and compared this with histopathologic images. In order
to visualize where the model considered important inside the lesion, we visualized the
activation maps of final convolution layer from the morphologic view. More specifically,
we calculated the magnitudes of gradients flowing through the final convolution layer and
merged the activation maps by weighted-averaging these with the magnitudes of gradients
to highlight the most influenced activation maps on the final prediction [23].

2.6. Statistical Analysis

A 2-tailed p value less than 0.05 was considered to be statistically significant. Receiver
operating characteristic (ROC) curves were applied to evaluate the two-class classification
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models. Area under the curve (AUC) was calculated from ROC curves with a 95% con-
fidence interval (CI). The Kaplan–Meier method was used for survival analysis and the
log-rank test was used for statistical testing of survival performance. Hazard ratios and
95% CIs were computed using the Cox proportional hazards model. All statistical analyses
were carried out using R 3.6.1 software (Vienna, Austria; http://www.R-project.org/).

3. Results
3.1. Dataset Characteristics

Table S1 describes the clinicopathologic characteristics of patients in the training
dataset. In terms of histologic grading of the most predominant pattern, 48 (16.6%) tumors
were low-grade, 214 (73.8%) were intermediate grade, and 28 (9.6%) were high-grade. Of
the 290 lung ADCs, 54 (18.6%) lesions showed any high-grade pattern (micropapillary
or solid pattern, MPSol) in >5% of the pathological specimen. Of the 275 patients in the
training set, 31 (11.3%) experienced recurrence. The mean DFS was 49.9 months, and the
median follow-up period was 1763 days (range: 29–3228 days). Eleven patients died during
follow-up, and six of these patients died from recurrent lung cancer.

The validation dataset included 416 patients with advanced lung ADCs who under-
went neoadjuvant or definitive CCRT (Table S2). Of the 416 patients in the validation set,
88 expired for any cause. The mean OS was 26.9 months, and the median follow-up period
was 806 days (range: 7–3550 days).

3.2. Survival by High-Grade Pattern in Training Set

Survival curves for OS estimated by the Kaplan–Meier method differed significantly
depending on the presence of any high-grade histologic pattern in lung ADCs (Figure S1,
p = 0.005). The 5-year OS rate of any high-grade pattern was 88.2%, compared to low-
intermediate grade (96.4%). There was also a significant difference in DFS (Figure S2,
p < 0.001); the 5-year disease-free survival rate of any high-grade pattern was 77.8%, which
was lower than that of the low-intermediate grade (87.3%).

3.3. Model Performance

The training cohort is split into internal–training and internal–validation datasets
in a 3:1 ratio (n = 218:n = 72). We trained our model using an internal-training dataset
to predict MPSol, and its performance was measured using ROC AUC for every epoch
using the internal–validation dataset. We picked the best performance model from the
internal-validation dataset to avoid overfitting on the internal–training dataset.

Initially, we developed a very basic 3D convolutional residual architecture model with
one residual block for each level, which takes a 1.5 mm × 1 mm × 1 mm resampled CT
image with 48 × 80 × 80 sized 3D patch of target lesion. This had an AUC of 0.6871 (95%
CI 0.5146–0.8596). When we applied our MC3DN with one residual block for each level, the
AUC value improved to 0.7301 (95% CI 0.5778–0.8825). As we increased the model size to
three residual blocks for each level, there was an additional performance boost to an AUC
of 0.7692 (95% CI 0.6359–0.9025). The performance of the baseline model from training
cohort was measured 0.72 in ROC AUC with lung window only, while it was measured
to be 0.78 when both lung and mediastinal windows are used. Multi-task learning also
allowed performance gains. When the pathologic size was considered together, the AUC
value was 0.7823 (95% CI 0.6442–0.9204). When segmentation was considered together,
the AUC value was 0.7784 (95% CI 0.6352–0.9215). The AUC value was 0.8044 (95% CI
0.6861–0.9228) when considering pathologic size and segmentation, which was highest
among several models. AUC of all models showed significant predictive values, but there
was no significant difference between each model. The performances of all the models
were measured from the internal–validation dataset and are shown in Figure 2B.

http://www.R-project.org/
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3.4. Validation of the Deep Learning Model

Univariable and multivariable Cox regression analysis were performed to determine
the prognostic factors that contribute to patient survival in the validation set (Table 1).
After adjusting forsex, stratified multivariable Cox analysis was performed on variable that
did not meet the proportional hazards assumption (e.g., smoking). Moreover, the MPSol
probability score was significantly associated with overall survival (HR 1.622, 95% CI
1.058–2.488, p = 0.027). There was no significant difference of survival between neoadjuvant
and definitive CCRT groups (p = 0.950).

Table 1. Cox Regression Analysis for Overall Survival in Validation Set.

Univariable Multivariable #

HR (95% CI) p Value HR (95% CI) p Value

Treatment:
Neoadjuvant 1.014 (0.666–1.544) 0.950 - -

Sex: male 2.217 (1.333–3.688) 0.002 * 1.453 (0.709–2.978) 0.308
Age 1.013 (0.990–1.037) 0.256 - -

Smoking: yes 2.123 (1.354–3.330) 0.001 *
ECOG (≥1) 0.858 (0.492–1.498) 0.591 - -

MPSol prediction >0.5 1.781 (1.166–2.721) 0.008 * 1.622 (1.058–2.488) 0.027 *
TNM stage: I, II (Ref)

TNM stage: III 1.083 (0.472–2.483) 0.851 - -

* p < 0.05, # Stratified by smoking, Smoking status included both former and current smokers.

Survival curves for OS and PFS stratified by the probability of a high-grade pattern
estimated by MC3DN were significantly different (Figure 3 and Figure S3). The 5-year
overall survival rate was 73.6% in the subgroup (MPSol probability < 0.5, n = 280) where
the probability of the presence of a high-grade histologic pattern was less than 0.5. On
the other hand, the 5-year survival rate was as low as 58.6% in the subgroup (MPSol
probability > 0.5, n = 136) where the probability of the presence of a high-grade pattern
was greater than 0.5. The subgroup with MPSol probability > 0.5 estimated by MC3DN
showed a 1.78-fold higher risk of death (95% CI 1.17–2.72, p = 0.008) than the subgroup
with MPSol probability < 0.5. Survival curves for all patients and other clinical factors are
shown in Figure S4. In this validation dataset, only age showed a significant difference in
overall survival. In the same analysis for PFS, a more favorable outcome was shown in the
subgroup with MPSol probability > 0.5, but there was no significant difference (Table S3
and Figure S1). Exploratory subgroup analysis showed that the prognostic impact of
MPSol probability was clearly significant in the patients with neoadjuvant CCRT treatment
(n = 218, p = 0.00085), but it was not significant in those with definitive CCRT treatment
(n = 198, p = 0.51) (Figure S5). Along with this result, we observed that the proportions of
N stage of two groups (neoadjuvant versus definitive CCRT) were different (0.9% versus
66.7%, respectively), implying that N3 node would confer a distinct CT image pattern
compared to its primary lesion.
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Figure 3. Survival curves for OS according to MPSol probability estimated by MC3DN in the validation set. When the
deep learning model was applied to the validation set, a high probability of a high-grade histologic pattern such as the
micropapillary and solid pattern (MPSol) was associated with worse overall survival (probability of MPSol >0.5 vs. <0.5;
5-year OS rate 59.0% vs. 73.6%).

3.5. Activation Mapping of the Deep Learning Model

The activation map visually presents the most important region that the deep learning
model focused on when predicting an outcome. When we compared the activation map
between the CT image and histology image, we were able to observe a correlation between
the model-highlighted region and the corresponding region in the histology images. For
example, when our model predicted MPSol, the region that the model highlighted cor-
related well with the micropapillary or solid region from histology images, as shown in
Figures 4 and 5, and Figures S6–S8.
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Figure 4. A 57-year-old female with invasive lung adenocarcinoma (Acinar 90%, MP 1%, Scar 9%). (A) A 13 mm 
part-solid nodule with air-bronchograms is noted in right upper lobe. The activation map is shown as a heatmap, high-
lighting the most important region when it classified the given lesion as MPSol (micropapillary or solid pattern). A very 
focal highlighted region (marked with an asterisk) is noted in the proximal portion of the tumor, adjacent to a trans-
versing vascular structure. (B) Surgical pathology demonstrates a micropapillary histologic pattern (marked with an as-
terisk) adjacent to the vascular structure in the tumor which corresponds to the activation map. 

Figure 4. A 57-year-old female with invasive lung adenocarcinoma (Acinar 90%, MP 1%, Scar 9%).
(A) A 13 mm part-solid nodule with air-bronchograms is noted in right upper lobe. The activation
map is shown as a heatmap, highlighting the most important region when it classified the given
lesion as MPSol (micropapillary or solid pattern). A very focal highlighted region (marked with an
asterisk) is noted in the proximal portion of the tumor, adjacent to a transversing vascular structure.
(B) Surgical pathology demonstrates a micropapillary histologic pattern (marked with an asterisk)
adjacent to the vascular structure in the tumor which corresponds to the activation map.
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Figure 5. An 81-year-old male with invasive lung adenocarcinoma (Acinar 88.3%, MP 5.6%, Scar 6.1%). (A) A 21 mm 
lobulated enhancing nodule is noted in the right upper lobe. The activation map is shown as a heatmap, highlighting the 
most important region (marked with an asterisk) when it classified the given lesion as MPSol (micropapillary or solid 
pattern). The focal highlighted region is noted on the anteromedial side of the tumor. (B) Surgical pathology demon-
strates a focal micropapillary pattern (marked with an asterisk) on the anteromedial side of the tumor with background of 
an acinar pattern, which corresponds to the activation map. 

4. Discussion 
Lung ADCs are characterized by a heterogeneous mixture of histologic patterns of 

prognostic significance. Although the most predominant histologic pattern is known to 
be important for patient prognosis, the presence of any high-grade pattern such as mi-
cropapillary and solid patterns also has a significant impact on prognosis [2,6]. Accord-
ing to a paper recently published by the IASLC pathology group, the predominant plus 
high-grade pattern classified patient prognosis better than the predominant pattern alone 
[24]. Thus, the current study developed a deep learning model based on 3D convolu-
tional neural networks and multitask learning, which automatically predicts any 

Figure 5. An 81-year-old male with invasive lung adenocarcinoma (Acinar 88.3%, MP 5.6%, Scar
6.1%). (A) A 21 mm lobulated enhancing nodule is noted in the right upper lobe. The activation
map is shown as a heatmap, highlighting the most important region (marked with an asterisk)
when it classified the given lesion as MPSol (micropapillary or solid pattern). The focal highlighted
region is noted on the anteromedial side of the tumor. (B) Surgical pathology demonstrates a
focal micropapillary pattern (marked with an asterisk) on the anteromedial side of the tumor with
background of an acinar pattern, which corresponds to the activation map.

4. Discussion

Lung ADCs are characterized by a heterogeneous mixture of histologic patterns of
prognostic significance. Although the most predominant histologic pattern is known to be
important for patient prognosis, the presence of any high-grade pattern such as micropap-
illary and solid patterns also has a significant impact on prognosis [2,6]. According to a
paper recently published by the IASLC pathology group, the predominant plus high-grade
pattern classified patient prognosis better than the predominant pattern alone [24]. Thus,
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the current study developed a deep learning model based on 3D convolutional neural
networks and multitask learning, which automatically predicts any high-grade histologic
pattern from CT scans of early-stage lung ADCs. We found that our deep learning model
could be used to predict clinical outcomes in patients with advanced lung cancer who
underwent neo-adjuvant or definitive CCRT.

In our study, patients with early-stage lung cancer had a significantly poorer prognosis
when there was any high-grade histologic pattern (Figure S1). These results are consistent
with previous studies [2,6,7] and reaffirmed the importance of predicting any high-grade
histologic pattern. However, although we know that the prognosis is worse with the
high-grade pattern, it is difficult to know in advance the existence of a high-grade pattern
before surgery. In addition, surgical decision-making based on frozen sections of high-
grade histologic patterns has little evidence to prove diagnostic accuracy, which can be
problematic when considering sub-lobar resection [25]. In this respect, our DL model
is meaningful because it noninvasively predicts high-grade histologic patterns using CT
scans prior to obtaining pathologic specimens. Tsao et al. reported that patients with
micropapillary and solid patterns could benefit from adjuvant chemotherapy and had
an improved disease-free survival rate [26]. As such, using our DL model could help
clinicians determine treatment options such as adjuvant chemotherapy or determining an
appropriate resection margin.

There have been many studies on the imaging-based deep learning model for pre-
dicting the histology of lung cancer (i.e., adenocarcinoma, squamous cell carcinoma, and
small cell lung cancer), and it has shown relatively good accuracy [27–30]. However, there
are few studies on radiomics-based machine learning or CT-based deep learning models
predicting high grade histologic patterns of lung ADC (i.e., micropapillary or solid pattern,
MPSol). He et al. developed a radiomics-based machine learning model to predict MPSol
for patients with curative invasive lung ADC and showed good predictive performance
(AUC, 0.75) [31]. Wang et al. created both radiomics-based machine learning and deep
learning-based models for predicting MPSol in patients with early-stage lung ADC pre-
sented as GGOs [19]. They found that the AUC values of each model were as follows:
radiomics-based model, 0.673–0.819; deep learning-based model, 0.689; model combin-
ing deep learning and radiomics (DRL), 0.861. They reported that the model combining
deep learning and radiomics performed the best, and in fact, their deep learning model
had relatively low performance with AUC 0.689. The radiomics-based model presented
in both studies showed good predictive performance similar to ours, but their study is
different from deep learning-based research in that they used radiomics that had to go
through the process of handcraft feature extraction. In addition, while Wang et al. built
a model only for lesions represented by GGOs, we developed a model using all lesions
that could be encountered in real clinical world, from GGO to solid lesions. As a study
that built a deep learning-based model similar to our study, Ding et al. developed two
different deep learning models, based on the LeNet and the DenseNet architecture for
invasiveness classification and prediction of micropapillary pattern (MP) within lung ADC.
They reported that the accuracies of each model for MP prediction were 92% and 73%,
respectively [18]. However, there are limitations in that only the MP pattern was predicted,
excluding the solid pattern, and the model was not validated in other cohorts. To the
best of our knowledge, our model is the first to predict micropapillary or solid histologic
patterns in a variety of tumors from early to advanced stages with comparable predictive
performance.

The strength of our study is that we validated the DL model in patients with ad-
vanced lung cancer. It is difficult to prognosticate in patients with advanced lung cancer
undergoing neoadjuvant or definitive CCRT with known histologic patterns because tissue
information is not available. In addition, even if tissue information is obtained, there is
the problem of obtaining only a small amount of biopsy sample that does not reflect the
entire tumor. Therefore, there is an increasing need to stratify prognosis noninvasively
by imaging, especially in patients with advanced lung cancer. When our DL model was
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validated for patients with advanced lung cancer without tissue information, it was con-
firmed that prognostic performance worked quite well. This is meaningful in that the DL
model that predicts any high-grade histologic pattern in early lung cancer patients is well
applied to advanced lung cancer. In addition, this suggests that a good grasp of the specific
radiologic clues for the presence of a small proportion of high-grade patterns can impact
more accurate prognostication.

Another strength of our study is that the activation map of our DL model has the
potential to approximately correlate with the patient’s CT and histologic images.

Interestingly, in the cases of a small MPSol as shown in Figures 4 and 5 and Figure S6,
the focal area highlighted in the activation map was actually correlated with the focal area
of micropapillary or solid pattern in the pathology. In addition, in cases with high MPSol,
as shown in Figures S7 and S8, the entire tumor area highlighted in the activation map was
correlated with a diffuse area of micropapillary or solid pattern in the pathologic images.
This suggested our model has the power to discriminate heterogeneous histologic patterns
for given lesions from CT images only.

There are several factors that explain the performance of our deep learning model.
First, our model considered both morphologic and context views, which means that our
model considered not only the tumor, but the surrounding environment of the tumor as
well. Similarly, Hosney et al. reported that tissues both within and beyond the tumor
were crucial for characterization and eventual prediction in a DL model for lung cancer
prognostication [32]. Interestingly, our model used a relatively wide context view (144 mm
× 160 mm × 160 mm). Thus, the performance of our model is interpreted as the result
of reflecting a wide area of lung parenchyma around the tumor as well as the imaging
properties of the tumor itself. Second, the performance improved by 2.8% when the model
was trained with both lung and mediastinal windows on CT scans. Compared to the
lung window, the mediastinal window makes the tumor appear smaller and has a simpler
border. In other words, considering that both windows may explain the characteristics
of the margin of the tumor, this can provide richer information to the model. Third,
pathologic invasive size was also trained through multitask learning and contributed to the
improvement of model performance. As revealed through many studies [33], pathologic
invasive size is one of the most important factors in determining patient prognosis. Through
joint training of the neural networks to solve two related tasks, the model is able to predict
a patient’s prognosis more accurately. This multitask learning approach is also effective
at learning convergence and the system is less prone to overfitting. Thus, by considering
pathologic invasive size as well as histologic pattern, we were able to create a more robust
model for predicting patient prognosis.

There are no reports of performance comparisons between radiologists and deep
learning models for predicting high-grade histologic patterns such as micropapillary
or solid. This is because it is difficult to predict a high-grade pattern by simple visual
assessment, because even the same solid tumor may or may not have a high-grade pattern
inside. Moreover, especially when the high-grade pattern is a non-predominant pattern, it
will be difficult to expect good performance from visual assessment alone. This reinforces
the need for our deep learning model in that our model can predict what is difficult for a
radiologist to predict under usual circumstances.

Several limitations are left to be addressed in our study. First, data insufficiency in
the training session could lead to bias. To overcome this problem, we applied various
image augmentation techniques and implemented multitask learning. In addition, Song
et al. combined imaging with clinical features to identify pathologic components [34], by
training imaging parameters as well as the relevant clinical information; we could provide
richer information to the model and create a more robust model. Second, we did not
perform external validation with a similar population. Instead, we validated the model in
a completely different cohort of advanced lung cancer patients treated by neoadjuvant or
definitive CCRT. Although the prognostic impact of MPSol probability is clearly different
according to treatment groups, possibly caused by the imbalanced proportion of N3 stage,
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we also verified the model’s performance by showing that it predicts prognosis well in
the merged group. Third, there was a difference in the range of tumor sizes between the
training and validation sets. In other words, the validation set consisting of advanced lung
cancer patients had an overall larger tumor size than seen in the training set. However,
there was no extreme outlier in the size distribution of each groups. The longest CT
diameters of the tumors ranged from 5.5 to 74.1 mm in training set, and 8.9 to 127.6 mm in
validation set. The median and interquartile ranges of tumor size were as follows for each
dataset: median [quartile 1, quartile 3], 22.1 mm [16.6, 31.5] in training set; 36.8 mm [25.7,
52.5] in validation set. Although the longest diameter of the tumor was naturally larger in
the validation set due to the nature of advanced lung cancer, it is rather meaningful that
our model nevertheless worked well. Fourth, although our model was developed through
training on lung ADCs, it was validated in patients diagnosed with NSCLC NOS as well as
ADCs irrespective of histologic subtype. However, this is a plausible approach as patients
have various histologic subtypes other than ADCs in real clinical settings. Moreover, as
our model actually worked well in the validation set with a mixture of different histologic
subtypes, it will be easier for clinicians to apply to real-world clinical situations. Fifth, our
study is a single-center study that can be biased. Further validation may be required in a
larger cohort drawn from other institutions. Last, DL systems have an inherent problem
with interpretability. Compared to engineered radiomics [35], feature definition, extraction,
and selection in deep learning are all automated by black-box-like networks. Thus, it is
difficult to debug these opaque networks, isolate the cause of certain outcomes, and predict
when and where failures will occur.

DL has shown great potential in fields with imaging data such as radiology [36],
pathology [37], dermatology [38], and ophthalmology [39]. In our study, we also used CT
images to build a DL model, which was quite useful in predicting a patient’s prognosis
through high-grade histologic patterns. In addition to DL application in imaging classi-
fication, DL has a multimodal nature that can integrate various fields such as genomic,
pathologic, and clinical information. Therefore, by incorporating genetic and clinical infor-
mation into our DL model, we could build a better and more robust model in the future.
Our DL model may be able to contribute to precision medicine by enabling patient-specific
diagnosis and treatment.

5. Conclusions

In conclusion, our deep learning model could be useful in estimating high-grade his-
tologic patterns in lung ADCs and predicting clinical outcomes of patients with advanced
lung cancer who underwent neoadjuvant or definitive CCRT. Our model is meaningful in
that it has been successfully applied to inoperable patients and could help to determine the
treatment policy for these patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13164077/s1, Figure S1: Survival curves for OS according to any high-grade histologic
pattern of lung ADCs in training set. Overall survival was significantly different between lung
ADCs with or without any high-grade histologic pattern such as micropapillary and solid pattern
(p = 0.005, 5-year OS rate; 96.4% vs. 88.2%), Figure S2: Survival curves for DFS according to any
high-grade histologic pattern of lung ADCs in training set. DFS was significantly different between
lung ADCs with or without any high-grade histologic pattern such as micropapillary and solid
pattern (p < 0.001, 5-year DFS rate; 87.3% vs. 77.8%), Figure S3: Survival curves for PFS according
to MPSol probability estimated by MC3DN in the validation set. When the deep learning model
was applied to the validation set, a high probability of a high-grade histologic pattern such as
the micropapillary and solid pattern (MPSol) was associated with worse progression free survival
(probability of MPSol >0.5 vs. <0.5; 5-year PFS rate 47.0% vs. 36.5%), Figure S4: Survival curves for
all patients in validation cohort and other clinical factors, Figure S5: Survival curves for OS according
to MPSol probability estimated by MC3DN in neoadjuvant or definitive CCRT group, Figure S6: A
71-year-old male with invasive lung adenocarcinoma (Papillary 65%, Solid 30%). (A) A 30 mm sized
lobulated heterogeneously enhancing mass is noted in right upper lobe. Activation map visually
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as heatmap, highlighting the most important region (marked with an asterisk) when it classified
the given lesion as MPSol (micropapillary or solid pattern). A focal highlighted region is noted in
central portion of the tumor. (B) Surgical pathology demonstrates solid histologic pattern (marked
with an asterisk) in central portion of the tumor which corresponds to activation map, Figure S7:
A 60-year-old male with invasive lung adenocarcinoma (Solid 70%, Acinar 25%). (A) A 17 mm
sized spiculated enhancing nodule is noted in left upper lobe. Activation map visually as heatmap,
highlighting the most important region when it classified the given lesion as MPSol (micropapillary or
solid pattern). All areas of the tumor were diffusely highlighted. (B) Surgical pathology demonstrates
solid histologic pattern (marked with an asterisk) in most areas of the tumor that corresponds to
activation map, Figure S8: A 58-year-old male with invasive lung adenocarcinoma (MP 85%, Acinar
10%). (A) A 22 mm sized irregular shaped enhancing nodule with internal cavitation is noted in right
lower lobe. Activation map visually as heatmap, highlighting the most important region when it
classified the given lesion as MPSol. All areas of the tumor were diffusely highlighted. (B) Surgical
pathology demonstrates micropapillary histologic pattern (marked with an asterisk) in most areas of
the tumor that corresponds to activation map, Table S1: Characteristics of Patients in the Training
Set, Table S2: Characteristics of Patients in the Validation Set, Table S3: Cox Multivariate Regression
Analysis of Progression Free Survival in Validation Set.
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