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Abstract: Composition bias from Chargaff’s second parity rule (PR2) has long been found 

in sequenced genomes, and is believed to relate strongly with the replication process in 

microbial genomes. However, some disagreement on the underlying reason for strand 

composition bias remains. We performed an integrative analysis of various genomic 

features that might influence composition bias using a large-scale dataset of 1111 genomes. 

Our results indicate (1) the bias was stronger in obligate intracellular bacteria than in other  

free-living species (p-value = 0.0305); (2) Fusobacteria and Firmicutes had the highest 

average bias among the 24 microbial phyla analyzed; (3) the strength of selected codon 

usage bias and generation times were not observably related to strand composition bias  

(p-value = 0.3247); (4) significant negative relationships were found between GC content, 

genome size, rearrangement frequency, Clusters of Orthologous Groups (COG) functional 

subcategories A, C, I, Q, and composition bias (p-values < 1.0 × 10−8); (5) gene density 

and COG functional subcategories D, F, J, L, and V were positively related with 

composition bias (p-value < 2.2 × 10−16); and (6) gene density made the most important 
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contribution to composition bias, indicating transcriptional bias was associated strongly 

with strand composition bias. Therefore, strand composition bias was found to be 

influenced by multiple factors with varying weights. 

Keywords: strand composition bias; multiple factors; gene density; genomic features;  

COG functional category; obligate intracellular bacteria 

 

1. Introduction 

The DNA replication process produces two identical DNA molecules from one original DNA 

molecule. The leading strand is synthesized continuously in the same direction as the growing replication 

fork and the lagging strand is replicated by the synthesis of short and separated Okazaki fragments that 

are then joined together to form an integrated strand [1]. According to Chargaff’s second parity rule 

(PR2), a single DNA strand globally has an equal percentage of base pairs (A ≈ T and G ≈ C) when 

there is no strand bias caused by mutation or selection [2]. After PR2 bias caused by mutation was 

found between the leading and lagging strands in the echinoderm and vertebrate mitochondria 

genomes [3], the same phenomenon has been found in an increasing number of genomes [4–11]. These 

biases consistently showed that the leading strand had more G than C and, to a lesser extent more T 

than A, while in lagging strand the bias was in the opposite direction [9,12,13]. 

Many researchers found that the strand bias was related to the replication process, because the 

accumulation of base mutations were caused by the asymmetric replication mechanism between the 

two strands [1,2,6,14,15]. The rule of Watson–Crick base pairing would protect cytosine from being 

deaminized in double-stranded DNA [16,17]. However, DNA must be separated into two single 

strands temporarily during replication. In single-stranded DNA, cytosine would be easier to undergo 

deamination and transform to thymine, which contributes towards the composition bias in genomes [16]. 

Researchers have found that other factors may lead to asymmetry of DNA, such as thymine dimers [18], 

nonsense mutations [11,16], two-fold degenerated sites of cytosine [13,19], and nucleotide usage in 

twofold as well as fourfold degenerate sites from third codon positions [20]. Other researchers 

suggested that the strand composition bias was associated with the transcription process [21,22]. The 

mutation and repair frequencies between coding and non-coding regions of genomes are different, and 

most genes are located on the leading strands [1,23]. Hence, considering the gene orientation bias, the 

transcription process also could induce composition bias between two replicating strands. 

Thus, the mechanisms underlying nucleotide composition bias are still open to debate. In this work, 

we selected 1111 microbial genomes to study a number of factors that may affect strand composition 

bias, using a quantitative analysis approach. 

2. Results and Discussion 

2.1. Composition Bias in Obligate Intracellular Bacteria 

Extremely strong strand composition bias has been reported in 11 bacteria, among which seven are 

obligate intracellular parasites [8]. The strong bias means that genes have significantly different base 



Int. J. Mol. Sci. 2015, 16 23113 

 

 

and codon usages between the two replicating strands [24–26]. Obligate intracellular bacteria live 

permanently in their hosts, which helps to protect them against some DNA damage [7]. Thus, during 

their long-term evolution, some DNA repair genes would have been lost and mutations would have 

accumulated, resulting in the strand composition bias that has been reported. 

In this work, we analyzed the composition bias in obligate intracellular bacteria using a broader 

range of genomes than has been used previously. Among the 1111 genomes that we downloaded from 

the NCBI FTP site (see Section 3.1 for details), 83 bacteria were confirmed as obligate intracellular. 

The species names and access numbers are displayed in Table S1. The average Scorecomposition bias (see 

Section 3.2 for details) of the 83 obligate intracellular bacteria (0.0433) was significantly higher than 

that of the other bacteria (0.0362) (t-test, p-value = 0.0305), and 40 of the 83 genomes were among the 

top scoring 258 genomes (top quarter). However, the top 10 genomes were not from obligate 

intracellular bacteria. Thus, the Scorecomposition bias of obligate intracellular bacteria was stronger on the 

whole than that of the other species, but not always strong for an individual genome. 

2.2. Composition Bias in Different Bacterial Phyla 

We separated the 1111 microbial genomes into 24 phyla and plotted the Scorecomposition bias for each 

phylum (Figure 1); the variance, standard deviation, and average Scorecomposition bias are given in  

Table 1. Fusobacteria had the highest average Scorecomposition bias. They are obligately anaerobic  

non-spore-forming Gram-negative bacteria [27]. Firmicutes had the second highest average 

Scorecomposition bias, which is in accord with a previous study that found that strand-biased gene 

distribution was stronger in Firmicutes than in other bacteria [28]. To explore other features that may 

affect composition bias at the phylum level, we compared the size, GC content, and rearrangement 

frequencies of the Fusobacteria and Firmicutes genomes and found that these three features were 

smaller than the average values for all the other bacterial genomes; however, the gene densities in 

these two phyla were larger than the average values for all the other bacteria (Table 2). We reconstructed 

the phylogenetic tree of the 24 phyla (Figure 2) and found that the Fusobacteria and Firmicutes phyla had 

the closest relationship. Meanwhile, they had the top two Scorecomposition bias (0.100 and 0.071). We also 

found that several other clades with close relationship had similar Scorecomposition bias, such as among 

Gemmatimonadetes, Planctomycetes and Acidobacteria. This suggests phylogenetic relationship is one 

of the determinant factors of strand composition bias in bacterial genomes. 
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Figure 1. Box-and-whiskers represent for composition bias of all genomes, which sorted 

into 24 phyla. The bottom and top of box mark the first and third quartiles, and the band 

inside the box denotes the median. The ends of the whiskers in each plot represent the 

lowest datum still within 1.5 IQR (interquartile range) of the lower quartiles, and the 

highest datum still within 1.5 IQR of the upper quartiles. Any data not included between 

the whiskers is plotted as an outlier with a small circle. This boxplot graphically depict the 

different bias distribution in respective phylum. 

 

Figure 2. The phylogenetic tree of the 24 phyla. N means the total strains in a phylum,  

M means the average Scorecomposition bias in a phylum. 
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Table 1. Strand composition bias for each phylum a. 

Phylum Standard Deviation Variance Mean 

Acidobacteria 0.005309 2.82 × 10−5 0.009124 
Actinobacteria 0.015749 0.000248 0.018728 

Aquificae 0.005263 2.77 × 10−5 0.00957 
Bacteroidetes 0.016805 0.000282 0.027048 
Chlamydiae 0.012521 0.000157 0.055526 

Chlorobi 0.018046 0.000326 0.051947 
Chloroflexi 0.015056 0.000227 0.024993 

Cyanobacteria 0.021638 0.000468 0.019847 
Deferribacteres 0.007318 5.36 × 10−5 0.051752 

Deinococcus-Thermus 0.007668 5.88 × 10−5 0.015442 
Dictyoglomi 0.010132 0.000103 0.052093 

Elusimicrobia 0.030697 0.000942 0.052418 
Fibrobacteres NA NA 0.056901 

Firmicutes 0.028571 0.000816 0.071236 
Fusobacteria 0.048886 0.00239 0.099682 

Gemmatimonadetes NA NA 0.020857 
Nitrospirae NA NA 0.013445 

Planctomycetes 0.012161 0.000148 0.023082 
Proteobacteria 0.017163 0.000295 0.028607 
Spirochaetes 0.046978 0.002207 0.062153 
Synergistetes 0.012306 0.000151 0.047907 
Tenericutes 0.023255 0.000541 0.030599 

Thermotogae 0.004126 1.70 × 10−5 0.016197 
Verrucomicrobia 0.005228 2.73 × 10−5 0.029585 

a All genomes are grouped by phylum, NA refer to that there is only one species in this phylum. The phylum 

Fusobacteria owned the highest mean bias value, and the Firmicutes comes second. 

Table 2. Mean value of various biological characters for each phylum a. 

Phylum Genome Size GC Content Gene Density gcRF taRF 
Acidobacteria 6,581,121.33 0.602611 0.524179 0.546299 0.239179 
Actinobacteria 4,434,386.26 0.647473 0.591745 0.655926 0.5707 

Aquificae 1,680,594.86 0.3874153 0.514286 0.026764 0.090473 
Bacteroidetes 3,688,038.52 0.4246355 0.553854 0.035009 0.101365 
Chlamydiae 1,265,852.44 0.4046721 0.544713 0.022567 0.081014 

Chlorobi 2,618,734.27 0.5079388 0.583907 0.061015 0.114787 
Chloroflexi 2,435,937.54 0.5531583 0.519221 0.044977 0.063278 

Cyanobacteria 3,397,176.98 0.4460103 0.508569 −0.33356 −0.55797 
Deferribacteres 2,728,233 0.3682745 0.642415 0.012609 0.057666 

Deinococcus-Thermus 2,411,100.11 0.66285 0.517812 −0.10793 −0.12243 
Dictyoglomi 1,907,773.5 0.3384917 0.681195 0.01941 0.055101 

Elusimicrobia 1,384,709.5 0.3757977 0.726988 0.014904 0.078649 
Fibrobacteres 3,842,635 0.4805184 0.580603 0.047916 0.088216 

Firmicutes 3,077,249.49 0.3853 0.786812 0.020021 0.081354 
Fusobacteria 2,680,383 0.29141 0.72341 0.01046 0.05595 
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Table 2. Cont. 

Phylum Genome Size GC Content Gene Density gcRF taRF 
Gemmatimonadetes 4,636,964 0.6427436 0.566455 0.043068 0.055612 

Nitrospirae 2,003,803 0.341289 0.552386 0.019141 0.07548 
Planctomycetes 6,254,950 0.5550987 0.502151 0.116125 0.138471 
Proteobacteria 3,506,416.55 0.5337785 0.569934 0.067462 0.135439 
Spirochaetes 1,702,653.17 0.3721947 0.600467 0.021591 0.121083 
Synergistetes 1,914,533 0.5454971 0.75006 0.023406 0.050368 
Tenericutes 892,007.889 0.2794737 0.665323 −0.02018 −0.08702 

Thermotogae 1,976,742.36 0.4028872 0.54724 0.024232 0.083806 
Verrucomicrobia 3,998,507 0.5480856 0.51413 0.093882 0.10771 

Mean 3,329,265.48 0.4952767 0.612158 0.092191 0.127667 
a Genome size, GC content and rearrangement frequency of Fusobacteria and Firmicutes are all smaller than 

average of each trait for all genomes, but the opposite was true for the gene density. 

2.3. Composition Bias in Genomes with Different S Values 

Selection and mutation are two primary factors that generate bias in species’ genomes during 

evolution. These two factors may generate biases that partially counteract each other. An S value can 

be used to measure the strength of codon usage bias as an indicator of selection bias [29]. Replicating 

strand composition bias can be considered to represent mutation bias. Thus, we used the S values for 

80 bacterial genomes that were reported by Sharp et al. [29] to study the correlation between them and 

the Scorecomposition bias of the same 80 genomes. We found that there was no significant correlation 

between them (Spearman’s correlation, ρ = −0.08604675, p-value = 0.3247). Hence, we suggest that 

selection and mutation may influence genome bias by different mechanisms; therefore, codon usage 

bias may counteract strand composition bias. 

2.4. Composition Bias in Genomes with Different Generation Times 

Microbial generation times range from a few minutes to several weeks and are affected by 

evolutionary factors such as environment stability, nutrient availability, and community diversity. 

Vieira-Silva and Rocha found that codon usage bias was correlated with growth rates [30]. Hence, we 

explored the relationship of generation time and Scorecomposition bias. The bacterial generation time data 

were extracted from of the paper by Vieira-Silva and Rocha [30]. Our result indicated that generation 

time also was not significantly related with Scorecomposition bias (Spearman’s correlation,  

ρ = −0.1457365, p-value = 0.1021). That may be the same as the reason mentioned on the S value. 

2.5. Composition Bias in Genomes with Different Genome Sizes 

The average sizes of the genomes in the Fusobacteria and Firmicutes phyla are smaller than average 

sizes of the genomes in all the bacterial phyla examined. We found that a significantly negative 

correlation existed between genome size and Scorecomposition bias (Spearman’s correlation,  

ρ = −0.2508015, p-value < 2.2 × 10−16). This finding is similar to the results of Guo and Ning [7] who 

found that the genome sizes of 11 bacteria with extremely strong strand composition biases were all 
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smaller than 2000 kb. Guo and Ning speculated that the repair mechanism might be inefficient in small 

bacterial genomes that had undergone reductive evolution [7]. Additionally, mutation pressure may be 

insufficient to surpass translational selection in larger genomes. 

2.6. Composition Bias in Genomes with Different Gene Densities of the Leading Strand 

With the availability of a large number of complete genome sequences, it has become increasing 

clear that the unequal distribution of genes between leading and lagging strands varies widely among 

different species. Numerous studies have shown that genes are generally preferentially located on the 

leading strand [31–34], which may be explained by the polymerase collision avoidance model [1]. 

We calculated the density of leading strand genes for all 1111 genomes. Our correlation analysis 

showed that gene density was highly positively correlated with Scorecomposition bias (Spearman’s 

correlation, ρ = 0.6273871, p-value < 2.2 × 10−16). This result could be caused by DNA  

replication-associated mutation bias during the transcription process in which DNA decomposes into 

single strands. However, the DNA mutation or repair rates were quite different between transcribed 

and non-transcribed strands. Because most protein-coding genes are located on the leading strand,  

the two replication strands can have extremely different compositions [21]. Thus, the asymmetric 

transcription process is likely to have a major impact on the composition bias between the two 

replication strands. 

2.7. Composition Bias in Genomes with Different GC Contents 

GC content is the percentage of guanine and cytosine base pairs in a DNA sequence. The GC 

content of bacterial genomes ranges from about 20% to 70% [35]. We investigated the correlation 

between GC content and Scorecomposition bias and found that a significantly negative correlation existed 

between them (Spearman’s correlation, ρ = −0.5026315, p-value < 2.2 × 10−16). It may be  

explained that genomes with high GC content will generate fewer mutations than those with low GC 

content [36]. However, this would inspire us that the replicating strand composition bias is caused by  

a complex set of factors. 

2.8. Composition Bias in Genomes with Different Recombination Rates 

Chromosomal recombination occurs as a result of deletions, duplications, inversions, and 

translocations in native chromosomes. Rocha [1] has shown that the recombination rate is related to 

strand composition bias, and has suggested that codon usage separation may be caused by low 

recombination rates in some obligate intracellular parasites. Wei and Guo confirm this suggestion in  

11 obligate intracellular bacteria with strong strand composition bias using the Z-curve method [24]. 

Here, we explored this issue in the 1111 genomes. The recombination rates (taRF, gcRF) of each 

genome were calculated as described in Section 3.3. Then, the correlations between Scorecomposition bias 

and both taRF and gcRF were estimated for all the genomes. We found that taRF and gcRF were  

both negatively associated with Scorecomposition bias (Spearman’s correlations, ρgcRF = −0.3746862,  

ρtaRF = −0.2916134, both p-values < 2.2 × 10−16). 
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Rocha suggested that frequent chromosomal recombination would reduce strand composition  

bias [1]. The base distribution in any one strand is accordant; that is, if G > C in a particular region, 

then a similar base distribution also will be found in other regions of the same chromosome. However, 

recombination would break the accordance and reduce strand composition bias. 

2.9. Composition Bias in Different COG Functional Categories 

To determine whether gene function has an impact on strand composition bias, we explored the 

relationship between Clusters of Orthologous Groups (COG) functional categories and composition 

bias for the first time. 

2.9.1. Percentage of Gene Number for Each COG Functional Subcategory 

To explore the influence of each COG subcategory on composition bias, the correlation between  

the percentage of each COG functional subcategory (pCOGi; see Section 3.4 for details) and the 

corresponding Scorecomposition bias was analyzed for each genome. The results, summarized in Table 3, 

were considered as statistically significant if the p-value was <1.0 × 10−8. Based on this cutoff value, 

the pCOGs of the A, C, I, and Q subcategories were negatively related to Scorecomposition bias, and the D, 

F, J, L, and V subcategories showed positive correlations to Scorecomposition bias. 

Klasson and Andersson have studied gene function and composition bias [37]. They found that 

strong asymmetric mutation bias in endosymbiont genomes caused them to lack replication restart 

genes (subcategory L). Guo and Ning reported that genes associated with replication initiation and  

re-initiation such as mutH, dnaT and fis were absent in 11 obligate intracellular bacteria genomes with 

extreme strand composition bias [7]. However, we detected some replication initiation and re-initiation 

genes based on our analysis of the 1111 genomes, which indicated that COG subcategory L and 

composition bias was positively correlated. This is an interesting finding that we will further explore  

in Section 2.9.2. Rocha and Danchin [38] reported some obligate parasite bacteria with strong 

composition bias in which genes associated with energy metabolism were absent. This finding is 

mostly accord with our result that the metabolism-related genes (subcategories C, I, and Q) were all 

negatively correlated with composition bias, except those in subcategory F. 

Table 3. The correlation of each Clusters of Orthologous Groups (COG) functional 

subcategory and strand composition bias. 

COG Functional Category p Value Correlation 

Information Storage and Processing   
J Translation, ribosomal structure and biogenesis P 8.11 × 10−32 0.341886 
A RNA processing and modification N 2.44 × 10−13 −0.21728 
K Transcription 0.099239 −0.04948 
L Replication, recombination and repair P 1.01 × 10−8 0.170797 
B Chromatin structure and dynamics 0.002404 −0.09097 

Cellular Processes and Signaling   
D Cell cycle control, cell division, chromosome partitioning P 1.05 × 10−45 0.407564 
Y Nuclear structure 0.222949 0.036592 
V Defense mechanisms P 3.93 × 10−14 0.224269 
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Table 3. Cont. 

COG Functional Category p Value Correlation 

T Signal transduction mechanisms 1.77 × 10−7 −0.15589 
M Cell wall/membrane/envelope biogenesis 0.609835 −0.01533 

Cellular Processes and Signaling   
N Cell motility 0.198305 0.038623 
Z Cytoskeleton 0.006632 −0.0814 
W Extracellular structures 0.901043 −0.00373 
U Intracellular trafficking, secretion, and vesicular transport 0.908091 0.003467 
O Posttranslational modification, protein turnover, chaperones 0.188347 −0.0395 

Metabolism   
C Energy production and conversion N 4.51 × 10−11 −0.1959 
G Carbohydrate transport and metabolism 0.193919 0.039003 
E Amino acid transport and metabolism 0.417676 −0.02434 
F Nucleotide transport and metabolism P 5.99 × 10−39 0.377498 
H Coenzyme transport and metabolism 0.01405 0.073666 
I Lipid transport and metabolism N 1.22 × 10−19 −0.26737 
P Inorganic ion transport and metabolism 0.081681 −0.05226 
Q Secondary metabolites biosynthesis, transport and catabolism N 6.65 × 10−40 −0.38194 

N denotes significantly negative correlation between subcategories and composition bias. P denotes 

significantly positive correlation between subcategories and composition bias. 

2.9.2. Proportion of Replication and Repair Genes 

The correlation between subcategory L and composition bias that we obtained is opposite to what 

has been found previously. To explore this result further, we collected the replication and repair genes 

from the KEGG pathway database and divided then into the 10 subtypes (for details see Section 3.7) 

based on their functions. The correlations between the percentage genes under each subtype and the 

Scorecomposition bias are shown in Table 4. The gene subtypes were all positively related to composition 

bias, and the excision and mismatch repair subtype had the highest correlation. We suspect that 

genomes with strong composition bias may have generated more repair genes to balance the 

composition bias during evolution. However, the cause-and-effect relationship between repair genes 

and composition bias is not still clear; that is, which is the cause and which is the effect. 

2.9.3. Average Value of Times between Strong-Biased Group and Weak-Biased Group for Each 

Functional Subcategory 

The DiffSBG/WBG (see Section 3.5 for details) for all COG subcategories is shown in Table 5. 

Subcategory D had the highest value (5.709 among all the subcategories, which indicated that genes 

involved in cell cycle control, cell division, and chromosome partitioning were present in significant 

numbers in the strong-biased genomes (i.e., the genomes with three top 555 Scorecomposition bias values). 

This result is in accordance with Lin et al. [39] who found that only some essential COG subcategories 

were situated preferentially on the leading strand and that subcategory D genes showed the most 

significant bias among 10 strand-biased classifications. Furthermore, both the strong-biased COG 

groups (SCOGs) and weak-biased COG groups (WCOGs) in all 1111 genomes were significantly 
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related to Scorecomposition bias (Spearman’s correlation, ρSCOG = 0.51473 and ρWCOG = −0.65945, both  

p-values < 2.2 × 10−16). We suggest that although the essential subcategories are similar in number in 

the genomes, they tend to be located on the leading strand, resulting in strong composition bias. For 

small genomes, the percentages of essential subcategories are higher than for large genomes, hence 

leading to stronger composition bias in small genomes. 

Table 4. Average value of discrepant times (AVDT) between strong-biased group and 

week-biased group for each functional subcategory in descending order. 

COG AVDT COG AVDT 

D 5.709197 C 1.086021 
K 3.415376 H 1.053758 
N 2.848684 F 1.046122 
T 2.229241 V 1.02066 
M 2.181872 E 0.99786 
O 2.089135 I 0.936222 
U 2.013089 P 0.914553 
G 1.472415 A 0.864394 
L 1.363586 Z 0.775298 
B 1.266486 Q 0.64794 
J 1.23429 W 0.6 

Table 5. Relationship between each type of replication and repair genes and composition bias. 

Pathway Function p Value Correlation 

ko03030 DNA replication 3.69 × 10−10 0.18656 
ko03032 DNA replication proteins 6.70 × 10−9 0.172841 
ko03036 Chromosome and associated proteins 3.28 × 10−7 0.152472 
ko03400 DNA repair and recombination proteins 6.73 × 10−10 0.183808 
ko03410 Base excision repair 2.11 × 10−6 0.141724 
ko03420 Nucleotide excision repair 4.15 × 10−12 0.2059713 
ko03430 Mismatch repair 9.39 × 10−12 0.2025802 
ko03440 Homologous recombination 1.16 × 10−10 0.191753 
ko03450 Non-homologous end-joining 0.926821 0.002759 
ko03460 Fanconi anemia pathway 0.002531 0.090509 

2.10. Conjoint Analysis of Multiple Factors and Composition Bias by Principal Component Regression 

We determined the independent contribution of each genomic feature to composition bias by 

principal component regression. Here, we selected only the features that were significantly related  

with strand composition bias (p-values < 1.0 × 10−8). The replication and repair genes were not 

considered separately because they belong to COG subcategory L. The respective contribution is 

presented in detail in Table 6. The results show that among the whole contribution (R2 = 0.5104) of all 

the features, gene density (R2 = 0.064778) made the most contribution to strand composition bias. 

Thus, gene orientation bias was the primary factor that influenced base composition among the 

biological features tested. 
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Table 6. Principal component regression analysis of various genomic features a. 

Genomic 
Features 

Genome 
Size 

Gene 
Density 

GC Content gcRF taRF SCOGs WCOGs A 

R2 0.0558 0.0648 0.0391 0.0004 0.0003 0.0332 0.0326 0.0122 
Genomic 
features 

C D F I J L Q V 

R2 0.0634 0.0348 0.0272 0.0238 0.0299 0.0371 0.0262 0.0297 
a Detail values for each of the genomic features and strand composition bias are listed in Table S2. 

3. Experimental Section 

3.1. Data Source 

We retrieved 1111 bacterial genome sequences from the NCBI FTP site in September 2010. Among 

them, 76 bacteria had multiple strains and hence the 1111 bacteria belonged to only 703 species. We 

used all sequenced bacterial genomes at that time, rather than sampling the genomic data to analyze. 

The origin and terminus of DNA replications were obtained from the Doric database [40] in July 

2011. This information was used to separate genes onto leading and lagging strands. 

The genes related to DNA repair and replications were extracted from the KEGG Pathway database [41] 

in April 2013. 

3.2. Computation of Strand Composition Bias 

Strand composition bias of a whole genome was obtained as: 

i  

|   |   |   |
 

  Compos tion Bias

G C T A
Score

Chromosome Length

− + −=  (1)

where G, C, T, and A are the numbers of corresponding bases in leading strands. According to the 

principle of complementary base pairing, strand composition bias in lagging strands is equal to that of 

the leading strand. 

3.3. Computation of Counteracting Effect of Recombination 

Strand composition bias was measured by the mean value of G − C + T − A. Recombination may 

change the natural order of nucleotides, so to counteract some usual bias and finally lower the strength 

of the whole bias, we introduced two values, gcRF and taRF, to roughly reflect this effect of 

recombination. gcRF was calculated as: 

=1=

N i i

i i

G C
LgcBias

N

−


 (2)

2

=1
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=
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and taRF and was calculated as: 
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where Gi, Ci, Ti, and Ai are the numbers of corresponding bases of the ith leading strand gene; Li is the 

length of the corresponding gene; and N is the total number of genes in the leading strand. Usually, the 

higher the two values are, the higher the frequency of counteracting recombination occurs. 

3.4. Computation of the Percentage of Each COG Functional Subcategory 

The percentage of each COG functional subcategory (pCOG) was calculated as: 

~ , except , ,
COG i

i
COG

N
pCOG i A Z R S X

N
= =  (6)

where i is the ith subcategory and NCOGi is the number of genes with the ith subcategory in a genome. 

NCOG is the total number of genes within all the COG subcategories. 

3.5. Computation of Average Value of Differences between Strong-Biased Group and Weak-Biased 

Group for Each Functional Subcategory 

We grouped the genomes with the top 555 Scorecomposition bias values as the strong-biased group 

(SBG), and the remaining genomes as the weak-biased group (WBG) and count the number of genes in 

each COG subcategory for all the species in each group separately. For each COG, we defined an 

indicator, DiffSBG/WBG, to measure the differences between the two groups as: 

/
SBG

SBG WBG
WBG

N
Diff

N
=  (7)

where NSBG is the number of genes in each COG subcategory in the SBG, and NWBG is the number of 

genes in each COG subcategory in the WBG. 

Finally, we defined another indicator, DiffCOG, for each COG functional subcategory as: 

/
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N
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(8)

where i is the ith subcategory of the 23 COG functional subcategories; j is the jth gene in ith 

subcategory; and N is the total number of genes in ith subcategory. 

3.6. Proportion of SCOGs and WCOGs 

Subcategories with DiffCOG > 5 were defined as strong-biased COG groups (SCOGs), and 

subcategories with DiffCOG < 0.2 were defined as weak-biased COG groups (WCOGs). Then, the 

proportions of SCOGs and WCOGs in each genome were calculated. 
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3.7. Proportion of Replication and Repair Genes 

We download the genes associated with replication and repair from the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) Pathway database [41]. Ten pathways are classified under replication 

and repair; namely, DNA replication, DNA replication proteins, chromosome and associated proteins, 

DNA repair and recombination proteins, base excision repair, nucleotide excision repair, mismatch 

repair, homologous recombination, non-homologous end-joining, and Fanconi anemia pathway. Then, 

we computed the proportion of genes associated with each classification in each genome. 

3.8. Statistical Analyses 

The correlations between various genomic features and the strand composition bias were measured 

by Spearman’s rank correlation coefficient, which is a nonparametric measure of statistical dependence 

between two factors. It uses a monotonic function to assess how well the relationship between two 

variables. Rho of Spearman’s rank correlation is used to reflect the intensity of correlation between 

variables of statistical indicators and the absolute value of rho reflects the relative significance between 

two variables. For example, a rho value of −0.14 is less significant than a rho value of −0.25. The p-value 

of Spearman’s correlation is used for measuring significance of correlation between two variables. In 

this work, it is considered a significant correlation if the p-value <0.05. The independent contribution 

of each feature to the bias was confirmed statistically by principal component regression analysis. All 

statistical analyses were conducted using the freely available R package (https://cran.r-project.org/). 

4. Conclusions 

Strand composition bias has been reported in different genomes over many years. The bias might  

be driven by multiple factors. In this work, we explored the relationship between strand composition 

bias and various genomic features. The results show that multiple factors are related to replication 

strand composition bias. Together, these factors play a major role and our principal component 

regression analysis showed that their contribution to replication strand composition bias accounted for 

over 50% of the bias. Gene orientation bias had the highest independent contribution, which indicates 

that the transcription process is likely to have a major impact on the composition bias between two 

replication strands. For most of the factors, we, for the first time, quantitatively measured their 

contribution to strand composition bias. Thus, so far, this study is the first integrative analysis of strand 

composition bias in prokaryotes. The results will help understand the underlying mechanisms of how 

such bias is generated. 
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