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A variety of inbred mouse strains have been used for research in metabolic disorders.

Despite being inbred, they display large inter-individual variability for many traits like food

intake and body weight. However, the relationship between dietary macronutrients and

inter-individual variation in body weight and food intake of different mouse strains is

still unclear. We investigated the association between macronutrient content of the diet

and variations in food intake, body composition, and glucose tolerance by exposing five

different mouse strains (C57BL/6, BALB/c, C3H, DBA/2, and FVB) to 24 different diets

with variable protein, fat, and carbohydrate contents. We found only increasing dietary

fat, but not protein or carbohydrate had a significant association (positive) with variation

in both food intake and body weight. The highest variation in both body weight and food

intake occurred with 50% dietary fat. However, there were no significant relationships

between the variation in fat and leanmass with dietary protein, fat, or carbohydrate levels.

In addition, none of the dietary macronutrients had significant impacts on the variation

in glucose tolerance ability in C57BL/6 mice. In conclusion, the variations in food intake

and body weight changes increased with the elevation of dietary fat levels.

Keywords: protein, fat, carbohydrate, mice, strain, variation

INTRODUCTION

Obesity is a major worldwide health issue. Obesity increases the risk of many chronic diseases,
including type 2 diabetes, cardiovascular diseases, hypertension, and cancer (1). There is a
continuous debate on how food macronutrient composition relates to body weight control (2, 3).
It is still uncertain whether high-fat, high-glycemic-index carbohydrates, including sugar, low
protein, or all the three macronutrients, are the cause of the elevated energy intake and obesity
in humans (4–6). However, in mice, we have established that only an increased dietary fat content
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was associated with an elevated energy intake and adiposity
by exposing 5 different mouse strains (C57BL/6, BALB/c, C3H,
DBA/2, and FVB) to 29 different diets with varying protein, fat,
and carbohydrate contents (7).

Despite being inbred, mice fed with high-fat diets display
large individual variations in weight gain (8–10). Several studies
have indicated that different mouse strains also differ in their
physiological phenotype when treated with a high-fat diet
(11–14). There is debate, however, about whether specific
mouse strains should be classed as obesity-prone or obesity-
resistant. For example, FVB and DBA/2 mouse strains have been
described as both obesity-prone and obesity-resistant by different
laboratories (13, 15). The C57BL/6 mouse strain has been
suggested to be the best strain for studying metabolic diseases,
such as obesity and type 2 diabetes (16, 17). It is consistently
described as “obesity prone”; however, it can be defined as either
“diabetic prone” or “diabetic resistant” depending on which
sub-strain was used (18). This strain also shows a considerable
non-genetic-related variation in body weight gain when fed
with a high-fat diet (19, 20). Several studies have investigated
the potential mechanism related to variation in weight gain
when fed with high-fat diets. Diet-induced obese mice had
increased hypothalamic orexigenic and decreased anorexigenic
neuropeptide gene expressions compared to diet-resistant mice
when fed with a high-fat diet in the C57BL/6 mouse strain
(21, 22). Furthermore, it has been recently shown that the inter-
individual variability for high-fat intake in C57BL/6 mice was
linked to dopamine neuron activity (23). These non-genetic
variations in later-life responses to a high-fat diet seem to
stem from the early-life environment of the individual mice,
in particular the litter size they were raised in and hence their
early-life nutritional status (15, 24).

Increased adiposity is linked to the higher risk of the
development of type 2 diabetes (25). However, elevated adiposity
is not inevitably linked to metabolic dysfunction (26, 27). For
example, there is a population of people who have obesity but
are metabolically healthy (27). In addition, it has been indicated
in mice that 50% of mice became obese and diabetic, 10%
lean and diabetic, 10% lean and non-diabetic, and 30% showed
intermediate phenotype after being fed with a high-fat diet for 9
months (28). In our own studies, however, glucose tolerance was
strongly linked to changes in body mass and fatness, but there
was considerable residual variation at any given level of adiposity
that was not related to the diet (29). Such variation in insulin
resistance and glucose production in C57BL/6 and AKR mouse
strains has been related to the differential expression of GLUT4
protein in adipose tissue (30).

All the work, thus far, on non-genetic variation in body mass
and food intake has concerned the responses of mice to high-
fat diets (29). It is interesting to know the extent to which the
variation observed in response to high-fat diets is also observed
in response to the intake of other macronutrients. Do mice,
e.g., show an elevated variation in food intake and body weight
when fed with low protein, or diets with high levels of high-
glycemic-index carbohydrates. We have previously studied the
responses of mice to a matrix of 24 different diets with varying
protein, fat, and carbohydrate contents (6). This study included

TABLE 1 | Summary of experiments performed.

Experiments Design

Experiment 1:

manipulation of dietary

protein levels under

fixed fat contents

a. Two series of 6 diets with varying protein level

(5, 10, 15, 20, 25, and 30%)

b. Series 1 had 60% fat and series 2 had 20% fat

content

c. C57BL/6 mice exposed to all 12 diets

d. BALB/c, C3H, DBA/2, FVB mouse strains

exposed to 6 diets with high fat (series 1)

Experiment 2:

manipulation of dietary

fat levels under fixed

protein contents

a. Two series of 6 diets with varying fat level (10% to

80% and 8.3% to 66.6%)

b. Series 3 had 10% protein and series 4 had 25%

protein content

c. C57BL/6 mice exposed to all 12 diets

d. BALB/c, C3H, DBA/2, and FVB mouse strains

exposed to 6 diets with 10% protein (series 3)

5 different strains: C57BL/6 (24 diets), BALB/c, C3H, FVB, and
DBA/2 (12 diets) exposed to the various diets from age 16 weeks
onward for 10 weeks. We previously investigated the impact of
these diets on mean body weight, food intake, hypothalamic gene
expression (7), glucose tolerance ability (26, 31), and senescent
cell populations in the liver (32). In the present study, we
analyzed the associations between dietary macronutrient levels
and individual variations of several metabolic phenotypes in
different strains.

EXPERIMENTAL PROCEDURES

Mice and Experimental Diet
Data in the current article pertain to mice involved in a
large dietary manipulation experiment, some aspects of which
have already been published. These previous publications have
included patterns of body weight, adiposity, hypothalamic gene
expression (7, 31), and glucose homeostasis (29). All procedures
in this study were reviewed and approved by the Institutional
Review Board, Institute of Genetics and Developmental Biology,
Chinese Academy of Sciences. C57BL/6N, DBA/2, BALB/c, FVB,
and C3H mouse strains were used. C57BL/6N mouse strain
was fed with 4 different diet series (series 1, 2, 3, and 4), and
DBA/2, BALB/c, FVB, and C3H mouse strains were treated with
2 diet series (series 1 and 3) (Table 1). In the first two diet
series (series 1: D14071601–D14071606, series 2: D14071607–
D14071612), we fixed the level of fat 60 or 20% by energy and
varied the protein content from 5 to 30% (5, 10, 15, 20, 25,
and 30%, respectively) by energy. In the second two series of
diets (series 3: D14071613–D14071618 and series 4: D14071619–
D14071624), we fixed the level of protein at 10% (series 3) (10,
30, 40, 50, 70, and 80%, respectively) or 25% (series 4) (8.3, 25,
33.3, 41.7, 58.3, and 66.6%, respectively) by energy and varied
the fat content from 8.3 to 80% by energy. For full details of the
diets, refer to Supplementary Tables S4–S8. During the whole
experimental period, mice were singly housed under controlled
22–24◦C temperature and 12:12 light-dark cycle conditions.Mice
were killed by rising concentrations of CO2 for the collection
of tissues and serum, which were quickly snap-frozen in liquid
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nitrogen and then stored in an−80◦C freezer until analysis. More
information about procedures and experimental designs can be
found in Table 1 and in our previous articles [Table 1, (7, 31)].

Statistical Analysis
We used the coefficient of variation (CV) to express the variation
in average body weight, food intake, and glucose tolerance ability
of mice exposed to different diets with varying protein, fat, and
carbohydrate contents. CV was calculated by dividing SD by the
mean values of the dataset of body weight and food intake of
each diet group. To reduce the skew, we used log transformed
data. Multiple regression analysis with logged dietary protein, fat,
and carbohydrate as predictors logged CV of body weight, food
intake, fasting glucose level, and AUC as responses was used to
analyze the relationships between predictor and responses. We
also analyzed variation data using generalized linear modeling
(GLM) with CV as the dependent variable, strain as a factor,
and dietary levels of fat, protein, and carbohydrate contents as
the covariates.

RESULTS

Variations in Body Weight and Food Intake
Were Significantly Related to the Dietary
Fat Content
In our previous study (6), we found no significant correlation
between energy intake or body composition when the dietary
protein content varied between 5 and 30%.However, an increased
dietary fat content (8.3–80% fat) was associated with an elevated
energy intake and adiposity up to around 50–60% fat; thereafter,
there was a slight decrease. These effects were replicated at
different levels in all the five mouse strains. To investigate the
relationships between dietary macronutrient levels and variation
in physiological traits, we used multiple regression analysis
including data across all the diets with the percent dietary protein,
fat, and carbohydrate contents as predictors and the CV of
body weight and food intake during the last week (10th week)
of dietary exposure as the dependent variables. Each strain by
the diet combination generated a unique data point for the
analysis. We found the CV of body weight and food intake were
both significantly related to dietary fat levels (p = 0.036, R2

(unadj) = 0.07, R2 (adj) = 0.07, β = 0.251) and (p = 0.024,
R2 (unadj) = 0.08, R2 (adj) = 0.038, β = 0.415, respectively)
(Figures 1B,E), whereas there were no significant relationships
between CV of body weight or food intake and dietary protein
or carbohydrate content (p > 0.05) (Figures 1A,C,D,F). We also
analyzed variation data using GLM with CV as the dependent
variable, strain as a factor, and dietary levels of fat, protein,
and carbohydrate contents as the covariates. In this analysis,
we also found that CV of body weight and food intake was
significantly affected by the dietary fat content (p = 0.008 and
0.019, respectively) but not the protein or carbohydrate content
(p > 0.05). Furthermore, there was a significant effect of different
strains on the CV of body weight and food intake (p= 0.014 and
0.025, respectively).

The highest average variation (CV) of body weight and food
intake across all the five strains was observed at the 50% dietary

fat level (CV = 10.6 and 13.3%, respectively) (Figures 2A,B).
When we compared the variation in body weight and food
intake of each strain when exposed to 50% fat, the DBA/2 and
C57BL/6 strains had the highest variation (CV = 9.8 and 14.1%,
respectively) (Figures 2C,D). However, the highest variation in
different strains across different fat content diets appeared at
different fat levels. The C57BL/6, BALB/c, and FVB strains
had the highest variation at 50% fat (12.5, 10.9, and 12.7%,
respectively), whereas for C3H mice, variation at 80% dietary fat
was highest (10.1%) and for DBA/2 mice variation was highest at
40% dietary fat (14.9%) (Figures 2E–I).

To explore whether the variation in food intake is the cause
of the variation in body weight, we also used regression analysis
between these two variables.We found no significant relationship
between variations in body weight and food intake (p > 0.05).
We also used multiple regression analysis with the percent
dietary protein, fat, and carbohydrate contents and variation
in food intake as predictors and variation in body weight as
the dependent variables, we also did not find any significant
relationship between variation in food intake and body weight
in this analysis (p > 0.05).

Variations in Fat Mass and Lean Mass
Were Not Significantly Correlated With the
Dietary Macronutrient Content
Body composition analysis of our previous large diet
manipulation studies indicated that body fat mass and lean
mass changes were the same as the changes in body weight.
That is, the increasing dietary fat content up to 60% fat caused
increased fat and lean contents; however, further increase in the
fat content led to a slight decrease in the fat mass. To investigate
whether the significant dietary fat effect on the variation in
body weight was the result of the variation changes in the
body fat mass or lean mass, we also used multiple regression
between variation (CV) in body fat mass or body lean mass
and dietary protein, fat, or carbohydrate content. We found
there were no significant associations between any of the dietary
macronutrients and variation in body fat mass or lean mass (p >

0.05) (Figures 3A–F).

Variations in Body Weight and Food Intake
Across Different Diet Treatment Periods
The mice were treated with diets with varying content of protein,
fat, and carbohydrate for 10 weeks (C57BL/6 mouse strain was
treated for 12 weeks). The changing patterns of mean body
weight and food intake with the alteration of dietary protein, fat,
and carbohydrate contents were the same whether we used the
average data over the entire 10 weeks or the average data of final
weeks in all 5 strains. Therefore, we also used multiple regression
to explore dietary impacts on variation in average body weight
and food intake during weeks 1 and 4 of the dietary exposures.
We found only the variation in body weight of 10 weeks was
significantly correlated with dietary fat content (p = 0.0326, R2

(unadj) = 0.07, R2 (adj) = 0.07, β = 0.251) (Figure 1B). The
variations in body weight after 1 and 4 weeks of dietary exposure
had no significant associations with either dietary fat content or
protein and carbohydrate contents (p > 0.05) (Figures 4A–F).
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FIGURE 1 | The diagram showing the relationship between dietary macronutrient content and the coefficient of variation (CV) of body weight and food intake. The

correlations between logged dietary fat, protein, and carbohydrate contents and (A–C) logged CV of body weight and (D–F) food intake of the last week (10th week)

at different diet treatment periods, respectively (n = 7–21).

However, the variation in food intake during the first week of
diet exposure was significantly related to the dietary fat content
(p = 0.014, R2 (unadj) = 0.16, R2 (adj) = 0.12, β = 0.358)
(Figure 5B) but not protein and carbohydrate contents (p> 0.05)
(Figures 5A,C). In week 4, there were significant associations
between the variation in food intake and both dietary fat and
carbohydrate contents of the diets (p < 0.001, R2 (unadj)= 0.18,
R2 (adj) = 0.14, β = 0.516 for fat and p = 0.007, R2 (unadj) =
0.16, R2 (adj) = 0.12, β = 0.376 for carbohydrate, respectively)
(Figures 5D–F).

Variation in Glucose Tolerance Ability Was
Not Related to the Dietary Macronutrients
In our previous study, we fed C57BL/6 mice with 29 different
diets with variable macronutrients for 12 weeks, and an
intraperitoneal glucose tolerance test (IPGTT) was used after 10
weeks. We found that the area under the glucose curve (AUC)
was strongly associated with body fat mass, but once that effect
was taken into account, AUC was not associated with different
dietary macronutrients (29). In the present study, we also used
correlations between the dietary protein, fat, and carbohydrate
contents, and the CV in fasting glucose levels and AUC. There
were no significant associations between CV of fasting glucose
level or AUC and dietary protein, fat, or carbohydrate level (p
> 0.05) (Figures 6A–F). Analysis of covariance (ANCOVA) with
fat mass as a covariate (to remove the fat mass effect) also showed
that CV of AUC was not significantly affected by dietary protein,
fat, or carbohydrate content.

DISCUSSION

The C57BL/6 mice have been previously shown to display
high variation in various metabolic traits when fed with high-
fat diets (generally comprising 45–60% fat) (19, 20, 28, 33,
34). Consistent with these previous studies, we also found a
high variation in body weight and food intake in C57BL/6
mice when fed with different macronutrient content diets, and
that the highest variation in these traits occurred at the 50%
dietary fat level. It has been indicated in a previous study that
variations in body weight gain under a high-fat diet in male
C57BL/6 mice were related to baseline fat mass, fat-free mass,
and physical activity (19). A further study confirmed that the
baseline fat mass and the change in energy intake on exposure
to the new diet were predictors of body weight gain when fed
with a high-fat diet in both male and female C57BL/6 mice
(34). We have traced this baseline variation in body fatness
and changes in energy intake to differentiate the nutritional
environment experienced by young mice during lactation (15).
Maternal milk production is constrained by the capacity to
dissipate body heat (35); hence, as litter size increases, the
pups must share a limited resource, and this means mice from
larger litters wean with smaller body sizes and fatness, traits
which persist into later life (15). Feeding the mother a high-fat
diet can also affect milk production (36) and pup size/fatness
at weaning.

As demonstrated here, the extent of variation among the
individuals in both food intake and body weight was only related
to differences in the dietary fat content. It is important to note

Frontiers in Nutrition | www.frontiersin.org 4 March 2022 | Volume 9 | Article 835536

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Wu et al. Correlation Between Variation in Physiological Traits and Macronutrient Content in Mice

FIGURE 2 | The coefficient of variation (CV) of body weight and food intake of different strains and different diet treatment groups. The CV of body weight and food

intake of (A,B) graded levels of fat content diet treatment group, (C,D) different strains (n = 7–21). (E–I) Variations in body weight gain (CV) of five different strains

(C57BL/6, BALB/c, C3H, DBA/2, and FVB) when fed with 10, 30, 40, 50, 70, and 80% content fat diets, respectively (n = 7–21).

that because we expressed the variation as a CV, this was not
simply a reflection of the changing mean levels of body weight
under different exposures, which were also highest under high-
fat feeding. Mice not only became on average heavier when
fed with high-fat diets but also became more variable in their
body weights. In contrast when exposed to, e.g., low-protein or
high-carbohydrate diets, they did not become more variable in
their responses. This suggests that the early-life programming
in lactation seems only to prime the individuals to respond
differently to dietary fat, and not to the other macronutrients.
The reasons for this difference are unclear at present. It is
also unclear if the early-life priming by other macronutrients
(e.g., low protein or high sugar) would generate similar later-life
differences in variation between individuals in response to the
same macronutrients.

A variety of mouse strains have been used to study metabolic
disorders. Early studies investigated the strain differences in
metabolic phenotypes like weight gain and insulin resistance
(10, 37–39). For example, they found that C57BL/6, DBA/2,
FVB, BALB/c, and 129X1 mice are all susceptible to diet-induced

weight gain when fed with a high-fat diet, but BALB/c mice
displayed unchanged glucose tolerance and insulin action
compared to the other strains that showed impaired glucose
tolerance after fed with a high-fat diet (39). However, there is
controversy about whether those mouse strains were obesity-
prone or obesity-resistant. For example, FVB and DBA/2 mouse
strains have been described as both obesity-prone and obesity-
resistant (13, 15), whereas few studies investigated the variations
in metabolic traits of different strains and their relationship
to the dietary macronutrient content. It was interesting that
the variations in fat mass and lean mass were not significantly
associated with the dietary fat content. Therefore, the variations
in body weight gain with the increase of dietary fat content
cannot be explained by the variations in fat mass or lean mass
alone. There were also no significant relationships between
variations in body weight and food intake, which means the
higher variation in food intake is not the direct factor caused by
the higher variation in body weight. Therefore, the variations in
both energy intake and expenditure may cause higher variations
in body weight.
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FIGURE 3 | The diagram showing the relationship between dietary macronutrient content and the coefficient of variation (CV) of fat mass and lean mass. The

correlations between logged dietary fat, protein, and carbohydrate contents and (A–C) logged CV of fat mass and (D–F) lean mass of the last week (10th week) at

different diet treatment periods, respectively (n = 7–21).

FIGURE 4 | The diagram showing the relationship between dietary macronutrient content and coefficient of variation (CV) of body weight of the 1st week and 4th

week after exposure to different diets. The correlations between logged dietary fat, protein, and carbohydrate contents and (A–C) logged CV of body weight of the 1st

week and (D–F) 4th week at different diet treatment periods, respectively (n = 7–21).
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FIGURE 5 | The diagram showing the relationship between dietary macronutrient content and coefficient of variation (CV) of food intake of the 1st week and 4th week

after exposure to different diets. The correlations between logged dietary fat, protein, and carbohydrate contents and (A–C) logged CV of food intake of the 1st week

and (D–F) 4th week at different diet treatment periods, respectively (n = 7–21).

FIGURE 6 | The diagram showing the relationship between dietary macronutrient content and coefficient of variation (CV) of fasting glucose and area under the curve

(AUC) of C57BL/6 mice after exposure to different diets. The correlations between logged dietary fat, protein, and carbohydrate contents and (A–C) logged CV of

fasting glucose and (D–F) AUC of last week at different diet treatment periods, respectively (n = 10–11).
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We found previously that only an increased dietary fat content
was associated with an elevated energy intake and adiposity,
and this was related to the increased gene expression in 5-
HT receptors, and the dopamine and opioid signaling pathways
in the hypothalamus in C57BL/6 mice (7). Because variations
in body weight and food intake were both increased with an
elevation of dietary fat content, the potential mechanism creating
this variation may be linked to differences in these hypothalamic
pathway changes (opioid and dopamine) in these conditions.
Supporting this, C57BL/6mice displayed a significant food intake
variance when exposed to a high-fat diet for 4 consecutive days,
and mice displaying higher-fat intake showed an increased c-
Fos expression in dopamine neurons in the ventral tegmental
area (VTA) compared to lower-fat intake group (23). However,
there is nomechanism study to prove causality in this association.
Further studies are required to elucidate the potential mechanism
in the hypothalamic signaling pathway that may underlie the
variation in weight gain under high-fat diet conditions.

Increased adiposity is linked to the development of type
2 diabetes (25). In the present study, we found there were
no significant associations between the variations in fasting
glucose level and AUC of glucose tolerance test and any of
the dietary macronutrient contents. However, several previous
studies reported that elevated adiposity is not linked to metabolic
dysfunction (26, 27). For example, the percent of the mice
that became obese and diabetic after feeding C57BL/6 mice
with a high-fat (72% fat) carbohydrate-free diet for 9 months
(28) included 47% of mice that became obese and diabetic,
10% lean and diabetic, 10% lean and non-diabetic, and 30%
showed intermediate phenotype (28). We analyzed the percent
of the mice that were diabetic or not using the previously
established criteria (27). We found that under both 50% fat
(higher variation occurred) and 70% fat (the same fat level as
the previous study), only 10% of mice became diabetic, 50%
of mice remained nondiabetic, and 40% of mice displayed an
intermediate phenotype. The difference between studies was
similar because the diet exposure in our study was only 10
weeks compared to 9 months earlier, indicating that progression
from obesity to diabetes is time-dependent. Furthermore, it
has been shown that the variations in glucose tolerance and
insulin resistance are also strain-dependent as they indicated
that C57BL/6 mice are more insulin-sensitive than AKR
mice (30).

In summary, we demonstrated that the variations in body
weight and food intake were significantly increased in relation to

the elevation of dietary fat level in all the five mouse strains but
not in relation to changes in the level of dietary carbohydrates
and protein. Since we previously traced this individual variability
to individual differences in early-life nutrition, it is unclear why
such early-life experience leads to such high variability only in
response to high levels of dietary fat exposure. More study to
understand the basis of the non-genetic variability in responses
to diets is needed.
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