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Abstract: Variational inference is an optimization-based method for approximating the posterior
distribution of the parameters in Bayesian probabilistic models. A key challenge of variational
inference is to approximate the posterior with a distribution that is computationally tractable yet
sufficiently expressive. We propose a novel method for generating samples from a highly flexible
variational approximation. The method starts with a coarse initial approximation and generates
samples by refining it in selected, local regions. This allows the samples to capture dependencies
and multi-modality in the posterior, even when these are absent from the initial approximation. We
demonstrate theoretically that our method always improves the quality of the approximation (as
measured by the evidence lower bound). In experiments, our method consistently outperforms
recent variational inference methods in terms of log-likelihood and ELBO across three example tasks:
the Eight-Schools example (an inference task in a hierarchical model), training a ResNet-20 (Bayesian
inference in a large neural network), and the Mushroom task (posterior sampling in a contextual
bandit problem).

Keywords: bayesian inference; variational inference; deep neural networks; contextual bandits

1. Introduction

Uncertainty plays a crucial role in a multitude of machine learning applications,
ranging from weather prediction to drug discovery. Poor predictive uncertainty risks
potentially poor outcomes, especially in domains such as medical diagnosis or autonomous
vehicles, where high confidence errors may be especially costly [1]. Thus, it is tremendously
important that the underlying model provides high quality uncertainty estimates along
with its predictions. By marginalizing over a posterior distribution over the parameters
given the training data, Bayesian inference provides a principled approach to capturing
uncertainty. Unfortunately, exact Bayesian inference is not generally tractable. Variational
inference (VI) instead approximates the true posterior with a simpler distribution. VI is
appealing since it reduces the problem of inference to an optimization problem, where the
goal is to minimize the discrepancy between the true posterior and the variational posterior.
The key challenge, however, is the task of training expressive posterior approximations that
can capture the true posterior without significantly increasing computational and memory
costs. The most widely used one is the mean-field approximation, where the posterior is
represented using an independent Gaussian distribution over all the model parameters.
The mean-field approximation is easy to train, but it fails to capture dependencies and
multi-modality in the true posterior.

This paper describes a novel method for generating samples from a highly flexible
posterior approximation. The idea is to start with a coarse, mean-field approximation and
make a series of inexpensive, local refinements to it. At the end, we draw a sample from the
refined region. We show that through this process, we can generate samples that capture
both dependencies and multi-modality in the true posterior.
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The refinements take place at gradually decreasing scales starting with large scale
changes, moving towards small scale adjustments. The regions of these adjustments are
determined by sampling the values of additive auxiliary variables. Formally, we express
the model parameters w using a number of additive auxiliary variables w = a1 + . . . + aK
(Figure 1 left) that leave the marginal distribution unchanged. The refinement process
takes place over K optimization steps. In each step, we sample the value of an auxiliary
variable according to the current variational approximation ak ∼ q(ak) and optimize
the approximation by conditioning on the newly sampled value q(w) ≈ p(w|x, y, a1:k)
(k = 1 . . . K). At the end, we obtain a sample w = a1 + . . . + aK from the refined posterior
qref(w). To obtain further samples, we must go back to our initial, coarse approximation
and repeat the K-step process again. We refer to the refinements as local, because after
sampling each auxiliary variable, the process moves towards smaller scale adjustments
until it reaches w.

The refined posterior is a highly flexible approximation to the true posterior. It is able
to capture dependencies and multi-modality even when these are absent from the initial
variational approximation. We demonstrate the multi-modality of the refined posterior on a
synthetic example, and we show how the refined posterior is able to capture dependencies
in a hierarchical inference problem.

We theoretically show that the refined posterior improves the ELBO over the initial
variational approximation. We also demonstrate this empirically by applying the method
to Bayesian neural networks on common regression and image classification benchmarks.

Generating each sample requires a series of optimization steps that come with asso-
ciated computational costs. We found that in a deep neural network, the computational
overhead of generating a small set of samples for prediction amounts to ∼30% of the
cost of training the initial variational approximation; thus, the refinement process is able
to generate a set of high-quality posterior samples at the cost of a small computational
overhead (compared to training a standard mean-field approximation).

An ideal application of our method is using it to generate posterior samples for
Thompson sampling, which is a popular approach to tackle contextual bandit tasks. It
works by sampling a random hypothesis from the posterior to decide on each action. In this
scenario, the computational cost is not a key consideration, we can spend further computa-
tion on generating high quality posterior samples. We show that the high quality samples
generated by refining the posterior improve the performance of Thompson sampling in
contextual bandit task as measured by the cumulative regret.
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Figure 1. (Left) The supervised learning model and augmented model, respectively, where w is expressed as a sum of
independent auxiliary variables. (Right) High level illustration of the refining algorithm. In each iteration, the value of an
auxiliary variable is fixed, and the posterior is locally adjusted. In the final iteration, a sample is drawn from q(w). Through
the iterations, the variational distribution is able to approximate well the true posterior in a local region.

Organization of the Paper

In Section 2, we start by introducing the notation and giving an overview of varia-
tional inference. Then, we present our proposed algorithm for generating samples from a
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refined variational distribution. Through two examples, we show that refined posterior
can capture both dependencies and multi-modality. In Section 3, we provide theoretical
guarantees that the refinement step always improves the quality of the variational dis-
tribution (measured by the ELBO) under mild conditions. In Section 4, we evaluate the
effectiveness of the method on Bayesian neural networks on a set of UCI regression and
image classification benchmarks. We observe that our method consistently improves the
quality of the approximation, as evidenced by a higher ELBO and likelihood of the samples.
We also demonstrate that the high-quality posterior samples can be used in Thompson
sampling to reduce the cumulative regret in a contextual bandit task. In Section 5, we
discuss a related works and place our method in context.

2. Materials and Methods

In this section, we first describe standard variational inference (VI), followed by a
detailed description of our proposed sample generation method that refines the variational
posterior. The inputs and labels are denoted by x ⊆ X and y ⊆ Y , respectively, and w
denotes the model parameters.

2.1. Variational Inference

Exact Bayesian inference is often intractable and is NP-hard in the worst case. Varia-
tional inference attempts to approximate the true posterior p(w|x, y) with an approximate
posterior qφ(w), typically from a simple family of distributions, for example independent
Gaussians over the weights, i.e., the mean-field approximation. To ensure that the approx-
imate posterior is close to the true posterior, the parameters of qφ(w), φ are optimized
to minimize their Kullback–Leibler divergence: KL

[
qφ(w) || p(w|x, y)

]
. At the limit of

KL
[

qφ(w) || p(w|x, y)
]
= 0, the approximate posterior exactly captures the true posterior,

although this might not be achievable if p(w|x, y) is outside of the distribution family of
qφ(w).

In order to minimize the KL-divergence, variational inference optimizes the evidence
lower bound (ELBO) w.r.t. φ (denoted as L(φ)), which is a lower bound to the log marginal
likelihood log p(y|x). Since the marginal log-likelihood can be expressed as the sum of the
KL-divergence and the ELBO, maximizing the ELBO is equivalent to minimizing the KL
divergence:

log p(y|x) = KL
[

qφ(w) || p(w|x, y)
]︸ ︷︷ ︸

≥0

+L(φ)

≥ L(φ)
= Eqφ

[
log p(y|x, w)

]
−KL

[
qφ(w) || p(w)

] (1)

due to non-negativity of the KL-divergence.
Following the optimization of φ, the model can be used to make predictions on unseen

data. For an input x′, the predictive distribution p(y′|x′, y, x) can be approximated by
stochastically drawing a small number of sample model parameters w1:M ∼ qφ(w) and
averaging their prediction in an ensemble model p(y′|x′, y, x) ≈ 1

M ∑M
i=1 p(y′|x′, wi).

2.2. Refining the Variational Posterior

The main issue with variational inference is the inflexibility of the posterior approx-
imation. The most widely used variant of variational inference, mean-field variational
inference, approximates the posterior with independent Gaussians across all dimensions.
This approximation is too simplistic to capture the complexities of the posterior for compli-
cated models. With our proposed method, it is feasible to generate samples from a detailed
posterior by starting with a mean-field approximation and refining it in selected, local
regions. Note that the method does not yield an analytic form to the detailed posterior, it
generates a set of samples w1:M from it.
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The graphical model is augmented with a finite number of auxiliary variables a1:K as
shown in Figure 1. The constraints are that (x, y) must be conditionally independent of
the auxiliary variables given w and that they must not affect the prior distribution p(w).
These constraints ensure that the marginal likelihood log p(y|x) is unchanged, enabling us
to train the augmented model with the same ELBO as the unaugmented model; thus, the
model is unaffected by the presence of the auxiliary variables. Their purpose is solely to aid the
inference procedure. Given a Gaussian prior N (w|0, σ2

w I) over w, we express w as a sum
of independent auxiliary variables (Although we are focusing on one specific definition
of the auxiliary variables, additive auxiliary variables, note that all of our results straight-
forwardly generalize to arbitrary joint distributions p(w, a1:K) that meet the constraints).

w =
K

∑
k=1

ak, with p(ak) = N (ak|0, σ2
ak

I) for k = 1 . . . K ,

while ensuring that ∑K
k=1 σ2

ak
= σ2

w, so that the prior p(w) = N (w|0, σ2
w I) remains un-

changed.
We refine the approximate posterior to generate each sample w1:M. Specifically, this

refers to iteratively sampling the values of the auxiliary variables a1:K and then approxi-
mating the posterior of w, conditional on the sampled values, i.e., qφk (w) approximates
p(w|x, y, a1:k) for iterations k = 1 . . . K (φk is dependent on a1:k) as shown in Algorithm 1.

Algorithm 1: Refine and Sample (φ0)
Data: qφ0
Result: w1:M
for m = 1, . . . , M do

for k = 1, . . . , K do
Sample ak ∼ qφk−1(ak) ;
Initialize qφk (w)← qφk−1(w|ak) ;
Optimize φk ← arg maxφk

L|a1:k
(φk) ;

end
Sample wm ∼ qφK (w) ;

end
return w1:M ;

That is, starting from the initial mean-field approximation qφ0(w), for k = 1, . . . , K,

1. Sample the value of ak using the current variational approximation and fix its value.

ak ∼ qφk−1(ak) =
∫

p(ak|a1:k−1, w)qφk−1(w)dw (2)

A sample can be obtained by first sampling w ∼ qφk−1(w) followed by ak ∼ p(ak|a1:k−1,
w). This is straightforward for exponential families and factorized distributions. The
closed form for qφk−1(ak) is provided in the Appendix A.

2. Optimize the variational approximation conditional on the sampled ak: qφk (w) ≈
p(w|x, y, a1:k).

φk ← arg min KL
[

qφk (w) || p(w|x, y, a1:k)
]

(3)

This optimization is very fast in practice if φk is initialized using the solution from the

previous iteration: qφk (w)
init← qφk−1(w|ak). The closed form of qφk−1(w|ak) provided

in the Appendix A.
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We then obtain w = ∑K
k=1 ak. Analogous to VI, the KL-divergence in step 2 is minimized

by maximizing the conditional ELBO

L|a1:k
(φk) = Eqφk

[
log p(y|x, w)

]
−KL

[
qφk (w) || p(w|a1:k)

]
, (4)

where p(w|a1:k) = N (w|∑k
i=1 ai, I(σ2

w −∑k
i=1 σ2

i )). Note that, when k = K, the numerical
minimization of KL

[
qφk (w) || p(w|x, y, a1:k)

]
is unnecessary since in this case, the optimal

qφK (w) is a delta function located at the sum of the sampled a1:K.
In order to generate M independent samples w1:M from the refined posterior, the

previous process has to be repeated M times, sampling new values for a1:K each time.

2.3. Multi-Modal Toy Example

We use a synthetic toy example to demonstrate the procedure and to show that
through the refinement steps, the approach is able to capture multiple posterior modes.
In this example, we have a single weight w with prior p(w) = N (w|0, 1) and a complex
posterior with four modes. Figure 2b shows that a Gaussian approximation fails to capture
the multi-modal nature of the true posterior.
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Figure 2. Our method can capture a multi-modal posterior starting with a Gaussian posterior
approximation. (a) The true posterior, which is too complex to be well approximated by a Gaussian
distribution. (b) The Gaussian approximate posterior after optimizing the ELBO (ELBO = −1.79).
(c) We sample a1, optimize the resulting conditional ELBO to obtain qφ1 (w) and then sample wm ∼
qφ1 (w). This whole process repeats m = 1, . . . , M times to obtain w1:M. (d) Histogram of the samples
w1:M obtained from the refined posterior approximation. ELBO ≥ −1.45.

We express w as the sum of K = 2 auxiliary variables: w = a1 + a2 with
p(a1) = N (a1|0, 0.8) and p(a2) = N (a2|0, 0.2), which recovers p(w) = N (w|0, 1) as
per the constraint. The first step of the refinement process is sampling a1 ∼ qφ0(a1) =∫

p(a1|w)qφ0(w)dw, where qφ0(w) is an initial mean field approximation to the poste-
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rior. Then, the variational posterior is optimized conditional on the sampled a1; that is,
φ1 = arg min KL

[
qφ1(w) || p(w|x, y, a1)

]
. Figure 2c shows that the conditional variational

posterior is able to fit one of the posterior modes. Over many runs, the different values of
a1 force the conditional posterior to fit different posterior modes, thus allowing the refined
posterior to capture the multi-modal nature of the true posterior as shown in Figure 2d.
Clearly, the refined posterior is a much better approximation to the true posterior than the
Gaussian approximation though we note that the true posterior is not recovered exactly.

2.4. Capturing Dependencies: A Hierarchical Example

In this section, we use the eight-schools example from STAN [2,3] to show how the
refined posterior can capture dependencies among the hidden variables and to discuss the
effect of the number of auxiliary variables on the quality of the posterior approximation.

The eight-schools example studies the coaching effect of 8 schools. Each school reports
the mean yi and standard error σi of its coaching effect where i = 1, . . . , 8. There is no prior
reason to believe that any school was more effective than another so the model is stated in
a hierarchical manner:

µ ∼ N (0, 25), τ ∼ HalfCauchy(0, 5), θi ∼ N (µ, τ2), yi ∼ N (θi, σ2
i ) for i = 1 . . . 8 ,

where the HalfCauchy distribution refers to a Cauchy distribution supported only on
positive values (i.e., a symmetric half of the Cauchy distribution).

Factorized approximations perform poorly on this problem due to the dependency
of θ on τ (for an excellent analysis of this problem, see [4]). In fact, the MAP solution is at
τ = 0, which is distant from the mean-field approximation that STAN uses for variational
inference (ADVI, [5]) (Figure 3 left).
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Figure 3. (Left) The refined posterior for increasing numbers of auxiliary variables. As K increases, the refined posterior is
able to capture the dependency between θ1 and τ. (Right) The KL divergence between the refined posterior and approximate
posterior decreases as K grows. (Calculated using kernel density estimation.)

We show that our method can capture the dependencies between θ and τ. We intro-
duce the following additive auxiliary variables:

µ =
K

∑
k=1

aµk aµk ∼ N
(

0,
25
K

)
, τ =

∣∣∣∣ K

∑
k=1

aτk

∣∣∣∣
aτk ∼ Cauchy

(
0,

5
K

)
, θ = µ + τ

K

∑
k=1

aθk aθk ∼ N
(

0,
1
K

)
,
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for k = 1 . . . K. As required by the constraints, the auxiliary variables leave the model
unchanged.

Figure 3 left shows the approximate posterior for various K values. At K = 1, the
model is equivalent to ADVI, and as K increases, we can see that the refined posterior is
able to capture the dependencies between τ and θ1 and results in a non-Gaussian form.
The ground truth samples were obtained using the NUTS sampler in PyMC3 [6,7]. The
density plots were generated using kernel-density-estimation.

2.5. Limit as K → ∞

A natural question to ask is what happens as the number of auxiliary variables
grows to infinity. We can estimate the KL-divergence of the refined posterior and the
true posterior in the eight-schools example using kernel density estimation based on the
samples generated from the refined posterior. We see that it monotonically decreases
(Figure 3 middle). Indeed, we show theoretically that each auxiliary variable increases the
ELBO and hence decreases the KL-divergence to the true posterior. However, the precise
condition for convergence to the true posterior remains an open question.

3. Theoretical Results

We claim that the refinement process must improve the variational approximation
over the initial mean-field approximation as measured by the ELBO.

This claim is formalized in the following proposition.

Proposition 1. Let

ELBOref = E
qref

[
log p(y|x, w)

]
−KL

[
qref(w) || p(w)

]
be the ELBO of the refined posterior (where qref is the distribution that our process generates samples
from), let

ELBOaux = E
qref

[
log p(y|x, w)

]
−KL

[
qref(a1:K) || p(a1:K)

]
be the ELBO accounting for the auxiliary variables, and let

ELBOinit = E
qφ0

[
log p(y|x, w)

]
−KL

[
qφ0(w) || p(w)

]
be the ELBO of the initial variational approximation. Then, the following inequalities hold:

ELBOref ≥ ELBOaux ≥ ELBOinit.

Thus, ELBOref, the ELBO of the distribution that we are generating samples from is
greater than, or equal to ELBOinit, the ELBO of the initial mean-field approximation.

3.1. Proof of ELBOref ≥ ELBOaux

This is a consequence of the fact that a1:K fully determines w.
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Proof.

ELBOref − ELBOaux = KL[ qref(a1:K) || p(a1:K) ]−KL[ qref(w) || p(w) ]

= E
qref(a1:K)

[
log

qref(a1:K)

p(a1:K)
− log

qref(w)

p(w)

]
= E

qref(w)

[
E

qref(a1:K |w)

[
log

qref(a1:K)

p(a1:K)
− log

qref(w)

p(w)

]]
= E

qref(w)

[
E

qref(a1:K |w)

[
log

qref(a1:K|w)

p(a1:K|w)

]]
= E

qref(w)

[
KL[ qref(a1:K|w) || p(a1:K|w) ]︸ ︷︷ ︸

≥0

]
≥ 0 ,

where line 4 follows using Bayes’ theorem: qref(a1:K|w) = qref(w|a1:K)qref(a1:K)
qref(w)

, p(a1:K|w) =

p(w|a1:K)p(a1:K)
p(w)

and that qref(w|a1:K) = p(w|a1:K) = δDirac(w−∑K
k=1 ak). The proof is con-

cluded using the non-negativity of the KL-divergence.

Note that ELBOref is a valid ELBO—it is a lower bound to the marginal likelihood
log p(y|x) ≥ ELBOref. Therefore, optimizing ELBOref through our sampling procedure
decreases the KL divergence between qref and the true posterior.

3.2. Proof of ELBOaux ≥ ELBOinit

We prove this by demonstrating that improvement in the ELBO can be guaranteed in
our method under the assumption that the conditional variational posterior qφk−1(w|ak) is
within the variational family of qφk , i.e., there exists φ∗k , such that qφ∗k

(w) = qφk−1(w|ak) ∝
p(ak|w, a1:k−1)qφk−1(w) for k = 1 . . . K.

The central idea is to show that by initializing φk at φ∗k , the variational distribution
remains unchanged—therefore, ELBOaux = ELBOinit. Then, as we optimize φk, we are
optimizing the terms in ELBOaux through L|a1:k

(φk). Therefore, ELBOaux ≥ ELBOinit.

Proof. We prove ELBOaux ≥ ELBOinit by demonstrating that improvement in the ELBO
can be guaranteed in our method under the assumption that the conditional variational
posterior qφk−1(w|ak) is within the variational family of qφk (w). i.e.,

∀k ∈ {1 . . . K}∃φ∗k s.t. qφ∗k
(w) = qφk−1(w|ak) ∝ p(ak|w, a1:k−1)qφk−1(w) . (5)

This assumption holds for all exponential families of distributions.
The objective being optimized in each refinement step is

L|a1:k
(φk) = Eqφk (w)

[
p(y|x, w)− log

qφk (w)

p(w|a1:k)

]
. (6)

From our assumption in Equation (5), it follows that

L|a1:k
(φk) ≥ L|a1:k

(φ∗k ) (7)

when we reach the global optima φk ← arg maxφk
L|a1:k

(φk). Even in the case when
the optimizer is unable to find the global maximum, it is reasonable to assume that
L|a1:k

(φk) ≥ L|a1:k
(φ∗k ), given that we initialize φk at φ∗k .

The proof is based on mathematical induction on l. We show that for l = 0 . . . K,

E
ak∼qφk−1 (ak)

k=1...l

[
L|a1:l

(φl)−
l

∑
k=1

log
qφk−1(ak)

p(ak|a1:k−1)

]
≥ ELBOinit , (8)
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which holds at l = 0, since L|(φ0) = ELBOinit.
Notice that for k = 0 . . . K− 1,

Eak+1∼qφk

[
L|a1:k+1

(φk+1)

]
≥ Eak+1∼qφk

[
L|a1:k+1

(φ∗k+1)

]
= Eak+1∼qφk

[
Eqφk (w|ak+1)

[
p(y|x, w)− log

qφk (w|ak+1)

p(w|a1:k+1)

]]
= Eak+1∼qφk

[
Eqφk (w|ak+1)

[
p(y|x, w)− log

qφk (w)

p(w|a1:k)
+ log

qφk (ak+1)

p(ak+1|a1:k)

]]
= L|a1:k

(φk) +Eak+1∼qφk

[
log

qφk (ak+1)

p(ak+1|a1:k)

]
,

(9)

where line 1 follows using Equation (7) and line 3 follows using Bayes’ theorem: qφk (w|ak+1)

=
p(ak+1|w,a1:k)qφk (w)

qφk (ak+1)
and p(w|a1:k+1) =

p(ak+1|w,a1:k)p(w|a1:k)
p(ak+1|a1:k)

. After rearranging,

L|a1:k
(φk) ≤ Eak+1∼qφk

[
L|a1:k+1

(φk+1)− log
qφk (ak+1)

p(ak+1|a1:k)

]
. (10)

Substituting this into the inductive hypothesis at k = l proves the inductive step as
shown next:

ELBOinit

≤ E
ak∼qφk−1

k=1...l

[
L|a1:l

(φl)−
l

∑
k=1

log
qφk−1(ak)

p(ak|a1:k−1)

]

≤ E
ak∼qφk−1

k=1...l

[
Eal+1∼qφl

[
L|a1:l+1

(φl+1)− log
qφl (al+1)

p(al+1|a1:l)

]
−

l

∑
k=1

log
qφk−1(ak)

p(ak|a1:k−1)

]

= E
ak∼qφk−1
k=1...l+1

[
L|a1:l+1

(φl+1)−
l+1

∑
k=1

log
qφk−1(ak)

p(ak|a1:k−1)

]
(11)

To finish the proof, examine the case l = K. Notice that

L|a1:K
(φK) = EqφK (w)

[
p(y|x, w)−

qφK (w)

p(w|a1:K)

]
= p(y|x, w) , (12)

since a1:K fully determines w, i.e., qφK (w) = p(w|a1:K) = δDirac(w−∑K
k=1 ak). Substituting

Equation (12) in at l = K yields the desired result:

E
ak∼qφk−1
k=1...K

[
L|a1:K

(φK)−
K

∑
k=1

log
qφk−1(ak)

p(ak|a1:k−1)

]

= E
ak∼qφk−1
k=1...K

[
p(y|w, x)−

K

∑
k=1

log
qφk−1(ak)

p(ak|a1:k−1)

]
= E

qref

[
log p(y|x, w)

]
−KL[ qref(a1:K) || p(a1:K) ]

= ELBOaux ≥ ELBOinit ,

(13)

concluding the proof.

Note that this result implies that ELBOaux must grow with each auxiliary variable. We
demonstrate this empirically by estimating ELBOaux as we sample the auxiliary variables
in a neural network. The result is shown on Figure 4. We see that ELBOaux grows after
each iteration, exhibiting a stair pattern.
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Figure 4. ELBOaux is increasing as we sample the auxiliary variables. Calculated single sample Monte

Carlo estimate of the expectation: ELBOaux = E
[

log p(y|x, w)−∑K
k=1 log

qφk−1 (ak)

p(ak |a1:k−1)

]
(Equation (13)).

The sudden drops after sampling are optimizer artefacts because the momentum is reset after
sampling. LeNet-5/CIFAR10.

4. Experimental Results

We showcase our method on two example tasks: inference in a Bayesian neural
network and posterior sampling in a contextual bandit task.

4.1. Inference in Deep Neural Networks

The goal of this experiment is twofold. First, we empirically confirm the improvement
in the ELBO, and second, we quantify the improvement in the uncertainty estimates due to
the refinement. We conduct experiments on regression and classification benchmarks using
Bayesian neural networks as the underlying model. We look at the marginal log-likelihood
(MLL) of the predictions, as well as accuracy in classification tasks.

We used three baseline models for comparison: mean-field variational inference,
multiplicative normalizing flows (MNF), and deep ensemble models. For all methods, we
used a batch size of 256 and the Adam optimizer with the default learning rate of 0.001.
The hyperparameters of each baseline were tuned using a Bayesian optimization package.
We found batch size and learning rate to be consistent across methods.

First, Variational inference (VI, [8,9]). Naturally, we investigate the improvement of
our method over variational inference with a mean-field Gaussian posterior approximation.
We do inference over all weights and biases with a Gaussian prior centered at 0, the variance
of the prior is tuned through empirical Bayes, and the model is trained for 30,000 iterations.

Second, Multiplicative normalizing flows (MNF, [10]). In this work, the posterior
means are augmented with a multiplier from a flexible distribution parameterized by
the masked RealNVP. This model is trained with the default flow parameters for 30,000
iterations.

Third, Deep ensemble models [11]. Deep ensemble models are shown to be surpris-
ingly effective at quantifying uncertainty. For the regression datasets, we used adversarial
training (ε = 0.01), whereas in classification we did not (since adversarial training did
not give an improvement in the classification benchmarks). For each dataset, we trained
10 ensemble members for 5000 iterations each.

Finally, our work, Refined VI. After training the initial mean-field approximation, we
generate M = 10 refined samples w1:M, each with K = 5 auxiliary variables. The means
on the prior distribution for the auxiliary variables are fixed at 0, and their prior variances
form a geometric series (the intuition is that the auxiliary variables carry roughly equal
information this way): σ2

ak
= 0.7

(
σ2

w −∑k−1
l=1 σ2

al

)
for k = 1 . . . K. We experimented with

different ratios between 0 and 1 for the geometric series and we found that 0.7 worked well.
In each refinement iteration, we optimized the posterior with Adam [12] for 200 iterations.
To keep the training stable, we kept the learning rate proportional to the standard deviation
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of the conditional posterior: in iteration k, lr = 0.001× 0.3
k
2 . Our code is available at

https://github.com/google/edward2/experimental/auxiliary_sampling.
Following [13], we evaluate the methods on a set of UCI regression benchmarks on a

feed forward neural network with a single hidden layer containing 50 units with a ReLU
activation function (Table 1). The datasets used a random 80–20 split for training and
testing, and we utilize the local reparametrization trick [14].

Table 1. Refining improves the ELBO across all regression benchmarks. Results on the UCI regression benchmarks with a
single hidden layer containing 50 units. Metrics: marginal log-likelihood (MLL, higher is better), and the evidence lower
bound (ELBO higher is better). The mean values and standard deviations are shown in the table. Bolded numbers indicate
the highest ELBO (ELBOaux is a lower bound to ELBOref, which is the true ELBO) and underlined numbers indicate the
highest MLL.

Deep Ensemble MNF VI Refined VI (This Work)
MLL MLL MLL ELBO MLL ELBOaux

Boston −9.136 ± 5.719 −2.920 ± 0.133 −2.874 ± 0.151 −668.2 ± 7.6 −2.851 ± 0.185 −630.3 ± 7.7
Concrete −4.062 ± 0.130 −3.202 ± 0.055 −3.138 ± 0.063 −3248.1 ± 68.5 −3.131 ± 0.062 −3071.1 ± 64.0
Naval 3.995 ± 0.013 3.473 ± 0.007 5.969 ± 0.245 53,440.7 ± 2047.3 6.128 ± 0.171 54,882.6 ± 1228.3
Energy −0.666 ± 0.058 −0.756 ± 0.054 −0.749 ± 0.068 −1296.7 ± 66.3 −0.707 ± 0.094 −1192.3 ± 62.0
Yacht −0.984 ± 0.104 −1.339 ± 0.170 −1.749 ± 0.232 −928.7 ± 112.9 −1.626 ± 0.231 −790.0 ± 84.7
Kin8nm 1.135 ± 0.012 1.125 ± 0.022 1.066 ± 0.019 6071.2 ± 61.7 1.069 ± 0.018 6172.7 ± 67.6
Power −3.935 ± 0.140 −2.835 ± 0.033 −2.826 ± 0.020 −22,496.5 ± 130.4 −2.820 ± 0.024 −22,368.9 ± 85.3
Protein −3.687 ± 0.013 −2.928 ± 0.0 −2.926 ± 0.010 −108,806.007 ± 174.5 −2.923 ± 0.009 −108,597.5 ± 158.4
Wine −0.968 ± 0.079 −0.963 ± 0.027 −0.973 ± 0.054 −1346.1 ± 18.0 −0.968 ± 0.056 −1311.8 ± 17.4

On these benchmarks, refined VI consistently improves both the ELBO and the MLL
estimates over VI. For refined VI, the ELBOref cannot be calculated exactly, but ELBOaux
provides a lower bound to it, which we can estimate using Equation (13). Note that the
gains in MLL are small in this case. Nevertheless, refined VI is one of the best performing
approaches on 7 out of the 9 datasets.

We examine the performance on commonly used image classification benchmarks
(Table 2) using LeNet5 architecture [15]. We use the local reparametrization trick [14] for
the dense layers and Flipout [16] for the convolutional layers to reduce the gradient noise.
We do not use data augmentation in order to stay consistent with the Bayesian framework.

Table 2. Refining improves the ELBO across all image classification benchmarks. Results on image classification benchmarks
with the LeNet-5 architecture, without data augmentation. Metrics: marginal log-likelihood (MLL, higher is better), accuracy
(Acc, higher is better), and the evidence lower bound (ELBO higher is better). Means and standard deviations are shown.
Bolded numbers indicate the highest ELBO (ELBOaux is a lower bound to ELBOref, which is the true ELBO) and underlined
numbers indicate the highest MLL.

Deep Ensemble MNF VI Refined VI (This Work)
MLL & Acc MLL & Acc MLL & Acc ELBO MLL & Acc ELBOaux

mnist −0.017 ± 0.001 −0.034 ± 0.002 −0.032 ± 0.001 −7618.5 ± 47.5 −0.025 ± 0.001 −6310.8 ± 42.3
99.4% ± 0.0 99.1% ± 0.1 99.1% ± 0.1 99.2% ± 0.0

fashion_mnist −0.201 ± 0.002 −0.255 ± 0.004 −0.255 ± 0.003 −22,830.3 ± 232.6 −0.241 ± 0.004 −20,438.9 ± 79.6
93.1% ± 0.1 90.7% ± 0.2 90.7% ± 0.1 91.3% ± 0.2

cifar10 −0.791 ± 0.009 −0.795 ± 0.013 −0.815 ± 0.004 −57,257.8 ± 299.5 −0.768 ± 0.007 −50,989.2 ± 238.9
76.3% ± 0.3 72.8% ± 0.6 72.3% ± 0.5 73.5% ± 0.5

On the classification benchmarks, we again are able to confirm that the refinement
step consistently improves both the ELBO and the MLL over VI, with the MLL differences
being more significant here than in the previous experiments. Refined VI is unable to
outperform deep ensembles in classification accuracy, but it does outperform them in MLL
on the largest dataset, CIFAR10.

To demonstrate the performance on larger scale models, we apply the refining algo-
rithm to residual networks [17] with 20 layers (based on Keras’s ResNet implementation).

https://github.com/google/edward2/experimental/auxiliary_sampling
https://github.com/google/edward2/experimental/auxiliary_sampling
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We look at two models: a standard ResNet, where inference is done over every residual
block and a hybrid model (ResNet Hybrid [18]), where inference is only done over the
final layer of each residual block, and every other layer is treated as a regular layer. For
this model, we used a batch-size of 256 and we decayed the learning rate starting from
0.001 over 200 epochs. We used 10 auxiliary variables each reducing the prior variance by
a factor of 0.5. Results are shown in Table 3.

Table 3. Results on CIFAR10 with the ResNet architecture, without data augmentation. We observe
that our method not only improves significantly in MLL over the VI baseline, but it also significantly
improves in accuracy over the strong ensemble baseline. Metrics: marginal log-likelihood (MLL,
higher is better), accuracy (Acc, higher is better), and the evidence lower bound (ELBO higher is
better). Note that the non-hybrid and the hybrid models are equivalent when trained deterministically.
The best MLL result is highlighted in bold.

Deep Ensemble VI Refined VI (This Work)
MLL Acc MLL Acc MLL Acc

ResNet −0.698 82.7% −0.795 72.6% −0.696 75.5%
ResNet + BatchNorm −0.561 83.6% −0.672 77.6% −0.593 79.7%
ResNet Hybrid −0.698 82.7% −0.465 84.2% −0.432 85.8%
ResNet Hybrid + BatchNorm −0.561 83.6% −0.465 84.0% −0.423 85.6%

Batch normalization [19] provides a substantial improvement for VI though, this
improvement interestingly disappears for the hybrid model. The refined hybrid model
outperforms the recently proposed natural gradient VI method by [20] in both MLL and
accuracy, but it is still behind some non-Bayesian uncertainty estimation methods [21].

4.2. Computational Costs

When introducing a novel algorithm for variational inference, we must discuss the
computational costs. The computational complexity grows linearly with both K and M,
resulting in an overall O(KM) runtime. The memory requirement is O(M) as it grows
linearly with M. For the neural network models, the computational cost of generating
the posterior samples is ∼30% of the cost of training the initial mean-field approxima-
tion (LeNet-5/CIFAR10 on an NVIDIA P100 GPU using TensorFlow). In practice, we
recommend tuning the number of auxiliary variables for the given application; using more
auxiliary variables always improves the posterior approximation, but they come with
additional computational overhead.

4.3. Thompson Sampling

Generating posterior samples for Thompson sampling [22,23] in a contextual bandit
problem is an ideal use case for the refinement algorithm. Refinement allows one to trade-
off computational complexity for a higher quality approximation to the posterior. This can
be ideal for Thompson sampling where more expensive objectives often warrant spending
time computing better approximations.

Thompson sampling works by sampling a hypothesis from the approximate posterior
to decide on each action. This balances exploration and exploitation, since probable
hypotheses are tested more frequently than improbable ones. In each step,

1. Sample w ∼ qφ(w);
2. Take action arg maxa Ep(r|c,a,w)[r], where r is the reward that is determined by the

context c, the action a taken, and the unobserved model parameters w;
3. Observe reward r and update the approximate posterior qφ(w).

We look at the mushroom task [9,24], where the agent is presented with a number
of mushrooms that they can choose to eat or pass. The mushrooms are either edible
or poisonous. Eating an edible mushroom always yield a reward of 5, while eating a
poisonous mushroom yield a reward 5 with probability 50% and −35 with probability 50%.
Passing a mushroom gives no reward.
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To predict the distribution of the rewards, the agent uses a neural network with
23 inputs and two outputs. The inputs are the 22 observed attributes of the mushrooms
and the proposed action (1 for eating and 0 for passing). The output is the mean expected
reward. The network has a standard feed-forward architecture with two hidden layers
containing 100 hidden units each, with ReLU activations throughout. For the prior, we
used a standard Gaussian distribution over the weights.

For the variational posterior, we use a mean-field Gaussian approximation that we
update for 500 iterations after observing each new reward. For the updates, we use batches
of 64 randomly sampled rewards with an Adam optimizer with learning rate 10−3. In
refined sampling, we used two auxiliary variables: w = a1 + a2 with p(a1) = N (0, 0.7)
and p(a2) = N (0, 0.3). To obtain a high quality sample for prediction, we first draw
a1 using the main variational approximation and then refine the posterior over a2 for
500 iterations. After using the refined sample for prediction, we discard it and update the
main variational approximation using the newly observed reward (for 500 iterations). In
our experiments, we used three posterior samples to calculate the expected reward, which
helps to emphasize exploitation compared to using a single sample.

As baselines, we show the commonly used ε-greedy algorithm, where the agent takes
the action with the highest expected reward according to the maximum-likelihood solution
with probability 1− ε, and takes a random action with probability ε.

We measure the performance using the cumulative regret. The cumulative regret
measures the difference between our agent and an omniscient agent that makes the optimal
choice each time. Lower regret indicates better performance. Figure 5 depicts the results.
We see that the refined agent has lower regret throughout, which shows that the higher
quality posterior samples translate to improved performance. Until about 3000 iterations,
the ε-greedy algorithms perform well, but they are overtaken by Thompson sampling as
the posterior tightens and the agent shifts focus to exploitation.
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Figure 5. The performances of ε-greedy, Mean-field VI, and Refined VI on the mushrooms contextual
bandit task. Lower regret is better. The mean and standard deviations are shown from 5 runs with
different random seeds.

5. Related Works

Although, in theory, the Bayesian approach can accurately capture uncertainty, in
practice, we find that exact inference is computationally infeasible in most scenarios, and
thus, we have to resort to approximate inference methods. There is a wealth of research on
approximate inference methods; here, we focus on works closely related to this paper.
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Variational inference [25] tries to approximate the true posterior distribution over
parameters with a variational posterior from a simple family of distributions. Mean-field
VI, which for neural networks traces back to [26], uses independent Gaussian distributions
over the parameters to try to capture the posterior. The advantage of the mean-field
approximation is that the network can be efficiently trained using the reparameterization
trick [27], and the variational posterior has a proper density over the parameter space,
which then can be used across tasks, such as continual learning [20,28] and contextual
bandits [29]. Recently, [10] showed that normalizing flows can be used to further increase
the flexibility of the variational posterior. [30] provide a detailed survey of recent advances
in VI.

Our method is a novel variant of the auxiliary variable approaches to VI [31,32] that
increase the flexibility of the variational posterior through the use of auxiliary variables.
The key distinction, however, is that instead of trying to train a complex variational approx-
imation over the joint distribution, we iteratively train simple mean-field approximations
at the sampled values of the auxiliary variables. Although this poses an O(MK) overhead
(K is the number of auxiliary variables and M is the number of posterior samples) over
mean-field VI, the training itself remains straightforward and efficient. The introduction
of every new auxiliary variable increases the flexibility of the posterior approximation.
In contrast to MCMC methods, it is unclear whether the algorithm approaches the true
posterior in the limit of infinitely many auxiliary variables.

There are also numerous methods that start with an initial variational approximation
and refine it through a few MCMC steps [33–35]. The distinction from our algorithm is that
we refine the posterior starting at large scale and iteratively move towards smaller scale
refinements, whereas these methods only refine the posterior at the scale of the MCMC
steps [36–38] used boosting to refine the variational posterior, where they iteratively added
parameters, such as mixture components to minimize the residual of the ELBO. Our method
does not add parameters at training time but instead iteratively refines the samples through
the introduction of auxiliary variables. We do not include these in our baselines since they
have yet to be applied to Bayesian multi-layer neural networks.

Further related works include methods that iteratively refine the posterior in latent
variable models [39–42]. These methods, however, focus on reducing the amortization gap
and do not increase the flexibility of the variational approximation.

Lastly, there are non-Bayesian strategies for estimating epistemic uncertainty in deep
learning. Bootstrapping [43] and deep ensembles [11] may be the most promising. Deep
ensembles, in particular, have been demonstrated to achieve strong performance on bench-
mark regression and classification problems and uncertainty benchmarks including out-
of-distribution detection [11] and prediction under distribution shift [18]. Both methods
rely on constructing a set of independently trained models to estimate the uncertainty.
Intuitively, the amount of disagreement across models reflects the uncertainty in the ensem-
ble prediction. In order to induce diversity among the ensemble members, bootstrapping
subsamples the training set for each member while deep ensembles use the randomness in
weight initialization and mini-batch sampling.

6. Conclusions

In this work, we investigated a novel method for generating samples from a highly
flexible posterior approximation, which works by starting with a mean-field approximation
and locally refining it in selected regions. We demonstrated that the samples are able to
capture dependencies and multi-modality. Furthermore, we showed both theoretically
and empirically that the method always improves the ELBO of the initial mean-field
approximation and demonstrated its improvement on a hierarchical inference problem, a
deep learning benchmark and a contextual bandit task.
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Appendix A. Analytical Forms of qφk−1(ak) and qφk−1(w|ak)

For a diagonal Gaussian prior distribution p(w) = N (w|0, σ2 I) (0 denotes the dw
dimensional zero vector and I denotes the dw × dw identity matrix where dw is the
dimensionality of w), we have w = ∑K

k=1 ak, p(ak) = N (ak|0, σ2
k I) for k ∈ {1, . . . , K} such

that ∑K
k=1 σ2

k = σ2 .
The forms of approximate posterior over the auxiliary variables qφk−1(ak) and the

conditionals qφk−1(w|ak) can be computed in closed form. We only derive the result in the
univariate case, but extending to the diagonal covariance case is straightforward.

First, let p(ak) = N
(
ak | µk, σ2

k
)
. Now, define bk = ∑k

i=1 ai, mk = ∑K
i=k+1 µi and

s2
k = ∑K

i=k+1 σ2
i . Since z = ∑K

k=1 ak, using the formula for the conditional distribution of
sums of Gaussian random variables (For Gaussian random variables X, Y with means
µx, µy and variances σ2

x , σ2
y and Z = X + Y, p(x|z) is normally distributed with mean

µx + (z− µx − µy)
σ2

x
σ2

x+σ2
y

and variance
σ2

x σ2
y

σ2
x+σ2

y
), we obtain

p(ak | a1:k−1, w) = N

(
ak

∣∣∣∣∣ µk + (w− bk−1 −mk−1)
σ2

k
s2

k−1
,

s2
kσ2

k
s2

k−1

)
. (A1)

Recall that

qφk−1(ak) =
∫

p(ak|a1:k−1, w)qφk−1(w)dw , (A2)

and assume that we have already calculated qφk−1(w) = N
(

w | νk−1, ρ2
k−1

)
. Notice that the

quantity of interest is an integral of Gaussian densities, and hence after some algebraic
manipulation, we obtain

qφk−1(ak) = N

(
ak

∣∣∣∣∣ µk + (νk−1 − bk−1 −mk−1)
σ2

k
s2

k−1
,

s2
kσ2

k
s2

k−1
+ ρ2

k−1
σ4

k
s4

k−1

)
. (A3)

Regarding qφk−1(w|ak), we have

qφk−1(w|ak) =
p(ak | a1:k−1, w)qφk−1(w)

qφk−1(ak)
(A4)

using Bayes’ rule. Again, we see that the desired quantity is a product of Gaussians, which
we can derive to arrive at

qφk−1(w|ak) = N

(
w

∣∣∣∣∣ (ak − µk)ρ
2
k−1s2

k−1 + (bk−1 + mk−1)σ
2
k ρ2

k−1 + νk−1s2
ks2

k−1

σ2
k ρ2

k−1 + s2
k−1s2

k
,

ρ2
k−1s2

k−1s2
k

σ2
k ρ2

k−1 + s2
k−1s2

k

)
. (A5)
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