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Deep learning in fracture detection: a narrative review 
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The demands for radiology services, e.g., magnetic resonance 
imaging (MRI), computed tomography (CT), and radiographs, 
have increased dramatically in recent years (Kim and Mac­
Kinnon 2018). In the United Kingdom, the number of CT exam­
inations increased by 33% between 2013 and 2016 (Faculty of 
Clinical Radiology, Clinical Radiology UK workforce census 
2016 report 2016). In the Netherlands, more than 1.7 million 
CT examinations were carried out in all hospitals (National 
Institute for Health and Environment 2016). This demand will 
increase substantially in the coming years resulting in a con­
siderable strain on the workforce. On the other hand, there is 
a shortage of radiologists due to a lag in recruitment and the 
large number of radiologists approaching retirement. Further­
more, analyzing medical images can often be a difficult and 
time­consuming process. Artificial intelligence (AI) has the 
potential to address these issues (Kim  and Mac Kinnon 2018). 

AI is a general term that implies the use of a computer to 
model intelligent behavior with minimal human intervention 
(Hamet and Tremblay 2017). Furthermore, AI, particularly 
deep learning, has recently made substantial strides in the per­
ception of imaging data allowing machines to better represent 
and interpret complex data (Hosny et al. 2018).

Deep learning is a subset of AI represented by the combina­
tion of artificial neuron layers. Each layer contains a number 
of units, where every unit is a simplified representation of 
a neuron cell, inspired by its structure in the human brain 
(McCulloch and Pitts 1943). Today, deep learning algorithms 
are able to match and even surpass humans in task­specific 
applications (Mnih et al. 2015, Moravčík et al. 2017). Deep 
learning has transformed the field of information technology 
by unlocking large­scale, data­driven solutions to what once 
were time­intensive problems. 

Abstract — Artificial intelligence (AI) is a general term that 
implies the use of a computer to model intelligent behav­
ior with minimal human intervention. AI, particularly deep 
learning, has recently made substantial strides in perception 
tasks allowing machines to better represent and interpret 
complex data. Deep learning is a subset of AI represented by 
the combination of artificial neuron layers. In the last years, 
deep learning has gained great momentum. In the field of 
orthopaedics and traumatology, some studies have been done 
using deep learning to detect fractures in radiographs. Deep 
learning studies to detect and classify fractures on computed 
tomography (CT) scans are even more limited. In this nar­
rative review, we provide a brief overview of deep learning 
technology: we (1) describe the ways in which deep learning 
until now has been applied to fracture detection on radio­
graphs and CT examinations; (2) discuss what value deep 
learning offers to this field; and finally (3) comment on 
future directions of this technology.
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In the last years, deep learning has gained great momen­
tum (Adams et al. 2019). Recent studies have shown that deep 
learning has the ability to perform complex interpretation at 
the level of healthcare specialists (Gulshan et al. 2016, Esteva 
et al. 2017, Lakhani and Sundaram 2017, Lee et al. 2017, 
Olczak et al. 2017, Ting et al. 2017, Tang et al. 2018). In the 
field of orthopaedic traumatology, a number of studies have 
been done using deep learning in radiographs to detect frac­
tures (Brett et al. 2009, Olczak et al. 2017, Chung et al. 2018, 
Kim  and Mac Kinnon 2018, Lindsey et al. 2018, Adams et 
al. 2019, Urakawa et al. 2019). However, studies performing 
deep learning in fractures on CT scans are scarce (Tomita et 
al. 2018). 

In this narrative review, we provide a brief overview of deep 
learning technology; (2) describe the ways in which deep 
learning has been applied to fracture detection on radiographs 
and CT examinations thus far; (3) discuss what value deep 
learning offers to this field; and finally (4) comment on future 
directions of this technology. 

Artificial intelligence technology 
Deep Learning (DL) is a family of methods, which is part of 
a broad Machine­learning field and an even broader Artificial 
Intelligence field (Figure 1). These algorithms are unified by 
the idea of learning from data instead of following explicitly 
specified instructions. This level of abstraction makes Deep 
Learning algorithms applicable to solve a variety of problems 
in a number of quantitative fields (LeCun et al. 2015).

Deep Learning has showed outstanding performance for 
solving semantic image processing tasks. Cireşan et al. (2012) 
demonstrated that DL can outperform humans by a factor 
of 2 in traffic sign recognition. Tompson et al. (2014) have 
shown that DL has significantly outperformed existing state­
of­the­art techniques for human pose estimation. Chen et al. 
(2015) assessed DL potential in autonomous driving applica­
tion. ImageNet (Russakovsky et al. 2015) demonstrated that 
DL can be successfully applied to a variety of image­specific 
tasks and gain state­of the­art performance. After the DL suc­
cess in the computer vision field, the medical imaging field 
started to adopt these methods for solving its own problems 

such as, e.g., medical image classification (Gao et al. 2017, 
Yang et al. 2018, Tran et al. 2019), medical image segmenta­
tion (Cha et al. 2016, Dou et al. 2017, Roth et al. 2018) and 
noise reduction (Chen et al. 2017, Wolterink et al. 2017). Due 
to the high abstractness of DL algorithms, there is no need 
to change methodology when moving from a problem in one 
field to another field. Moreover, by using this so­called trans­
fer learning approach, DL algorithms are able to benefit from 
previous successes even if the model was solving a different 
problem (Yang et al. 2018).

The essential DL layer is composed of a number of neu­
rons that to a certain extent mimic the activity of a neuron cell 
(Figure 2). Every neuron in the layer has its own weight w for 
each input connection and the bias value b, where each weight 
w represents the strength for the particular connection, and 
the bias value b allows us to shift the activation function along 
with the weighted sum of the inputs to the neuron, control­
ling the value at which the activation function will trigger. In 
other words, each weight w defines how much influence the 
corresponding input will have on the neuron output and bias 
b, allowing the model to better fit the data. In order to create 
the output for the neuron and introduce non­linearity to the 
neuron decision, one of the activation functions, g, is applied 
to the neuron output z.

 Expanding this interaction logic for the rest of the neurons, 
we get the DL layer. The layer where all possible connections 
between input nodes and output nodes are introduced is called 
the “Dense layer.” In order to learn more complex features and 
prevent overfitting, the too close fitting of the model to a lim­
ited set of data points in the training dataset, another type of 
layers was introduced such as the “Convolution layer,” “Pool­
ing layer” and “Dropout layer.” Given the DL model built from 
such layers and the representative dataset describing the prob­
lem we can solve the weights optimization task by using one 
of the optimization algorithms, e.g., Gradient Descent (GD). 
GD is used to find a minimum of the cost function by itera­
tively moving in the direction of steepest descent. It is used 
due to computational limitations we meet trying to solve the 
optimization task analytically. The cost function quantifies the 
error between predicted and the ground truth labels. By cal­
culating the derivative of the error with respect to each neural 
network weight we obtain the individual gradients, which are 
subsequently used to update the weights for all correspond­
ing neuron connections. The described procedure represents 
1 cycle of the neural network (NN) training process. During 
the model training process every image from the training data­
set contributes to the weights optimization. Thereby, the DL 
model learns to solve the problem directly from data.

Finding and classification of fractures on radiographs and 
CT images with high sensitivity and specificity can be assisted 
or even replaced by the automated DL system with high accu­
racy. Given a few thousand images we can address several 
problems with DL. Using such models as VGG16 (Simonyan 
and Zisisserman 2015), Inception V3 (Szegedy et al. 2015), 

Figure 2. Visualization of artificial neuron model. Where A1–AN are the 
inputs, W1–WN are the weights for the input connections to neuron, b is 
the bias value, z is the output from the neuron.
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and Xception (Chollet 2016), we can classify the images, for 
example to detect whether there is a fracture, or even differen­
tiate between fracture types. Given the bounding box annota­
tions or labels for the regions of interest, we can train such 
models as ResNet (He et al. 2016), U­net (Ronneberger et al. 
2015), Mask­RCNN (He et al. 2017), Faster­RCNN (Ren et 
al. 2015) for the fracture detection and segmentation problem. 
The mentioned DL architectures have been widely used in 
the DL community and have demonstrated their efficiency in 
solving such tasks (Ruhan et al. 2017, Li et al. 2018, Couteaux 
et al. 2019, Li et al. 2019, Lian et al. 2019, Zhu et al. 2019).

Applications of AI in fracture detection 
A number of studies have demonstrated the application of 
deep learning in fracture detection (Brett et al. 2009, Olczak 
et al. 2017, Chung et al. 2018, Kim  and Mac Kinnon 2018, 
Lindsey et al. 2018, Tomita et al. 2018, Adams et al. 2019, 
Urakawa et al. 2019). In a retrospective study by Kim and 
Mac Kinnon (2018), they aimed to identify the extent to 
which transfer learning from deep convolutional neural net­
works (CNNs), pre­trained on non­medical images, can be 
used for automated fracture detection on plain wrist radio­
graphs. Authors used the inception V3 CNN (Szegedy et 
al. 2015), which was originally trained on non­radiological 
images for the IMageNet Large Visual Recognition Chal­
lenge (Russakovsky et al. 2015). They used a training data 
set of 1,389 radiographs (manually labeled) to re­train the top 
layer of the inception V3 network for the binary classification 
problem. They achieved an AUC of 0.95 on the test dataset 
(139 radiographs). This demonstrated that a CNN model that 
has been pre­trained on non­medical images can be success­
fully applied to the problem of fracture detection on plain 
radiographs. Specificity and sensitivity reached 0.90 and 0.88 
respectively. This level of accuracy surpasses previous com­
putational methods for automated fracture analysis such as 
segmentation, edge detection, feature extraction (such stud­
ies reported sensitivities and specificities in the range of 
80–85%). Although this study provides proof of concept, a 
number of limitations remain. A small discrepancy was found 
between the training accuracy and the validation accuracy 
at the end of the training process. This was likely to reflect 
overfitting. There are several strategies that can be used to 
minimize overfitting. One strategy would be to use automated 
segmentation of the most appropriate region of interest; the 
pixels outside of the region of interest would be cropped from 
the image so that irrelevant features would not influence the 
training process. Another strategy to minimize overfitting 
would be the introduction of advanced augmentation tech­
niques. In addition (too small < [1000:10000]) study popula­
tion size is often a limiting factor in machine learning field. 
A large sample corresponds to a more accurate reflection of a 
true population (Lindsey et al. 2018). 

A similar study by Chung et al. (2018) aimed to evalu­
ate the ability of deep learning to detect and classify proxi­

mal humerus fractures using plain AP shoulder radiographs. 
Results of the CNN network were compared with the assess­
ment of specialists (general physicians, orthopedic surgeons, 
and radiologists). Their total dataset consisted of 1,891 plain 
AP radiographs and they used a pre­trained ResNet­152 
model, which was fine­tuned to their proximal humerus frac­
ture datasets. The trained CNN showed high performance 
in distinguishing normal shoulders from proximal humerus 
fractures. In addition, promising results were found for clas­
sifying fracture type based on plain AP shoulder radiographs. 
The CNN exhibited superior performance to that of general 
physicians and general orthopedic surgeons, and similar per­
formance to that of shoulder specialized orthopedic surgeons. 
This indicates the possibility of automated diagnosis and clas­
sification of proximal humerus fractures and other fractures or 
orthopaedic diseases diagnosed accurately using plain radio­
graphs (Chung et al. 2018). 

The retrospective study by Tomita et al. (2018) aimed to eval­
uate the ability of deep learning to detect osteoporotic vertebral 
fractures (OVF) on CT scans and developed a machine learning 
approach, fully powered by a deep neural network framework, 
to automatically detect OVFs on CT scans. For their OVF 
detection system, they used a system that consisted 2 major 
components: (1) a CNN­based feature extraction module; and 
(2) an RNN module to aggregate the extracted features and 
make the final diagnosis. For the processing and extraction 
of features from CT scans they used a deep residual network 
(ResNet) (He et al. 2016). Their training dataset consisted of 
1,168 CT scans; their validation set consisted of 135 CT scans 
and their test set consisted of 129 CT scans. The performance 
of their proposed system on an independent test set matched 
the level performance of practicing radiologists in both accu­
racy and F1 (mean of precision and recall) score (Tomita et 
al. 2018). This automatic detection system has the potential to 
reduce the time and the manual burden on radiologists of OVF 
screening, as well as reducing false­negative errors arising in 
asymptomatic early stage vertebral fracture diagnoses (Tomita 
et al. 2018). A summary of clinical studies involving computer­
aided fracture detection is given in the Table. 

Value of deep learning in radiology/orthopedic trau-
matology 
As seen from the examples of deep learning in radiology 
described above, there are potential benefits to the develop­
ment and integration of deep learning systems in everyday 
practice, in fracture detection as well as fracture characteriza­
tion tasks (Figure 3). In general, using deep learning as an 
adjunct to standard practices within radiology has the poten­
tial to improve the speed and accuracy of diagnostic testing 
while decreasing workforce due to offloading human radiolo­
gists from time­intensive tasks. Alongside that, deep learning 
systems are subject to some of the pitfalls of human­based 
diagnosis such as inter­ and intra­observer variance. Deep 
learning, applied in academic research settings, can at least 
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Figure 3. Deep learning aided 
workflow in fracture detection

Summary of clinical studies involving computer-aided fracture detection

Reference Region of interest Modality Conclusion Performance (metric)
 
Olczak et al. 2017 Wrist/Hand/ Radiographs This study supports the use of orthopaedic radiographs 0.83 (accuracy) 
  Ankle  of artificial intelligence, which can perform at a human level 

Kim et al. 2018 Wrist Radiographs The AUC scores for this test were comparable tostate-of-  0.95 (AUC)
    the-art providing proof of concept for transfer  learning 0.90 (sensitivity)
    from CNNs in fracture detection on plain radiographs 0.88 (specificity)

Chung et al. 2018 Proximal Radiographs The use of artificial intelligence can accurately detect and Detection: 
  humerus  classify proximal humerus fractures on plain shoulder AP  0.96 (accuracy)
    radiographs 1 (AUC)
     0.99 (sensitivity)
     0.97 (specificity)
     Classification:
     0.65–0.86 (accuracy)
     0.90–0.98 (AUC)
     0.88–0.97 (sensitivity)
     0.83–0.94 (specificity)

Heimer et al. 2018 Skull CT Classification based on the existence of skull fractures 0.97 (AUC) 
    on CMIPs with deep learning is feasible 0.91 (sensitivity)
     0.88 (specificity)

Lindsey et al. 2018 Wrist Radiographs Deep learning methods are a mechanism by which senior  0.97 (AUC) on Test set1
    medical specialists can deliver their expertise to generalists  0.98 (AUC) on Test set2
    on the front lines of medicine, thereby providing substantial 
    improvements to patient care 

Tomita et al. 2018 Pelvis CT The proposed system will assist and improve OVF diagnosis 0.89 (accuracy) 
    in clinical settings by pre-screening routine CT examinations 0.91 (F1 score) 
    and flagging suspicious cases prior to review by radiologists 

Pranata et al. 2019 Calcaneus CT The feasibility using deep CNN and SURF for computer- 0.98 (accuracy)
    aided classification and detection of the location of 
    calcaneus fractures in CT images 

Adams et al. 2019 Pelvis Radiographs As impressive as recognising fractures is for a DCNN,  0.91 (accuracy)
    similar learning can be achieved by top-performing medically 0.98 (AUC) 
    naïve humans with less than 1 hour of perceptual training 

Abbreviations: CT = computed tomography; AUC = area under curve; CNN = convolutional neural network; AP = plain anteroposterior; 
CMIP = curved maximum intensity projections; OVF = Osteoporotic vertebral fractures; SURF = speeded-up robust features; 
DCNN = deep convolutional neural networks.
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match and sometimes exceed human performance in fracture 
detection and classification on plain radiographs and CT scans. 

Combining deep learning with a radiomics approach
Radiomics is a method that extracts large amount of pre­
defined quantitative features from medical images beyond 
the level of detail accessible to the human eye. Deep learning 
learns from the entire image, whereas radiomics characterizes 
only the region of interest of a particular disease. Therefore, it 
is our opinion that deep learning and radiomics provide com­
plementary imaging biomarkers. Furthermore, as radiomics is 
more stable in the face of smaller datasets, it is desirable to 
include these features in models to hedge against the possible 
overfitting of deep learning networks. 

Future directions 
The inclusion of artificial intelligence in decision support 
systems has been debated for decades (Kahn 1994). As appli­
cations of artificial intelligence in radiology/orthopedic trau­
matology will increase there are several areas of interest that 
we believe will hold significant value in the future (Brink et 
al. 2017). There is a consensus that inclusion of AI in radi­
ology/image­based disciplines would enhance diagnostic 
accuracy (Recht and Bryan 2017). However, there is also a 
consensus that such tools need to be carefully investigated 
and interpreted, before integration into clinical decision­
support systems. 

A future challenge to address will be the radiologists–AI 
relationship. Jha and Topol (2016) suggested that AI can be 
used for redundant pattern­recognition tasks, while radiolo­
gists focus on cognitively challenging tasks. At large, radiolo­
gists would need to have a basic understanding of AI and AI­
based tools; however, these tools would not replace radiolo­
gists’ work, and their role would not be limited to interpreting 
AI findings. Rather, AI tools can be used as a complementary 
tool to confirm/validate radiologists’ doubts and decisions 
(Liew 2018). Further research regarding radiologists–AI rela­
tionship is needed in order to properly integrate these disci­
plines, including research on how to train radiologists to use 
AI tools and interpret their results.

AI systems must continue to expand their library of clinical 
applications. As seen in this review, there are several promis­
ing studies that demonstrate how AI can improve our perfor­
mance on clinical tasks such as fracture detection on radio­
graphs and CT scan, including fracture classifications and 
treatment decision support.
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