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A B S T R A C T

Background: The potential role of individual plasma biomarkers in the pathogenesis of type 2 diabetes (T2D)
has been broadly studied, but the impact of biomarkers interaction remains underexplored. Recently, the
Mahalanobis distance (MD) of plasma biomarkers has been proposed as a proxy of physiological dysregula-
tion. Here we aimed to investigate whether the MD calculated from circulating biomarkers is prospectively
associated with development of T2D.
Methods:We calculated the MD of the Principal Components (PCs) integrating the information of 32 circulat-
ing biomarkers (comprising inflammation, glycemic, lipid, microbiome and one-carbon metabolism) mea-
sured in 6247 participants of the PREVEND study without T2D at baseline. Cox proportional-hazards
regression analyses were performed to study the association of MD with T2D development.
Findings: After a median follow-up of 7¢3 years, 312 subjects developed T2D. The overall MD (mean (SD)) was
higher in subjects who developed T2D compared to those who did not: 35¢65 (26¢67) and 30.75 (27¢57),
respectively (P = 0¢002). The highest hazard ratio (HR) was obtained using the MD calculated from the first
31 PCs (per 1 log-unit increment) (1¢72 (95% CI 1¢42,2¢07), P < 0¢001). Such associations remained after the
adjustment for age, sex, plasma glucose, parental history of T2D, lipids, blood pressure medication, and BMI
(HRadj 1¢37 (95% CI 1¢11,1¢70), P = 0¢004).
Interpretation: Our results are in line with the premise that MD represents an estimate of homeostasis loss.
This study suggests that MD is able to provide information about physiological dysregulation also in the path-
ogenesis of T2D.
Funding: The Dutch Kidney Foundation (Grant E.033).
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1. Introduction

The idea of an internal body regulation mechanism as a corner-
stone in health and disease has been around in medicine since the
pre-Socratic era [1]. Bernard and Cannon helped to integrate such
ideas under the concept of homeostasis, defined as a self-regulating
process by which an organism can maintain internal stability while
adjusting to changing external conditions [2].

The role of homeostasis in the study of chronic diseases had
gained attention over time as they became more prevalent [3].
Amongst the most prevalent chronic diseases, type 2 diabetes (T2D)
has become one of the leading causes of morbidity and disability
worldwide [4]; consequently, several studies had been performed to
understand the underlying mechanism of the homeostasis loss in
T2D [3,5�7].

The impact of homeostasis loss in the development of T2D has
included the role of the pancreas [8], skeletal muscle [9], adipose tis-
sue [10], and more recently the gut microbiota [11]. Although the
interconnection of such systems in health and disease has been rec-
ognized, analyzes of their related biomarkers has largely been con-
fined to individual biomarkers to date. For instance, in a study
comprising 11,896 subjects from four well characterized prospective
cohorts, 113 out of 229 metabolites were associated with risk of T2D
development [12]. Several other observational studies have con-
firmed these findings [13�15]. Remarkably, the assessment of how
the simultaneous variation of such biomarkers among themselves
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Research in context

Evidence before this study

A large body of evidence suggest that circulating biomarkers
are associated with future development of Type 2 diabetes.
Nevertheless, most of the studies investigate such biomarkers
separately. It has been recently proposed that the Mahalanobis
distance of circulating biomarkers can be used as a measure of
homeostasis loss that occurs with ageing. Whether this statisti-
cal approach could be useful in the study of T2D development
remains to be explored.

Added value of this study

In the present study, we reveal that the Mahalanobis distance of
circulating biomarkers, including lipid metabolism, as well as
inflammation and microbiome derived metabolites, provide
information about the physiological dysregulation not only in
ageing process, as previously reported, but also in the develop-
ment of T2D.

Implications of all the available evidence

The prognostic dysregulation signature represented by the
Mahalanobis distance may represent a tool to integrate several
biomarkers in the study of homeostasis loss in prospective
studies. In addition, given the dynamic nature of the bio-
markers analyzed in the present study, this statistical approach
could potentially help to elucidate effects of interventions,
beyond the assessment of single biomarker measurements.
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could reflect the loss of homeostasis remains underexplored in the
context of T2D development.

Recently, it has been suggested that the analysis of the statistical
distances of multivariate probability distributions, using circulating
biomarkers, could identify abnormalities in the overall biomarker
profile of subjects in relation to the studied population [16]. Particu-
larly, the Mahalanobis distance (MD) calculated from circulating bio-
markers has been suggested as a proxy of homeostasis loss, with a
higher MD being associated with ageing related outcomes [16].
Therefore, the aim of this study was to investigate whether the MD
calculated from circulating biomarkers is longitudinally associated
with development of T2D among participants from a large general
population-based cohort study.

2. Methods

2.1. Study design and subjects

The Prevention of Renal and Vascular END-stage Disease (PRE-
VEND) Study is a population-based cohort study in the city of Gronin-
gen, The Netherlands. The PREVEND study was designed to
prospectively investigate the natural course of increased levels of uri-
nary albumin excretion and its relation to renal and cardiovascular
disease in a large cohort drawn from the general population [17]. The
design of the PREVEND Study has been described in detail elsewhere
[18]. Briefly, from 1997 to 1998, all residents from Groningen, exclud-
ing pregnant women and people with type 1 diabetes or T2D using
insulin, aged 28�75 years were invited to participate. A total of
40,856 subjects (47.8%) responded the invitation to participate. From
this group, 30,890 subjects had a urinary albumin concentration of
< 10 mg/L and 9966 subjects had a urinary albumin concentration
of � 10 mg/L in their morning urine sample. After exclusion of sub-
jects with type 1 diabetes and pregnant women, all subjects with a
urinary albumin concentration of � 10 mg/L (n = 7768) and a ran-
domly selected control group with a urinary albumin concentration
of < 10 mg/L (n = 3395) were invited for further investigations in an
outpatient clinic. A total of 8592 individuals completed an extensive
examination.

We used data of participants who completed the second screening
(n = 6894), and were free from T2D at baseline (n = 6447) excluding
those with insufficient samples for quantification of biomarkers by
means of Nuclear Magnetic Resonance (NMR), leaving a cohort of
6247 participants with complete information for the analyzes. Cases
of participants lost to follow-up were considered as censored cases.
This report follows the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) reporting guideline (Supplemental
Table 1).

2.2. Ethics

The study conforms to the ethical guidelines of the 1975 Declara-
tion of Helsinki [19] and was approved by the local ethics committee
of the University Medical Center Groningen (approval number:
MEC96/01/022). All participants provided written informed consent.

2.3. Clinical measurements

During two outpatient visits, baseline data were collected on
demographics, lifestyle factors, anthropometric measurements, med-
ical history, parental history of T2D and medication use. Information
on medication use was combined with information from a phar-
macy-dispensing registry, which had complete information on the
drug usage of > 95% of subjects in the PREVEND study. Height and
weight were measured in standing position without shoes and heavy
outer garments. Body mass index (BMI) was calculated as weight (kg)
divided by height squared (meter). Waist circumference was mea-
sured as the smallest girth between the rib cage and iliac crest. Sys-
tolic and diastolic blood pressure values were measured with an
automatic Dinamap XL Model 9300 series device and recorded as the
means of the last two recordings of the second visit.

2.4. End point of the study

Participants were followed from the date of the baseline center
visit until end of follow-up. Incident T2D was established if one or
more of the four criteria were met during follow-up: (1) blood glu-
cose � 7¢0 mmol/L (126 mg/dL); (2) random sample plasma glucose
� 11¢1 mmol/L (200 mg/dL); (3) self-report of a physician diagnosis;
(4) initiation of glucose lowering medication according to the central
pharmacy registry follow-up data, which was completed as of 1 Janu-
ary 2011.

2.5. Laboratory measurements

Laboratory measurements were performed at the Central Labora-
tory of the University Medical Center Groningen. The Netherlands.
Venous blood samples were drawn after an overnight fast of at least
8 h, while participants rested for 15 min. Ethylene diamine tetra ace-
tic acid (EDTA) - anticoagulated plasma samples and sera were stored
at -80 °C until analysis.

Fasting plasma glucose (FPG) was measured by dry chemistry
(Eastman Kodak, Rochester, NY, USA). Insulin was measured with an
immunoturbidometric assay (Diazyme Laboratories, Poway, CA,
USA). Total cholesterol (TC), triglycerides, and serum creatinine were
measured using standard protocols, as described previously [20].
Serum alanine aminotransferase (ALT) and aspartate aminotransfer-
ase (AST) were measured using the standardized kinetic method
with pyridoxal phosphate activation (Roche Modular P, Roche Diag-
nostics, Mannheim, Germany). Serum gamma-glutamyl transferase
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(GGT) was assayed using an enzymatic colorimetric method (Roche
Modular P, Roche Diagnostics, Mannheim, Germany). Standardization
of ALT, AST and GGT was performed according to the International
Federation of Clinical Chemistry guidelines [21�23]. High-sensitivity
C-reactive protein (hs-CRP) albumin and urea concentrations were
measured with Roche routine chemistry analyzers (Modular P/Cobas
C, Roche Diagnostics, Mannheim, Germany). Urinary albumin was
measured by nephelometry (Dade Behring Diagnostic, Marburg, Ger-
many) and urinary albumin excretion (UAE) was determined in two
24 h urine collections with the results being averaged for analysis.
Serum creatinine was measured by an enzymatic method on a Roche
Modular analyzer (Roche Diagnostics, Mannheim, Germany). Serum
ferritin was measured using immunoassay (Roche Diagnostics, Man-
nheim, Germany). Hemoglobin, hematocrit, and mean corpuscular
volume, were measured on a Coulter Counter STKS sample testing
system (Coulter Corp) in fresh venous blood according to standard
procedures.

Trimethylamine N-oxide (TMAO), betaine, branched chain amino
acids (BCAA), GlycA (a pro-inflammatory glycoprotein biomarker), high
density lipoprotein (HDL) and ketone body concentrations were mea-
sured in EDTA-anticoagulated plasma samples using a Vantera� Clinical
Analyzer (LabCorp, Morrisville, NC), a fully automated, high-throughput,
400 MHz NMR spectroscopy platform using spectral deconvolution algo-
rithm as previously described [24�30]. A detailed description of the
NMR biomarkermeasurements is found in the Supplement.

2.6. Statistical analysis

Normality distribution was assessed with the visualization of den-
sity plots and Q-Q plots. Variables with a skewed distribution were
natural log transformed. Baseline data were presented as the mean
(standard deviation, SD) or median (interquartile range, IQR) for con-
tinuous variables and percentages for categorical variables. All statis-
tical analyzes were performed with R language for statistical
computing software, v. 4¢0¢3 (2020), (Vienna, Austria) [31].

2.6.1. Mahalanobis distance
We used a set of thirty-two circulating metabolites to calculate the

MD. Twenty-three out of the thirty-two biomarkers have already been
reported to be useful in the calculation of MD as proxy of homeostasis
loss (Supplemental Table 2) [16]. We replaced HDL cholesterol, used in a
previous report [16], with seven HDL subspecies that have lately been
reported to be differently associated with the risk of T2D [32]. Addition-
ally, BCAA (valine, leucine, isoleucine) were included in the analysis
because of their association with T2D [15], which has been shown to be
causal [33]. Finally, TMAO and betaine, were included as gut-microbiota
derived metabolites, given the recently recognized relationship with the
gutmicrobiome in the context of T2D [34].

To better depict the intervariability of the circulating biomarkers,
a Principal Component Analysis (PCA) was performed using the bio-
marker data, in order to obtain a new set of variables which integra-
tes the information of the 32 biomarkers. Considering that the
circulating biomarkers are measured in different units, the input data
was standardized in order to have mean equals to zero and variance
equals to one before doing PCA. PCA is a dimensionality reduction
technique, which comprehends a series of orthogonal linear transfor-
mations of the original variables, generating a new set of transformed
variables (denominated Principal Components (PCs)). Each PC is a lin-
ear combination of all p variables, and it is intended that the new set
of transformed variables preserves as much as possible of the infor-
mation contained in the original variables [35].

Starting with the addition of PC1 and PC2, the 32 PCs were added
one by one into cumulative sets of PCs that were used to calculate 31
different MDs.

The MD is a multivariate distance measure related to the familiar
Euclidean Distance; yet, it provides two further benefits. Firstly, it is
scale invariant, meaning that the differences in the unit measure-
ments of the diverse biomarkers do not bias the analysis. Secondly, it
includes the correlations between the covariates, allowing to capture
the information not only for the difference in one variable, but rather,
the differences among a set of variables [36]. The MD is defined as:
MD (xi, xj) = [(xi�xj)TS�1(xi�xj)]1/2 where xi is the ith row of the
(n £ p) covariate matrix X, with n subjects in the rows and p covari-
ates in the columns, and S is the (p £ p) covariance matrix of X [36].

2.6.2. Survival analysis
Time-to-event Cox proportional hazards models were used to

compute hazard ratios (HRs) and 95% CI of T2D development risk,
using the MDs calculated from subsets of the PCs. In order to evaluate
the potential overfitting of the different models, the Bayesian Infor-
mation Criterion (BIC) and the Akaike Information Criterion (AIC)
were computed for the MDs that contained different subsets of the
PCs. Given the fact that mean and median of the MD increases with a
larger number the variables included in its calculation, we further
calculated the Relative Risk difference over 95% of the observed MD
distribution; this was calculated by subtracting the risk of being in
the 97¢5th percentile of MD relative to the 2¢5th percentile, this
method was previously reported to be appropriate to compare differ-
ent MDs [37]. HRs were calculated per 1-unit increase in the log scale.
HRs were adjusted for age and sex, BMI (or waist circumference),
plasma glucose, lipid lowering medication and anti-hypertensive
medication. The Cox proportional hazard assumption was tested
through the evaluation of independence between scaled Schoenfeld
residuals with time for each variable and for every model as a whole;
this assumption was met, with no indication for a violation [38].

To further evaluate the performance of the MD to improve the
T2D risk reclassification, two risk prediction models were fitted: The
first model included the clinical variables used in the FINDRISC T2D
risk score, which has been reported as a reasonably good predictor of
incident T2D in the Netherlands [39] (age, family history of T2D, BMI,
waist circumference, hypertension and FPG). The second model
included the MD in addition to the variables above mentioned. Using
predefined risk categories of T2D development (< 10%), intermediate
(10 to 20%), and high ( � 20%) [40], reclassification was assessed
using the categorical net reclassification improvement (NRI)
approach; additionally, a category-free NRI was also computed [41].

2.7. Role of the funding source

The funders did not have any role in study design, data collection,
data analyzes, interpretation, or writing of report.

3. Results

3.1. Clinical characteristics at baseline

A total of 6247 participants of the PREVEND cohort were included
in this study. Among the participants, 3089 (49¢4%) were men, and
the mean age of the population was 53¢2 (11¢0) years. Participant
characteristics at baseline are shown in Table 1. During a median fol-
low-up of 7¢3 (IQR 6¢1�7¢3) years, a total of 312 participants devel-
oped T2D. Participants who developed T2D during the follow-up,
were more likely to be men and to be older, and were more likely to
have a family history of diabetes when compared to people who did
not develop T2D. Likewise, those who developed T2D, presented a
higher BMI, waist circumference and blood pressure. Among T2D
developers it was more common to have a history of CVD and paren-
tal history of T2D; those participants also used antihypertensive med-
ications and lipid-lowering drugs more frequently. There was no
difference in terms of a history of cancer, smoking or alcohol con-
sumption.



Table 1
Baseline characteristics of 6247 participants of the PREVEND prospective cohort.

Variable Total(N = 6247) Incident T2D(N = 312) No Incident T2D (N = 5935) P value

Men, (%) 3089 (49¢4%) 196 (62¢8%) 2893 (48¢7%) < 0¢001
Age, years 53¢18 (11¢94) 57¢47 (9¢97) 52¢96 (12¢00) < 0¢001
BMI, kg/m2 26¢50 (4¢22) 29¢96 (4¢67) 26¢32 (4¢12) < 0¢001
Waist circumference, cm 91¢55 (12¢56) 102¢27 (12¢38) 90¢99 (12¢32) < 0¢001
SBP, mmHg 125¢64 (18¢60) 136¢84 (21¢05) 125¢05 (18¢27) < 0¢001
DBP, mmHg 73¢24 (9¢08) 77¢60 (9¢39) 73¢01 (9¢01) < 0¢001
History of Cancer, (%) 279 (4¢5%) 12 (3¢9%) 267 (4¢5%) 0¢68
History of CVD, (%) 231 (3¢7%) 22 (7¢1%) 209 (3¢5%) 0¢001
Parental history of T2D, (%) 898 (14¢9%) 87 (29¢3%) 811 (14¢1%) < 0¢001
Smoking status, (%) 0¢47

never 1788 (28¢6%) 81 (26¢0%) 1707 (28¢8%)
former 2626 (42¢0%) 140 (44¢9%) 2486 (41¢9%)
current < 6 cig/day 284 (4¢5%) 14 (4¢5%) 270 (4¢5%)
current 6�20 cig/day 1231 (19¢7%) 58 (18¢6%) 1173 (19¢8%)
current > 20 cig/day 243 (3¢9%) 17 (5¢4%) 226 (3¢8%)

Alcohol consumption, (%)
No, almost never 1512 (24¢4%) 89 (28¢6%) 1423 (24¢2%) 0¢14
1�4 drinks/month 1058 (17¢1%) 49 (15¢8%) 1009 (17¢2%)
2�7 drinks/week 1976 (31¢9%) 88 (28¢3%) 1888 (32¢1%)
1�3 drinks/day 1380 (22¢3%) 66 (21¢2%) 1314 (22¢4%)
4 or more drinks/day 264 (4¢3%) 19 (6¢1%) 245 (4¢2%)

Lipid-lowering drugs, (%) 446 (7¢1%) 50 (16¢0%) 396 (6¢7%) < 0¢001
Antihypertensive drugs, (%) 1130 (18¢1%) 115 (36¢9%) 1015 (17¢1%) < 0¢001
Glucose, mmol/L 4¢70 (4¢40, 5¢20) 5¢80 (5¢20, 6¢20) 4¢70 (4¢40, 5¢20) < 0¢001
eGFR, mL/min/1¢73 m2 92¢45 (16¢97) 88¢28 (16¢67) 92¢67 (16¢96) < 0¢001
UAE, mg/24 h 8¢55 (6¢02, 15¢12) 12¢81 (7¢92, 30¢91) 8¢42 (5¢99, 14¢73) < 0¢001
Biomarkers
AcAc,mmol/L 37¢83 (25¢58, 56¢85) 41¢06 (27¢91, 61¢37) 37¢72 (25¢44, 56¢58) 0¢01
Acetone, mmol/L 19¢54 (12¢53, 28¢88) 23¢12 (15¢66, 33¢20) 19¢33 (12¢41, 28¢53) < 0¢001
Albumin, g/L 44¢00 (42¢00, 45¢00) 44¢00 (42¢00, 45¢75) 44¢00 (42¢00, 45¢00) 0¢44
ALP, U/L 66¢00 (55¢00, 78¢00) 72¢00 (62¢00, 86¢00) 65¢00 (54¢00, 78¢00) < 0¢001
ALT, U/L 17¢00 (13¢00, 24¢00) 21¢50 (16¢00, 32¢75) 17¢00 (12¢00, 23¢00) < 0¢001
AST, U/L 22¢00 (19¢00, 26¢00) 24¢00 (20¢00, 29¢00) 22¢00 (19¢00, 26¢00) < 0¢001
Betaine,mmol/L 36¢90 (31¢00, 43¢90) 34¢90 (30¢20, 42¢10) 37¢00 (31¢10, 44¢00) 0¢03
BHB,mmol/L 120¢18 (91¢99, 166¢30) 140¢55 (111¢74, 187¢54) 119¢12 (91¢17, 164¢90) < 0¢001
Creatinine, mmol/L 71¢00 (62¢00, 80¢00) 73¢00 (63¢00, 82¢00) 71¢00 (62¢00, 80¢00) 0¢05
CRP, mg/L 1¢29 (0¢60, 2¢89) 2¢15 (1¢13, 3¢86) 1¢26 (0¢59, 2¢84) < 0¢001
Ferritine,mg/L 94¢00 (46¢00, 169¢00) 144¢0 (77¢75, 258¢25) 92¢00 (45¢00, 165¢75) < 0¢001
GGT, U/L 23¢00 (16¢00, 37¢00) 37¢00 (26¢00, 57¢00) 23¢00 (15¢00, 36¢00) < 0¢001
GlycA, mmol/L 369.46 (333.22, 413.16) 397.27 (351.68, 437.28) 368.40 (332.21, 411.19) < 0¢001
H1P,mmol/L 3¢45 (1¢82) 3¢13 (1¢76) 3¢46 (1¢83) 0¢002
H2P,mmol/L 10¢43 (2¢81) 11¢51 (2¢99) 10¢37 (2¢78) < 0¢001
H3P,mmol/L 3¢15 (1¢91, 4¢42) 2¢78 (1¢63, 4¢05) 3¢17 (1¢93, 4¢44) < 0¢001
H4P,mmol/L 1¢70 (1¢09, 2¢44) 1¢32 (0¢68, 2¢04) 1¢71 (1¢12, 2¢46) < 0¢001
H5P,mmol/L 0¢29 (0¢03, 0¢61) 0¢29 (0¢06, 0¢57) 0¢29 (0¢03, 0¢61) 0¢83
H6P,mmol/L 0¢62 (0¢24, 1¢37) 0¢35 (0¢14, 0¢69) 0¢64 (0¢25, 1¢40) < 0¢001
H7P,mmol/L 0¢32 (0¢12, 0¢62) 0¢17 (0¢05, 0¢37) 0¢33 (0¢13, 0¢64) < 0¢001
Hemoglobin, mmol/L 8¢51 (0¢76) 8¢76 (0¢79) 8¢50 (0¢76) < 0¢001
Hematocrit, % 0¢41 (0¢38, 0¢43) 0¢42 (0¢40, 0¢44) 0¢41 (0¢38, 0¢43) < 0¢001
Insulin, mU/L 8¢00 (5¢70, 11¢80) 13¢40 (9¢00, 20¢25) 7¢80 (5¢60, 11¢50) < 0¢001
Isoleucine,mM/L 41¢98 (32¢57, 52¢05) 50¢10 (41¢09, 62¢51) 41¢52 (32¢29, 51¢52) < 0¢001
Leucine,mM/L 124¢79 (32¢50) 142¢49 (35¢98) 123¢86 (32¢05) < 0¢001
MCV,mm3 90¢48 (4¢64) 90¢01 (5¢27) 90¢50 (4¢60) 0¢06
TC, mmol/L 5¢44 (1¢04) 5¢63 (1¢14) 5¢43 (1¢03) 0¢001
Triglycerides, mmol/L 1¢10 (0¢80, 1¢58) 1¢57 (1¢07, 2¢28) 1¢08 (0¢79, 1¢55) < 0¢001
TMAO,mmol/L 3¢20 (1¢80, 5¢70) 3¢50 (1¢90, 5¢70) 3¢20 (1¢80, 5¢70) 0¢43
Transferrin, g/L 2¢58 (0¢41) 2¢65 (0¢39) 2¢58 (0¢41) 0¢007
Urea, mmol/L 5¢00 (4¢30, 6¢00) 5¢25 (4¢50, 6¢00) 5¢00 (4¢20, 6¢00) 0¢01
Valine,mM/L 203¢13 (46¢50) 226¢56 (51¢44) 201¢90 (45¢90) < 0¢001

Abbreviations: AcAc, Acetoacetate; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI,
body mass index (calculated as weight in kilograms divided by height in meters squared); BHB, beta-hydroxybutyrate; CRP, C-reactive
protein; CVD, cardiovascular disease; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; GGT, g-glutamyltransfer-
ase; H1P � H7P: High-density lipoprotein 1�7 particles; IQR, interquartile range; MCV, mean corpuscular volume; SBP, systolic blood
pressure; TC, total cholesterol; TMAO, Trimethylamine N-Oxide; UAE, urinary albumin excretion.
Values are shown as mean (SD) or median (25th and the 75th percentile). P-values represent the significance of between developers and
non-developers of T2D. P-values were determined using a 1-way analysis of variance for normally distributed data, Kruskal-Wallis test
for skewed distributed data, and x2 test for categorical data.
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3.2. Biochemical characteristics at baseline

Between the groups of participants who developed T2D and those
who did not there were marked differences in almost all the bio-
chemical biomarkers, except for plasma albumin, HDL particle 5
(H5P), and mean corpuscular volume (Fig. 1). The following circulat-
ing biomarkers were higher in T2D developers: ketone bodies
(b-hydroxybutyrate, acetoacetate and acetone), ALP, ALT, AST, creati-
nine, hsCRP, FPG, ferritin, GGT, GlycA, H2P, hemoglobin, hematocrit,
insulin, BCAAs (isoleucine, leucine, valine), total cholesterol,



Fig. 1. Radarplot showing levels of 32 circulating biomarkers used to calculate the MD
in the groups of those developed and did not develop T2D during the follow-up. Bio-
markers concentrations are displayed in a scale from 0 to 1, were 0 represents the min-
imum value and 1 represents the maximum value. Albumin, betaine, creatinine, CRP,
ferritin, GlycA, hematocrit, hepatic enzymes, insulin, ketone bodies, triglycerides,
TMAO and urea were log transformed to normalize their distributions (n = 6247).
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triglycerides, TMAO, transferrin, and urea. Some circulating bio-
markers were lower in T2D developers: betaine, H1P, H3P, H4P, H6P
and H7P. In participants who developed T2D, UAE was higher, and
eGFR was lower (Table 1).

3.3. PCA of circulating biomarkers

Data of 32 circulating biomarkers: acetoacetate, acetone, albumin,
ALP, ALT, AST, betaine, b-hydroxybutyrate (BHB), creatinine, CRP, fer-
ritin, GGT, FPG, H1P, H2P, H3P, H4P, H5P, H6P, H7P, hemoglobin,
hematocrit, insulin, isoleucine, leucine, MCV, total cholesterol, trigly-
cerides, TMAO, transferrin, urea, valine were used in the PCA (Supple-
mental Table 2). The potential biological significance of the PCs is
depicted in a heatmap based on pairwise correlations (Fig. 2). The
five biomarkers with the highest positive correlation coefficients
were: GGT (PC24, r = 0¢49), total cholesterol (PC11, r = 0¢47), TMAO
(PC12, r = 0¢46), urea (PC12, r = 0¢46), betaine (PC4, r = 0¢45), (P-
value for all < 0¢0001 [Spearman correlation test]). The five bio-
markers with the highest negative correlation coefficients were:
GlycA (PC2, r = -0¢83), BHB (PC3, r = -0¢75), leucine (PC1, r = -0¢71),
isoleucine (PC1, r = -0¢69), valine (PC1, r = -0¢69) (P-value for
all < 0¢0001 [Spearman correlation test]).).

Biomarker loadings (the contribution of each biomarker to the
PCs) from the first two PCs were congruent with the above reported
correlations. The biomarker loadings for the first two PCs are
depicted across participants subsets (females, males, participants
younger and older than the median age of the cohort, 52 years).
Together, the first two PCs captured 26¢4% of the total data variation.
PC1 captured 16¢7% of the variation and PC2 9¢7%. In the PC1, the
loadings corresponding to BCAA, displayed the biggest differences,
being those loadings higher in the group of participants older than
52 years (D = 3%), the same was true in the comparison between men
and women, being those loadings higher in the group of men
(D = 2.2%). In the PC2, the loadings corresponding to ketone bodies
(acetoacetate, beta-hydroxybutyrate and acetone), displayed the big-
gest differences, being those loadings higher in the group of partici-
pants older than 52 years (D = 24%, 19% and 13%, respectively). The
PC2 loadings in men and women displayed more differences, being
the contribution of hemoglobin and hematocrit smaller in men, com-
pared to women (D = 8¢6% for hemoglobin and 8¢5%, respectively for
hematocrit), and the contribution of c-reactive protein and GlycA
higher in men compared to women (D = 12¢8% for c-reactive protein
and 12¢7% for GlycA) (Fig. 3).

3.4. Mahalanobis distance and risk of T2D

During a median follow-up of 7¢3 (IQR 6¢1�7¢3) years, a total of
312 participants developed T2D. Cox proportional hazard regression
analyzes were first performed using the 31 MDs calculated based on
the subsets of cumulative PCs. All of the MDs were positively associ-
ated with an increased risk of T2D (Supplemental Table 3). The asso-
ciation of the MDs with the risk of T2D differed depending on the
subset of PCs used to calculate the MDs (Supplemental Table 3). The
MD of the subset holding the first 31 PCs was the one with the stron-
gest association, with a HR of 1¢72 (95% CI 1¢42,2¢07), P < 0¢001, per 1
log-unit increase. The association remained significant after adjust-
ment for age and sex (HRadj 1¢70 (95% CI 1¢41,2¢06), P < 0¢001),
parental history of T2D, plasma glucose, lipid lowering medication
and antihypertensive medication (HRadj 1¢46 (95% CI 1¢19,1¢78),
P < 0¢001), BMI (HRadj 1¢37 (95% CI 1¢11,1¢70), P = 0¢004), and waist
circumference (HRadj 1¢33 (95% CI 1¢07,1¢64), P = 0¢01) (Table 2).

Similarly, the analyzes of MD as a categorical variable, using the
first tertile as the reference group, showed that the third tertile of
MD was associated with a higher risk of T2D in all of the models
described above, resulting in a HR of 1¢99 (95% CI 1¢51,2¢63),
P < 0¢001 and a fully adjusted HRadj of 1¢42 (95% CI 1¢10,1¢82),
P = 0¢01 (Table 2). The potential overfitting of the models was
assessed with their BIC and their AIC, showing no major difference
when using the MD of the subset holding the first 31 PCs in compari-
son with a smaller number of PCs, i.e., 3 PCs. (BIC: 5166 and 5173,
respectively and AIC: 5160 and 5169), respectively), showing that in
fact, the model that contains the MD of the subset holding the first 31
PCs performs better. Moreover, the association between risk of T2D
and the separated PCs was evaluated. We identified that only the first
6 PCs were associated with the risk of T2D; these associations were
less robust than those obtained when using the MD. (Supplemental
Table 4)

The association of the MDs with the risk of T2D was also evaluated
in men and women, separately. Notably, the association of the MDs
with the risk of T2D was greater in women than men for all the PCs
subsets (Supplemental Fig. 1.). The MD displaying the strongest asso-
ciation with T2D risk did not correspond to the same PCs subset in
men and women. In women, the MD from the first 20 PCs displayed a
HR of 2¢27 (95% CI 1¢74, 2¢96), P < 0.001; meanwhile, in men, the MD
from the 32 PCs displayed a HR of 1¢47 (95% CI 1¢14, 1¢89), P < 0.001.

To further asses the benefit of calculating the MD from the PCs
instead of using the biomarker raw information, we further evaluate
the association of the MD of the 32 circulating biomarkers with the
risk of T2D. The MD of the 32 circulating biomarkers was associated
with the risk of T2D, showing an unadjusted HR of 1¢68 (95% CI
1¢46,1¢94), P < 0¢001, per 1 log-unit increase. The association
remained after the adjustment for age and sex, (HRadj 1¢60 (95% CI
1¢38,1¢85), P < 0¢001. Nonetheless, the association did not hold after
a full adjustment (HRadj 1¢18 (95% CI 0¢98,1¢40), P = 0.07 (Supplemen-
tal Table 5). Similarly, the analyzes of MD as a categorical variable,
using the first tertile as the reference group, showed that the third
tertile of MD was associated with a higher risk of T2D in the crude
model, resulting in a HR of 1¢61 (95% CI 1¢20,2¢15), P < 0¢001; and the
association did not hold in the fully adjusted model: HRadj 1¢30 (95%
CI 0¢96,1¢76), P = 0¢09 (Supplemental Table 5).

The comparison of the traditional T2D risk model against the
enriched model that included the MD revealed that inclusion of the
MD led to a significant improvement in the classification of partici-
pants into predicted T2D risk categories, with a NRI of 0¢24 (95% CI:



Fig. 2. Heatmap showing the correlations between the circulating biomarkers and the PCs (n = 6247).
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0¢18, 0¢31) (P = 0¢001). A category-free version of the NRI (often
denoted as NRI > 0) was also computed, resulting in a NRI of 0¢74
(95% CI: 0¢64, 0¢85) (P = 0¢001).

4. Discussion

In this prospective population-based cohort study, we demon-
strated the association of MD, a proxy of homeostasis loss, with inci-
dence of T2D. MD is a novel approach for studying changes in
collections of biomarkers based on the concept of multivariate statis-
tical distance. In this study, MD measured the abnormality of the
whole biomarker profile at baseline in relation to the population
mean. The association of MD with increased risk of T2D was indepen-
dent of age and sex, as well as of anthropometric variables such as
BMI and waist circumference.

Along with the development of more efficient high throughput
techniques, it is recognized that most of the circulating metabolites
are stable over time in healthy subjects, and variations in biomarker
profiles could offer a wide-ranging indicator of changes in an individ-
ual’s health status [42]. The MD of circulating biomarkers has become
an alternative means to analyze such variations in high throughput
biomarkers and provide a quantifiable proxy of homeostasis loss.
Recently, the calculation of MD has been upgraded by replacing the
raw biomarker information with PCs [43]. The rationale of replacing
the raw biomarkers with PCs is based on the fact that PC analysis
could detect underlying processes that might simultaneously regu-
late the levels of the variables used in the analysis, but may not be
directly measurable [44]. Importantly, plasma glucose was not
included as part of the PC analysis, in order to prevent the prevailing
influence of glucose in assessing degree of homeostasis loss.

In this study, the PC1 loadings corresponding to BCAA were higher
in older participants compared to younger participants. This could
reflect the already described altered BCAA metabolism in ageing, due
to the impaired activity of the mammalian target of rapamycin
(mTOR) and mitochondrial dysfunction in ageing [45], characterized
by the downregulation of the branched chain aminotransferase 2
[46]. The PC2 loading depicted important differences among the sub-
groups. This could further correspond to the ageing-induced
impairment of ketone body oxidation, regulated by the succinyl-CoA-
acetoacetate transferase [47]. Remarkably differences were identified
between men and women, in relation to the contribution of inflam-
matory markers to the PC2 loading, C-reactive protein and GlycA



Fig. 3. Barplots showing circulating biomarker loadings for the 1st and 2nd PCs across participants subsets (Fig. 3a and b, respectively). Each panel contains the loadings (from left to
right) for the whole population (n = 6247), females (n = 3158), males (n = 3089), participants younger than 52 years (n = 3146) and older than 52 years (n = 3101) (the median age
was selected as cutoff point).
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were among the more important contributors to PC2 in men, but its
contribution to PC2 in women was remarkably low. Such findings are
in line with the reports of a reduced activation and recruitment of
leucocytes in women, due to an enhanced response of pro-resolving
mediators, including the D-resolvins. Those sex-differences in inflam-
matory response have been suggested to underly lower incidence of
cardiovascular disease in women [48].

The use of PCs accounts for the assessment of the intervariability
of biomarkers; previous studies have shown that the PCs could pro-
vide an insight of homeostasis dysregulation across multiple physio-
logical systems in patients with chronic diseases, such as T2D and
chronic kidney disease [44,49]. The current analyzes revealed that,
when MD was calculated based on different cumulative sets of PCs,
the association of MD with the risk of T2D was stronger (Supplemen-
tal Fig. 1.). This finding reflects the fact that the interactions among
biomarkers, better depicts the metabolic changes in the subjects at
risk of T2D, rather than the independent effects of individual circulat-
ing biomarkers. These results are in line with previous findings
reporting similar performance of MD, but in the context of ageing-
related outcomes [43]. In our study, the calculation of the MD based
on the cumulative set of PCs, instead of the raw biomarker informa-
tion, helped to depict the association of the MD with the incidence of



Table 2
Prospective associations of MD as continuous and as categorical variable with risk of T2D.

MD as continuous variable MD as categorical variable

MD per 1 log unit increment Tertile 1 Tertile 2 Tertile 3

Participants, n 6247 2083 2082 2082

Events, n 312 78 92 142

HR (95 % CI) P value HR (95 % CI) P value HR (95 % CI) P value

Crude Model 1¢72 (1¢42,2¢07) <0¢001 (ref) 1¢15 (0¢85,1¢56) 0¢36 1¢99 (1¢51,2¢63) <0¢001
Model 1 1¢70 (1¢41,2¢06) <0¢001 (ref) 1¢18 (0¢87,1¢60) 0¢28 2¢00 (1¢52,2¢64) <0¢001
Model 2 1¢46 (1¢19,1¢78) <0¢001 (ref) 1¢10 (0¢80,1¢50) 0¢55 1¢49 (1¢12,1¢98) 0¢006
Model 2b 1¢42 (1¢16,1¢75) <0¢001 (ref) 1¢03 (0¢75,1¢41) 0¢86 1¢44 (1¢08,1¢92) 0¢01
Model 3 1¢37 (1¢11,1¢70) 0¢004 (ref) 1¢02 (0¢75,1¢40) 0¢88 1¢42 (1¢10,1¢82) 0¢01
Model 4 1¢33 (1¢07,1¢64) 0¢01 (ref) 1¢01 (0¢74,1¢39) 0¢96 1¢29 (1¢07,1¢77) 0¢02

Data are presented as hazard ratios (HRs) with 95% confidence intervals (CIs) and P values of MD as continuous variable (per 1
log unit increment) and as categorical variable (with the first tertile of MD as reference). MD was calculated using the subset
of the first 31 PCs. P-values were determined using Cox Proportional-Hazards models.
Model 1. Model adjusted for age and sex.
Model 2. Model 1 plus adjusted for plasma glucose, parental history of T2D, lipid lowering medication and antihypertensive
medication.
Model 2b. Model 1 plus adjusted for plasma glucose, parental history of T2D, lipid lowering medication, systolic blood pressure
and personal history of CVD.
Model 3. Model 2 plus adjusted for BMI.
Model 4. Model 2 plus adjusted for waist circumference.
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T2D. Of note, this approach has been previously employed for the
investigation of the association of the MD with mortality. Leung et al.
computed the MD using the cumulative PCs of 36 circulating bio-
markers, and reported a positive association between the MD and the
risk of mortality [50]. They found the highest association using the
MD based on the first half of PCs, and they reported a critical decline
in the association when the last PCs were included in the calculation
of the MD. They have argued that the last PCs may represent mea-
surement error or other types of noise [50]. In our analysis, the inclu-
sion of the first 31 PCs represented the strongest association with T2D
risk, and the inclusion of the last PC did not further improve the asso-
ciation. Moreover, based on the Akaike Information Criterion and the
Bayesian Information Criterion, we found no evidence of overfitting.

The MD was originally developed as a tool to classify subjects
based on the joint distribution of different variables and since its
application has been restricted to such purposes [51]. It is worth not-
ing that the results of the MD calculation do not merely represent a
combination of the biomarkers concentrations, (such as through a
PCA), and its association with physiological dysregulation in humans
and animals, could remain even when the MD is uncorrelated
with its component biomarkers or if such biomarkers are not
individually associated with a higher risk of developing a specific
clinical outcome [37].

Milot et al., had previously reported the non-significant associa-
tion between the MD calculated from two different sets of bio-
markers [37]. The first set included the concentrations of alanine
amino transferase, albumin, albumin/globulin ratio, aspartate amino
transferase, calcium, C-reactive protein, Hemoglobin, hematocrit,
interleukin 6, iron, and red blood cell count, the MD calculated from
this set resulted in a Relative Risk of 1¢23 (95% CI 0¢77, 2¢00),
P > 0¢05. The second set of biomarkers included the plasma concen-
trations of albumin, basophil count, urea/creatinine ratio, calcium,
cholesterol, chloride, creatinine, bilirubin, hematocrit, hemoglobin,
osteocalcin, potassium, red blood cell count and sodium, the MD cal-
culated from this set resulted in a Relative Risk of 1¢07 (95% CI 0¢76,
1¢50), P > 0¢05 [37].

Bearing in mind that T2D has differs in prevalence and conse-
quences between men and women, with women having T2D being at
higher risk of complications [52], we considered it of interest to fur-
ther explore the association of the MDs with the risk of T2D sepa-
rately in men and women. The association of the MDs with the risk of
T2D was greater in women than men (Supplemental Fig. 1.). These
results are in line with the findings previously reported by Li et al.
about the association between T2D with the MD calculated from 37
biomarkers. In their study, the association was evaluated in two
cohorts: Aging in Chianti, (InCHIANTI) and the Women's Health and
Aging Study (WHAS); in these, the association of MD with T2D was
stronger in theWHAS cohort (OR: 1¢22, 95% C.I. 1¢08, 1¢39), compared
to the CHIANTI cohort that included men and women (OR: 1¢12, 95%
CI 1¢00, 1¢25) [53]. These results highlight sex differences in the con-
text of T2D pathogenesis. Considering that a higher MD represents a
higher degree of homeostasis lost, this finding could signify that once
homeostasis regulation is lost, clinical and biochemical risk factors
for T2D with sexual dimorphism, such as the higher body fat percent-
age, fetuin-A, a protein secreted primarily by the liver that regulates
insulin signaling [54], neurotensin, a neuro peptide associated with
satiety and gut motility [55], sex hormone�binding globulin [56],
among others, may exert a major effect. The fact that the MD could
better assess the risk of T2D in women could be of pathophysiological
relevance, given that typical risk factors are insufficiently able to dis-
tinguish the shift from a healthy to an unhealthy phenotype. For
instance, in a recent study including more than 90,000 women, 84%
of the participants progressed from a from metabolic healthy pheno-
type to a metabolic unhealthy phenotype, irrespectively of BMI cate-
gory [57]. Here we reported that the inclusion of MD to a risk model
improved the NRI, using predefined T2D risk categories, and also
using a category-free version of the NRI (often denoted as NRI > 0).
Whereas some authors argue that a category-free NRI may represent
a more objective measurement of the improvement in risk prediction
because it does not lose information due to categorization [58], other
authors have argued that it may overestimate the risk prediction
improvement and may not reflect its clinical utility [59].

We acknowledge several strengths of the present study. This
study included a large number of participants which allowed us to
conduct our analysis with sufficient statistical power. Another
strength of the present study is the implementation of robust and
validated methods of quantification of novel biomarkers such as
betaine, BCAAs, HDL subspecies, and TMAO by means of NMR spec-
troscopy. To the best of our knowledge, this study is the first to assess
the loss of homeostasis with the use of MD of the PCs that contain the
information of traditional and novel biomarkers associated with the
risk of T2D development.
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We are also aware of the limitations of the study. The PREVEND
population is mainly comprised of individuals with European ances-
try, which limits the generalizability of our findings to persons with
different ethnicities. We did not have measurements of biomarkers
beyond baseline assessment, which impedes us from evaluating the
evolution of the biomarker profiles and therefore the MDs and its
association with T2D risk. This fact limits our ability to describe the
underlying biological mechanisms. For the same reason, the absence
of repeated biomarker measurements prevents us from correcting
our analysis for regression dilution. Moreover, the sample size of our
study, prevents us from performing a cross-validation analysis.
Finally, considering that the MD is a metric that has been proposed to
identify outliers in multidimensional datasets [60], it is important to
further investigate how the presence of outliers could potentially
affect the performance of the MD in the assessment of T2D risk. In
this study, a sensitivity analysis conducted in a dataset after outliers
removal, the association of the MD with T2D risk remained similar to
the association found in the original dataset, being the HRs (1¢85
(95% CI 1¢47,2¢33), P < 0¢001) and (1¢72 (95% CI 1¢42,2¢07),
P < 0¢001), in the dataset after removal of outliers and in the original
dataset, respectively. Further research in this regard is needed.

5. Conclusion

This large-scale cohort study demonstrated that higher MD, a
novel method for measuring homeostasis loss, is positively associated
with incident T2D in both men and women in the general population
during extended follow-up. The performance of MD increased by
including a larger set of PCs in its calculation, supporting the notion
that diminished homeostasis regulation is a result of the interactions
among biomarkers, not just their independent effects.
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