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Abstract T cells play a critical role in the adaptive immune response, recognizing peptide anti-
gens presented on the cell surface by major histocompatibility complex (MHC) proteins. While 
assessing peptides for MHC binding is an important component of probing these interactions, 
traditional assays for testing peptides of interest for MHC binding are limited in throughput. Here, 
we present a yeast display- based platform for assessing the binding of tens of thousands of user- 
defined peptides in a high- throughput manner. We apply this approach to assess a tiled library 
covering the SARS- CoV- 2 proteome and four dengue virus serotypes for binding to human class II 
MHCs, including HLA- DR401, -DR402, and -DR404. While the peptide datasets show broad agree-
ment with previously described MHC- binding motifs, they additionally reveal experimentally vali-
dated computational false positives and false negatives. We therefore present this approach as able 
to complement current experimental datasets and computational predictions. Further, our yeast 
display approach underlines design considerations for epitope identification experiments and serves 
as a framework for examining relationships between viral conservation and MHC binding, which 
can be used to identify potentially high- interest peptide binders from viral proteins. These results 
demonstrate the utility of our approach to determine peptide- MHC binding interactions in a manner 
that can supplement and potentially enhance current algorithm- based approaches.

Editor's evaluation
This paper will be of interest to immunologists who study T cell recognition and informaticians who 
predict peptide ligands for MHC. It rigorously innovates a high- throughput approach to identify 
MHC ligands of pathogens on the proteome level using a previously developed yeast display- based 
platform, including ligands not identified by computational prediction. The data support the conclu-
sions well and open a direction for future work to address the immunological significance of the 
findings.

Introduction
Major histocompatibility complex (MHC) proteins play a critical role in adaptive immunity by 
presenting peptide fragments on the surface of cells. Peptide- MHCs (pMHCs) are then surveilled 
by T cells via their T cell receptors (TCRs), enabling immune cells to sense dysfunction, such as the 
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presence of pathogen- derived peptides (Chaplin, 2010; Hennecke and Wiley, 2001). Class II MHC 
molecules (MHC- II) are expressed primarily on professional antigen- presenting cells, and are recog-
nized by antigen- specific CD4+ T cells that drive the coordination of innate and adaptive immune 
responses (Chaplin, 2010; Swain et  al., 2012). MHC- II molecules have an open peptide- binding 
groove, allowing for display of long peptides, consisting of a nine amino acid ‘core’ flanked by a vari-
able number of additional residues on each side (Jones et al., 2006).

Generating reliable and rapid data on peptide- MHC binding is beneficial for understanding the 
underlying biology of adaptive immunity and for clinical applications, including for optimized T cell 
epitopes in vaccine design (Dai et al., 2021; Keskin et al., 2019; Liu et al., 2020; Liu et al., 2021b; 
Moise et al., 2015; Ott et al., 2017; Patronov and Doytchinova, 2013; Rosati et al., 2021). In 
fact, therapeutics to generate antigen- specific T cell responses have shown great promise in cancer 
(Keskin et al., 2019; Ott et al., 2017) and infectious disease (Gambino et al., 2021). Since under-
standing peptide- MHC binding is critical for identifying and engineering T cell epitopes, there have 
been sustained efforts to produce high- quality experimental data and predictive algorithms.

Initial experimental methods for determining peptide binding to MHC relied upon the analysis 
of synthesized candidate peptides via MHC stability or functional assays, and can produce high- 
confidence data, but can be difficult to scale beyond a small number of candidate peptides (Altmann 
and Boyton, 2020; Justesen et al., 2009; Mateus et al., 2020; Sidney et al., 2010; Yin and Stern, 
2014). More recently, mass spectrometry- based approaches have been demonstrated for deter-
mining the MHC- presented peptide repertoire of cells. These approaches include monoallelic mass 
spectrometry, which allows for the unambiguous assignment of presented peptides to a given MHC 
allele. However, mass spectrometry- based approaches are not necessarily quantitative measures of 
presented peptide affinity or abundance, although there have been advances in quantitation using 
internal standards (Stopfer et al., 2021; Stopfer et al., 2020). Additionally, the peptides endoge-
nously expressed by a cell can crowd out exogenously examined peptides of interest, and mass spec-
trometry approaches typically require large numbers of input cells (Abelin et al., 2019; Abelin et al., 
2017; Parker et al., 2021; Purcell et al., 2019).

A wave of higher throughput approaches have been recently developed for studying peptide- MHC 
interactions, including yeast display (Jiang and Boder, 2010; Liu et  al., 2021a; Rappazzo et  al., 
2020; Wen et al., 2008) and mammalian display- based methods (Obermair et al., 2022). Many of 
these assays rely upon construction of DNA- based libraries (Jiang and Boder, 2010; Obermair et al., 
2022; Rappazzo et al., 2020; Wen et al., 2008), although approaches using chemically synthesized 
peptides have also recently been described (Liu et al., 2021a; Smith et al., 2019). DNA libraries have 
been generated either via DNA oligonucleotide synthesis (Jiang and Boder, 2010; Obermair et al., 
2022; Rappazzo et al., 2020) or random fragmentation and insertion of viral genomic material (Wen 
et al., 2008). Upon assembly of the peptide libraries, peptide stabilization and surface expression 
(Jiang and Boder, 2010; Obermair et al., 2022; Wen et al., 2008) or peptide dissociation (Rappazzo 
et al., 2020) were used to assess peptide- MHC binding.

In addition to experimental advances, computational approaches for peptide- MHC binding predic-
tion have advanced markedly over the past decade. These developments are due to algorithmic 
advances (O’Donnell et al., 2020; Racle et al., 2019; Reynisson et al., 2020; Zeng and Gifford, 
2019) and the availability of large, high- quality training data (Abelin et al., 2019; Abelin et al., 2017; 
Rappazzo et al., 2020; Reynisson et al., 2020). However, despite the improvements in predicting 
peptide binding to MHC in a broad sense, the predictive power for individual peptides often remains 
imperfect relative to experimental measurements (Rappazzo et al., 2020; Zhao and Sher, 2018).

Here, we present a yeast display approach to directly assess peptide- MHC binding for large 
collections of defined peptide antigens to screen whole viral proteomes for MHC- II binding in high 
throughput. We utilize this approach to screen the full proteome of SARS- CoV- 2, a present, global 
threat to public health, and identify and experimentally validate SARS- CoV- 2- derived MHC binders, 
including both algorithmically predicted and algorithmically missed peptide binders, highlighting 
the potential of this approach to supplement or augment prediction algorithms. We additionally 
apply this approach to screen proteomes from serotypes 1–4 of dengue viruses, in which antibody- 
dependent enhancement results in more severe disease upon second infection with a different 
dengue virus serotype (Guzman et al., 2016), and thus represents a potential important applica-
tion area for T cell- directed therapeutics. Our approach enables exploration of peptide binding to 
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MHCs in the context of serotype- specific mutations, identifying homologous, pan- serotype regions 
of interest that are capable of MHC binding and thus may represent desirable targets for immune 
interventions.

Results
Generation of yeast display libraries for profiling the SARS-CoV-2 
proteome
Previous studies have reported the use of yeast- displayed MHC- II for characterizing peptide- MHC 
and pMHC- TCR interactions (Rappazzo et al., 2020; Birnbaum et al., 2014; Rappazzo et al., 2020, 
Fernandes et al., 2020). We adapted MHC- II yeast display constructs (Rappazzo et al., 2020) to 
generate a defined library of peptides that cover the SARS- CoV- 2 proteome to assess them for MHC 
binding. To compare SARS- CoV- 2 with a related coronavirus, we also included peptides from the spike 
and nucleocapsid proteins from SARS- CoV.

Each protein was windowed into peptides of 15 amino acids in length, with a step size of 1 to cover 
every possible 15mer peptide in the protein (Figure 1a). Each peptide was encoded in DNA and 
cloned in a pooled format into yeast vectors containing MHC- II proteins. The generated library was 
linked to three MHC- II alleles: HLA- DR401 (HLA- DRA1*01:01, HLA- DRB1*04:01), HLA- DR402 (HLA- 
DRA1*01:01, HLA- DRB1*04:02), and HLA- DR404 (HLA- DRA1*01:01, HLA- DRB1*04:04). Yeast were 
formatted with a flexible linker connecting the peptide and MHC, containing a 3C protease site and a 
Myc epitope tag, which can be used for selections (Figure 1a; Rappazzo et al., 2020). The final library 
contained 11,040 unique peptides, with 99% of the designed peptides present in each cloned yeast 
library, as assessed by next- generation sequencing.

Strategies for selecting defined libraries
To enrich for peptide binders, iterative selections were performed (Figure 1a): the library is first incu-
bated with competitor peptide and 3C protease, which cleaves the covalent linkage between peptide 
and MHC, followed by the addition of HLA- DM at lower pH. These conditions allow for the encoded 
peptide to be displaced from the peptide- binding groove. The Myc epitope tag is proximal to the 
peptide, which can be identified via incubation with an anti- epitope tag antibody followed by enrich-
ment via magnetic bead selection if the yeast- expressed peptide remains bound to the MHC after the 
peptide exchange reaction.

Three rounds of selection were iteratively performed. Representative enrichment of yeast expressing 
Myc- tagged peptides can be seen in Figure 1c (‘undoped library’), for the library displayed by HLA- 
DR401. Here, the pre- selection Myc- positive population starts at 29.3% and quickly converges, with 
65.0% positive in the pre- selection Round 2 population and 74.1% in the pre- selection Round 3 
population.

Given the rapid convergence of the library, we performed a second set of selections in which we 
doped the defined library into a randomized, null library to enable a greater degree of enrichment 
as compared to non- binding peptides. The null library was generated by fully randomizing 10 amino 
acids in the peptide region of the peptide- MHC- II construct while fixing three amino acids to encode 
stop codons. This library provides a baseline population of yeast which should not express pMHC, and 
therefore not enrich in our selections. We doped our defined peptide library into a 500- fold excess 
of null library, such that each peptide member was represented at approximately the same frequency 
(Figure 1b). The null library provides baseline competition, which true binders must enrich beyond, 
and increases the stringency of the enrichment task.

We performed four rounds of selection on the doped library. Because of the excess of null yeast, 
the initial pre- selection stain is low (1.6%) compared to the initial undoped library (Figure 1c). This 
staining enriched over the first three rounds of selection, reflective of the stringency of the task and 
clarity of enrichment. This is in contrast to the initial undoped library, which began with a much higher 
pre- selection stain, with a lower fold change in staining over rounds of selection. The low frequency 
of each member in the starting doped library, however, increases the likelihood of stochastic dropout 
for any given member.

https://doi.org/10.7554/eLife.78589
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Figure 1. Overview of library and selections. (a) The defined library contains pathogen proteome peptides (length 15, sliding window 1). Poor binding 
peptides are displaced with addition of protease, competitor peptide, and HLA- DM. (b) Schematic of doped and undoped libraries: in the doped 
selection strategy, the library is added to a library of null, non- expressing constructs. (c) Representative flow plots showing enrichment of MHC- 
expressing yeast over rounds of selection for the library containing SARS- CoV- 2 and SARS- CoV peptides on HLA- DR401.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Correlations between selection rounds.

https://doi.org/10.7554/eLife.78589
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Analysis of selection data
After selections, peptide identities were determined through deep sequencing of enriched yeast 
populations, providing us with a dataset comprised of positive enrichment over four rounds of selec-
tion from the doped library and both positive and negative enrichment for three rounds of selec-
tion from the undoped library (Supplementary file 1a). Figure 1—figure supplement 1 shows the 
correlation between defined library members on HLA- DR401. As expected, the unselected library 
correlated poorly with post- selection rounds. Consistent with the observed staining (Figure 1c), the 
doped library essentially converged after Round 3. Similarly, the undoped library appears converged 
following Round 2.

Next, we established metrics for enrichment for each mode of selection. Given the high starting 
frequency of members in the undoped library, we classify enrichment based on fold change between 
Round 1 and Round 2, and we define criteria for enriched yeast in the undoped library as making up 
a higher fraction of reads following Round 2 compared to Round 1. In contrast, in the doped library, 
members start at low frequencies, and we define enrichment based on presence above a threshold 
in Round 3 of selection, specifically as having greater than or equal to 10 reads following Round 3. 
Figure 2b illustrates the correspondence between enrichment metrics in the doped and undoped 
library for the library on HLA- DR401. Of the 11,040 peptides in the library, 2467 enriched in both the 
doped and undoped libraries displayed by HLA- DR401 (Figure 2a). An additional 1252 enriched in 
the doped library only and 797 enriched in the undoped library only.

Because the library is designed with a step size of 1, we next utilized overlap between adjacent 
peptides to determine high- confidence binders. This analysis allows us to address the potential that 
peptide sequences could register shift in such a way that invariant portions of the linker sequences 
could inadvertently be incorporated into the peptide- binding groove. To do this, we develop and 
implement a smoothing method, examining overlapping peptides for shared enrichment behavior. 
Classically, the strongest determinant of peptide affinity for an MHC is the nine amino acid stretch 
sitting within the peptide- binding groove (Jones et al., 2006; Stern et al., 1994), although proximal 
peptide flanking residues can also affect binding (Lovitch et al., 2006; O’Brien et al., 2008; Zavala- 
Ruiz et al., 2004). In our libraries, a given 9mer is present in seven overlapping 15mer peptides, 
and we calculate how many of these seven 15mers have enriched. This calculation is shown sche-
matically in Figure 2—figure supplement 1a with toy sequences and applied to enrichment data 
for SARS- CoV- 2 nucleocapsid on HLA- DR401 in Figure 2—figure supplement 1b. Sequences with 
good 9mer cores should enrich along with neighboring sequences with the same 9mer sequence. 
In contrast, sequences which enrich spuriously or due to linker sequence in the peptide groove or 
other stochastic factors should have few neighbor sequences also enriching. Thus, we define a cutoff 
for high- confidence 9mer enrichment of five out of seven 9mer- containing sequences enriching. This 
cutoff tolerates some stochastic dropout, while still disallowing any cores that may solely enrich by 
register shifting the Gly- Ser linker residues into the Position 9 pocket, which are favorable for each 
MHC allele in our study (Abelin et al., 2019; Rappazzo et al., 2020; Reynisson et al., 2020). Of the 
2467 peptides which enriched in both the doped and undoped libraries for HLA- DR401, 1791 also 
contain a 9mer sequence which enriched in five or more peptides of the seven neighboring sequences 
containing it (Figure 2a), with 676 peptides enriching in both doped and undoped libraries but not 
containing a 9mer core enriched in five or more peptides, and 788 15mers containing a 9mer which 
enriched in five or more peptides but enriched in zero or one of the doped and undoped libraries. 
These full relationships are captured in Venn diagrams in Figure 2—figure supplement 2 for all three 
MHC alleles studied here.

Sequence motifs of enriched peptides are consistent with known 
binders and highlight considerations for designing epitope 
identification experiments
To examine the 9mer core motifs of enriched peptides, we utilized a position weight matrix (PWM) 
method to infer the peptide register and generated visualizations of the 9mer cores using Seq2Logo 
(Thomsen and Nielsen, 2012). Figure 2c shows a sequence logo of the aligned 9mer cores from 
the 2467 15mer peptides which enriched on HLA- DR401 in both doped and undoped libraries. The 
peptide motif is consistent with previously reported motifs for HLA- DR401 (Abelin et  al., 2019; 
Rappazzo et al., 2020): hydrophobic amino acids are preferred at P1, acidic residues at P4, polar 

https://doi.org/10.7554/eLife.78589
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Figure 2. Output of selections and analysis of selection data. (a) Overview of filtering peptides and correspondence between selection strategies 
for SARS- CoV and SARS- CoV- 2 library on HLA- DR401. Peptides are filtered for enrichment in both doped and undoped libraries. Further, the 
relationship between these peptides and peptides which contain a 9mer that is enriched in five or more of the seven peptides containing it is shown. 
(b) Relationships between enrichment in doped and undoped libraries. Absolute counts following Round 3 of selection of the doped library are plotted 
against the log2 fold change between read fraction for peptides in Round 2 and Round 1. Data are shown for the library on HLA- DR401. (c) Sequence 
logo of 2467 peptides that enriched in both doped and undoped selected libraries for HLA- DR401. Registers are inferred with a position weight matrix- 
based alignment method. Logos were generated with Seq2Logo- 2.0.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure 2 continued on next page
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residues at P6, and small residues at P9. We also observe some preference for glycine at P8 in the 
sequence logo, which is potentially an artifact of non- native registers with linker at P8 and P9.

The other alleles used in the study, HLA- DR402 and HLA- DR404, have polymorphisms in their 
peptide- binding groove sequences as compared to HLA- DR401, which affect binding preferences. 
HLA- DR401 differs from HLA- DR402 at four amino acids and from HLA- DR404 at two amino acids, with 

Figure 3. Comparing HLA- DR401, HLA- DR402, and HLA- DR404 for binding to related spike proteins from SARS- CoV- 2 and SARS- CoV. (a) Sequence 
alignment showing sequence differences in HLA- DR402 and HLA- DR404 compared to HLA- DR401 and highlighted on HLA- DR401 structure (PDB 
1J8H). Colors are: red for amino acids shared between HLA- DR401 and HLA- DR404, green for amino acids shared between HLA- DR402 and HLA- 
DR404, and yellow for amino acids different in all three alleles. Affected peptide positions (P1, P4, P5, P7) are colored in blue and labelled on the 
structure. (b) Conservation and enrichment of 9mer peptides from SARS- CoV- 2 and SARS- CoV spike proteins. Conserved 9mers are indicated in black. 
If a 9mer along the proteome enriched in five or more of the adjacent peptides containing it, its enrichment is indicated with a vertical line with color 
for allele (HLA- DR401: blue; HLA- DR402: red; HLA- DR404: gray) and opacity for virus (SARS- CoV- 2: dark; SARS- CoV: light). (b–e) Zoomed regions show 
enrichment of individual 15mer peptides. Only peptides containing the bolded 9mer sequence are shown. Amino acids in the bolded 9mer that are not 
conserved between SARS- CoV- 2 and SARS- CoV are highlighted in yellow.

Figure supplement 1. Utilizing overlapping peptides to call high- confidence peptides.

Figure supplement 2. Full Venn diagrams.

Figure supplement 3. Sequence logo for HLA- DR402 and HLA- DR404.

Figure 2 continued

https://doi.org/10.7554/eLife.78589
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all polymorphisms located in the beta chain. HLA- DR402 and HLA- DR404 share an amino acid distinct 
from HLA- DR401 affecting the P1 pocket (Gly86Val), resulting in a preference for smaller hydrophobic 
residues (Figure 3a). Three polymorphisms in HLA- DR402 affect P4, P5, and P7 compared to HLA- 
DR401 (Leu67Ile, Gln70Asp, and Lys71Glu), while HLA- DR404 has only one (Lys71Arg). Sequence 
logos for HLA- DR402 and HLA- DR404 are consistent with previously reported motifs and MHC 
polymorphisms (Figure 2—figure supplement 3). For HLA- DR402, we observe less P4 preference 
compared to the motif of HLA- DR402 binders enriched from a randomized yeast display peptide 
library (Rappazzo et al., 2020), albeit consistent with mass spectrometry- generated motifs which also 
showed minimal P4 preference for HLA- DR402 (Abelin et al., 2019).

To explore differences between mass spectrometry, defined libraries, and random libraries, and 
to probe the differing strengths of P4 peptide preference observed for HLA- DR402 between these 
modalities, we examined the compositions of randomized and defined libraries. We hypothesized 
that skewed amino acid abundances in nature, which are reflected in the defined library, could result 
in an apparent diminished amino acid preference. Indeed, three of the most preferred P4 residues for 
binding HLA- DR402, Trp, His, and Met (Rappazzo et al., 2020), are all low abundance in the SARS- 
CoV- 2 proteome (Trp 1.1%, His 1.9%, Met 2.2%). In comparison, a randomized peptide library for 
HLA- DR402 (Rappazzo et al., 2020) had a higher representation of these amino acids (Trp 3.8%, His 
2.9%, Met 3.8%). Additionally, the randomized library had approximately 9000- fold more members 
than the defined library, providing more instances of all amino acids. The low abundance and under-
representation of these amino acids likely underlies the apparent lack of amino acid consensus at P4 in 
enriched peptides. Interestingly, Arg and Lys, which have also been reported as preferred HLA- DR402 
P4 residues, are more abundant than Trp, His, and Met in the SARS- CoV- 2 proteome (Arg 3.4% and 
Lys 5.9%; compare to Arg 9.7%, Lys 4.0% in the random library), but still show less representation at 
P4 in the defined library enriched peptides compared to the random library- enriched peptides. These 
differences in motifs between randomized and defined libraries highlight the utility of randomized 
libraries for downstream applications such as training prediction algorithms. Approaches influenced 
by amino acid abundance in nature, such as defined libraries and mass spectrometry approaches, 
could inadvertently bias against possible binders because of absence of amino acids in their null distri-
bution, rather than true binding preference.

Next, we wanted to examine the distribution of peptides among the possible 9mer registers along 
each 15 amino acid sequence. Based on our register inference, of the 2467 enriched peptides from 
the HLA- DR401 library, 1610 peptides bound native 9mer cores without using any linker sequence 
residues in the 9mer core, which is consistent with theoretical ratios of possible native and non- native 
cores for a given 9mer (Supplementary file 1b). The peptides with predicted native 9mer cores 
were approximately equally distributed between possible registers, with the exception of the N- ter-
minal register, which had one- third fewer peptides. This register had only a single N- terminal flanking 
residue (a fixed Ala), which is likely disfavored.

Because the library was designed with step size of one, many of the 9mer cores will be repeated 
among neighboring peptides. Of the 1610 HLA- DR401 peptides which enriched using a native 9mer 
core, there are 563 unique 9mer cores identified through register inference. Table  1 summarizes 
enrichment for each protein included in the library, highlighting the number of 15mers which enriched 
in both the doped and undoped libraries, the number of unique native 9mer cores, and the number of 
15mers containing a 9mer enriched in at least five of seven overlapping peptides.

Examining relationships between MHC-specific binding and spike 
proteins from SARS-CoV-2 and SARS-CoV
To further explore relationships between the MHCs studied here and their virally derived peptide 
repertoires, we compared the binding of SARS- CoV- 2 and SARS- CoV spike proteins to all three MHC 
alleles. Sequence alignment of these three MHC alleles is shown in Figure  3a, with polymorphic 
regions highlighted on an HLA- DR401 structure (adapted from PDB 1J8H). Interplay between viral 
conservation and binding are illustrated in Figure 3b, highlighting conserved regions of the proteome 
in black and binders to each allele in gray, red, and blue. Regions are highlighted where sequences 
enrich in overlapping peptides; that is, for each nine amino acid stretch along the proteome, we 
calculated how many of the seven 15mer peptides enrich in the yeast display assay, and if a 9mer 
enriched five or more times, it is marked as a hit. Specific examples of these relationships are probed 

https://doi.org/10.7554/eLife.78589
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Table 1. Summary of enriched peptides for each source protein, including: the number of unique 15mers which each enriched in 
both of the doped and undoped libraries; the number of unique 9mer cores identified by register inference in these enriched 15mers 
(native cores only, so linker- containing inferred cores excluded); and the number of unique enriched 15mers that contain 9mer 
sequences enriched in five or more of overlapping neighbors.

Virus Protein
Protein length
(# of amino acids) MHC allele # of 15mers # of 9mer cores # of smoothed 15mers

SARS- CoV Spike 1255

HLA- DR401 324 74 221

HLA- DR402 217 65 110

HLA- DR404 289 61 193

SARS- CoV Nucleocapsid 422

HLA- DR401 40 8 34

HLA- DR402 34 13 12

HLA- DR404 31 6 20

SARS- CoV- 2 Spike 1273

HLA- DR401 305 67 221

HLA- DR402 230 62 130

HLA- DR404 290 64 217

SARS- CoV- 2 Nucleocapsid 419

HLA- DR401 34 8 24

HLA- DR402 33 10 15

HLA- DR404 30 8 18

SARS- CoV- 2 Replicase polyprotein 1ab 7096

HLA- DR401 1652 388 1204

HLA- DR402 1104 325 678

HLA- DR404 1368 350 890

SARS- CoV- 2 Non- structural protein 8 121

HLA- DR401 41 10 32

HLA- DR402 21 7 17

HLA- DR404 32 8 19

SARS- CoV- 2 Protein 7a 121

HLA- DR401 27 8 18

HLA- DR402 7 3 0

HLA- DR404 13 2 6

SARS- CoV- 2 Non- structural protein 6 61

HLA- DR401 0 0 0

HLA- DR402 1 1 0

HLA- DR404 0 0 0

SARS- CoV- 2 Membrane protein 222

HLA- DR401 40 7 29

HLA- DR402 26 6 19

HLA- DR404 23 7 21

SARS- CoV- 2
Envelope small membrane 
protein 75

HLA- DR401 6 1 0

HLA- DR402 7 3 0

HLA- DR404 6 1 0

SARS- CoV- 2 Protein 3a 275

HLA- DR401 22 4 11

HLA- DR402 13 4 10

HLA- DR404 10 2 0

 

 

SARS- CoV- 2

 

 

Replicase polyprotein 1a

 

 

4405

HLA- DR401 948 228 658

HLA- DR402 657 196 409

HLA- DR404 865 222 582

Table 1 continued on next page
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in Figure 3c,d,e, where individually enriched 15mer sequences are represented as horizontal lines 
above 15mer stretches in the proteome. Bolded 9mers are identified through register inference as 
consensus binding cores for these peptides. Only 15mers which contain the bolded 9mer are included 
in this representation. Non- conserved amino acids within this 9mer are highlighted in yellow.

Figure 3c illustrates a region that is not conserved between SARS- CoV- 2 and SARS- CoV, where the 
SARS- CoV- 2 peptides containing the core IYQAGSTPC are enriched for binding to all three MHCs, 
but mutations, including at both P1 and P4 to Proline, discourage binding of the aligned SARS- CoV 
peptide. Figure 3e illustrates a core that is conserved between SARS- CoV and SARS- CoV- 2, which can 
bind only to HLA- DR401, but not to HLA- DR402 or HLA- DR404, likely due to the size of the P1 hydro-
phobic residue and, for HLA- DR402, the acidic P4 residue. Figure 3d illustrates relationships between 
both viral conservation and MHC preference. In Figure 3d, the SARS- CoV peptides containing the 
core IKNQCVNFN can bind to all three alleles. However, the aligned SARS- CoV- 2 peptides containing 
the core VKNKCVNFN do not bind to HLA- DR401, likely because of the less preferable P1 Valine and 
basic P4 Lysine, but can bind to HLA- DR402, which prefers these residues. These peptides can bind 
to HLA- DR404, although only four of the adjacent peptides containing this core enrich, which is below 
the cutoff of five or more, and since no other adjacent peptides enriched, this would not have been 
classified as a binder (reflected in Figure 3b). This marginal, but below- threshold binding is logical, 
given that the P4 pocket for HLA- DR404 is similar to HLA- DR401, which does not prefer P4 Lysine, 
but HLA- DR404 has the same P1 binding pocket as HLA- DR402, which both prefer the P1 Valine in 
the SARS- CoV- 2 peptide.

Identifying peptide binders missed by computational prediction
Next, we compared our direct experimental assessments with results from computational MHC 
binding predictions. Prediction algorithms allow for rapid computational screening of potential 
peptide binders (Abelin et al., 2019; Reynisson et al., 2020), although they can contain systemic 
biases (Rappazzo et al., 2020). To test the outputs of our direct assessment approach and compu-
tational prediction algorithms, we assessed binding of several peptides using a fluorescence polar-
ization competition assay to determine IC50 values, as described previously (Rappazzo et al., 2020; 
Yin and Stern, 2014). Yeast- formatted peptides (Ala + 15mer + Gly + Gly + Ser) from SARS- CoV- 2 
spike protein were run through NetMHCIIpan4.0 for binding to HLA- DR401, with binders defined as 
having ≤10%Rank (Eluted Ligand mode). Yeast display binders to HLA- DR401 were defined via the 
stringent criteria of (1) enriching in both doped and undoped selections and (2) containing a 9mer that 
enriched in five or more of the overlapping seven 15mers. 15mers were selected such that they could 
contain a maximum overlap of eight amino acids with other selected peptides, to avoid selecting 

Virus Protein
Protein length
(# of amino acids) MHC allele # of 15mers # of 9mer cores # of smoothed 15mers

SARS- CoV- 2 ORF10 protein 38

HLA- DR401 6 1 6

HLA- DR402 2 0 0

HLA- DR404 5 1 5

SARS- CoV- 2 Protein non- structural 7b 43

HLA- DR401 0 0 0

HLA- DR402 0 0 0

HLA- DR404 0 0 0

SARS- CoV- 2 Uncharacterized protein 14 73

HLA- DR401 8 4 6

HLA- DR402 20 5 16

HLA- DR404 22 4 21

SARS- CoV- 2 Protein 9b 97

HLA- DR401 29 7 27

HLA- DR402 35 6 31

HLA- DR404 37 9 34

Table 1 continued
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peptides with redundant 9mer cores. While yeast- enriched peptides were largely consistent with 
computational prediction, we selected sets of sequences which disagreed between computation and 
experiment, as well as a several sequences that yeast display and NetMHCIIpan4.0 both classified as 
either binders or non- binders (Table 2). A length- matched version of the commonly studied Influenza 
A Virus HA306- 318 peptide (APKY VKQN TLKL ATG) known to bind HLA- DR401 (Hennecke and Wiley, 
2002; Rappazzo et al., 2020) was also included as a positive control. Figure 4—figure supplement 1 
shows a comparison of yeast- enriched and NetMHCpan4.0 predicted binders, with boxed sequences 
selected for testing by fluorescence polarization.

The resulting fluorescence polarization IC50 data from the native 15mer peptides are shown in 
Table  2 and Figure  4—figure supplement 2. Peptides which both enriched in yeast display and 
were predicted by NetMHCIIpan4.0 to bind (‘Agreed Binders’) all showed IC50 values consistent with 
binding, each with IC50  < 2.2  µM. Similarly, peptides which were agreed non- binders showed no 
affinity for HLA- DR401, with IC50 > 50 µM.

All eight ‘Yeast- Enriched Binders’, which enriched in the yeast display assay but were not predicted 
to bind via NetMHCIIpan4.0, showed some degree of binding, with IC50 values distributed from 14 nM 
(higher affinity than the HA control peptide) to 18 µM (weak, but measurable, binding). Retrospec-
tively, the weakest two binders appear to be enriching in the yeast display assay using the peptide 
linker or have a binding core offset from center. Interestingly, NetMHCIIpan4.0 predictions on the 
peptides identified via yeast display proved highly sensitive to the length or content of the flanking 
sequences: if we repeat predictions on only the antigen- derived 15mer sequences without the flanking 
sequences, NetMHCIIpan4.0 recovers four of its former false- negative peptides (Table 3; peptides 

Table 2. Peptides selected for fluorescence polarization (FP) experiments for binding to HLA- DR401.
NetMHCIIpan4.0 predictions for HLA- DR401 binding are performed on 15mers plus invariant flanking residues (N- terminal Ala, C- 
terminal Gly- Gly- Ser) and percent rank values generated using Eluted Ligand mode. Fluorescence polarization is performed on native 
15mer peptides without invariant flanking residues.

Spike position
Peptide + flank
(A + 15mer + GGS)

NetMHCIIpan4.0
predicted core
(A + 15mer + GGS)

NetMHCIIpan4.0 %Rank
(A + 15mer + GGS)

15mer affinity from 
FP (IC50, nM)

Agreed Binders

34–48 ARGVYYPDKVFRSSVLGGS YYPDKVFRS 1.49 15.8

87–101 ANDGVYFASTEKSNIIGGS VYFASTEKS 4.28 2117

303–317 ALKSFTVEKGIYQTSNGGS FTVEKGIYQ 8.41 396.9

362–376 AVADYSVLYNSASFSTGGS YSVLYNSAS 8.36 113.7

1015–1029 AAAEIRASANLAATKMGGS IRASANLAA 3.13 105.4

1112–1126 APQIITTDNTFVSGNCGGS ITTDNTFVS 7.32 527.0

Yeast- Enriched 
Binders

165–179 ANCTFEYVSQPFLMDLGGS YVSQPFLMD 64.83 14,652

172–186 ASQPFLMDLEGKQGNFGGS FLMDLEGKQ 20.34 123.2

286–300 ATDAVDCALDPLSETKGGS VDCALDPLS 32.68 521.6

373–387 ASFSTFKCYGVSPTKLGGS YGVSPTKLG 16.59 18,452

469–483 ASTEIYQAGSTPCNGVGGS IYQAGSTPC 18.22 67.7

580–594 AQTLEILDITPCSFGGGGS LEILDITPC 62.00 119.9

739–753 ATMYICGDSTECSNLLGGS YICGDSTEC 70.91 14.4

920–934 AQKLIANQFNSAIGKIGGS FNSAIGKIG 20.47 1121

NetMHC- Predicted 
Binders

113–127 AKTQSLLIVNNATNVVGGS IVNNATNVV 8.74 >50,000

492–506 ALQSYGFQPTNGVGYQGGS YGFQPTNGV 4.11 454.7

1151–1165 AELDKYFKNHTSPDVDGGS YFKNHTSPD 5.74 35,510

Agreed Non- Binders

534–548 AVKNKCVNFNFNGLTGGGS FNFNGLTGG 57.13 >50,000

1079–1093 APAICHDGKAHFPREGGGS ICHDGKAHF 80.47 >50,000

https://doi.org/10.7554/eLife.78589
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listed at the top in each section of the table). We will refer to these four peptides as ‘flank- sensitive 
centered peptides’, as they each have the consensus 9mer core centered in the peptide.

To further investigate the relationship with flanking residues, we selected five additional peptides 
(‘offset peptides’) matching three criteria; these offset peptides were (1) enriched in the yeast display 
assay, (2) share an overlapping core with the four flank- sensitive centered peptides, but are (3) not 
predicted by NetMHCIIpan4.0 to be binders (either with or without invariant flanking sequence 
added). All five offset peptides have their predicted cores offset by one to two amino acids from 
center, leaving at minimum one amino acid on both ends of the 9mer core for each peptide. All five 
offset peptides exhibit some binding, with IC50 values below 13 µM. Each peptide is lower affinity 
than its overlapping centered counterpart, illustrating effects of flanking residues on peptide binding, 
although some over- estimation of these effects in NetMHCIIpan4.0 predictions are present.

We tested three 'NetMHC- Predicted Binders’, which were predicted to bind by NetMHCIIpan4.0, 
but were not enriched (nor did any neighboring sequences within an offset of four amino acids) in the 
yeast display assay (Table 2). Of these, one bound to HLA- DR401 (IC50 475 nM), while two showed 
minimal binding with IC50 > 35 µM, which is above the maximum 20 µM concentration tested. All 
three were predicted by NetMHCIIpan4.0 to bind with or without the invariant flanking sequences 
(Eluted Ligand mode %Rank: 5.7, 4.1, 8.7 (with flanking residues) and 2.3, 0.6, 7.0 (without flanking 
residues), for ELDKYFKNHTSPDVD, LQSYGFQPTNGVGYQ, and KTQSLLIVNNATNVV, respectively).

Of the eight ‘Yeast- Enriched Binders’ in Table 2, six contain cysteine residues, which have been 
shown to be systematically absent from other datasets, including those from monoallelic mass spec-
trometry (Abelin et  al., 2019; Barra et  al., 2018), yet present in yeast display- derived datasets 
(Rappazzo et al., 2020). To test for non- specific binding due to cysteine, two cysteine- containing 
‘Agreed Non- Binders’ were also tested and showed no affinity for HLA- DR401, suggesting that 
cysteine itself is not causing non- specific binding. In the fluorescence polarization dataset, the highest 
affinity binder (14 nM) contained cysteine and was missed by NetMHCIIpan4.0 predictions (Eluted 
Ligand mode %Rank: 71 [with flanking residues] and 28 [without flanking residues]).

The relationship between measured IC50 values and NetMHCIIpan4.0 predicted values for all 15mer 
SARS- CoV- 2 spike peptides tested is shown in Figure 4, Figure 4—figure supplement 2, Figure 4—
figure supplement 3.

Table 3. Effects of peptide flanking sequences on NetMHCIIpan4.0 predictions for HLA- DR401 binding and measured fluorescence 
polarization (FP) values for overlapping peptides.
Yeast display- enriched peptides that are predicted to bind by NetMHCIIpan4.0 when without flanking residues, plus offset variants of 
these peptides, which are not predicted to bind, with or without flanking sequence. Yeast display register- inferred consensus cores 
are highlighted in bold. NetMHCIIpan4.0 percent rank values are generated using Eluted Ligand mode.

Spike 
position Sequence

NetMHCIIpan4.0 
predicted core
(A + 15mer + GGS)

NetMHCIIpan4.0 
%Rank
(A + 15mer + GGS)

NetMHCIIpan4.0 
predicted core
(15mer)

NetMHCIIpan4.0 
%Rank
(15mer)

15mer affinity 
from FP (IC50, 
nM)

172–186 SQPFLMDLEGKQGNF FLMDLEGKQ 20.34 FLMDLEGKQ 4.1 123.2

173–187 QPFLMDLEGKQGNFK FLMDLEGKQ 27.73 FLMDLEGKQ 12.21 8613

286–300 TDAVDCALDPLSETK VDCALDPLS 32.68 VDCALDPLS 9.8 1154

287–301 DAVDCALDPLSETKC VDCALDPLS 42.42 VDCALDPLS 22.57 4,393

469–483 STEIYQAGSTPCNGV IYQAGSTPC 18.22 IYQAGSTPC 5.41 67.7

467–481 DISTEIYQAGSTPCN IYQAGSTPC 11.47 IYQAGSTPC 12.61 4875

471–485 EIYQAGSTPCNGVEG YQAGSTPCN 39.17 YQAGSTPCN 21.81 12,519

920–934 QKLIANQFNSAIGKI FNSAIGKIG 20.47 IANQFNSAI 7.89 1495

921–935 KLIANQFNSAIGKIQ FNSAIGKIQ 18.3 IANQFNSAI 19.79 11,937

https://doi.org/10.7554/eLife.78589
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Comparing whole dengue serotype proteomes for common MHC-
binding peptides
Defined yeast display libraries can generate data for diverse objectives. Dengue viruses typically cause 
most severe disease after a second infection with a serotype different from the first infection, due to 
antibody- dependent enhancement (Guzman et al., 2016), which makes T cell- directed therapeutics 
a potentially attractive means of combating disease. To profile and compare MHC binding across 
serotypes, we generated libraries containing 12,672 dengue- derived peptides, covering the entire 
proteomes of dengue serotypes 1–4. These libraries were on HLA- DR401 and HLA- DR402 and had 
coverage of 98% and 96% of the dengue library members after construction, respectively (Supple-
mentary file 1c).

Peptides from homologous regions of the four dengue serotypes have different MHC binding 
ability, as illustrated in Figure 5a for binding to HLA- DR401. The proteins encoded in the dengue 
genome are indicated along the horizontal axis (C: capsid; M: membrane; E: envelope; NS: nonstruc-
tural proteins). Peptides that enriched in the yeast display assay are marked by a line (serotype 1 in 
blue, serotype 2 in purple, serotype 3 in red, and serotype 4 in gray). The proteome is smoothed to 
nine amino acid stretches (as in Figure 3b), with a given nine amino acid region marked as a hit if five 
or more of the seven adjacent peptides enrich. For each 9mer, the maximum number of serotypes 
with a conserved identical 9mer at that position is indicated at the top in black.

These data can reveal relationships between conservation and binding ability. Figure 5b–d shows 
enrichment data for individual 15mer peptides, with consensus inferred 9mer cores in bold and non- 
conserved amino acids in these cores highlighted in yellow, as in Figure 3c–e. Conserved cores which 

Figure 4. Comparing measured IC50 values and computational prediction. Relationship between measured IC50 
values and NetMHCIIpan4.0 predicted ranks in Eluted Ligand mode (EL) on invariant- flanked sequences. Data 
points are colored by label, and IC50 values ≥ 50 µM are set to 50 µM.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Figure supplement 1. Comparing defined library selection with algorithmic predictions: SARS- CoV- 2 spike 
protein.

Figure supplement 2. Titration curves for peptides tested via fluorescence polarization for binding to HLA- DR401, 
by category.

Figure supplement 2—source data 1. Fluorescence polarization measurements for peptide- HLA- DR401 binding.

Figure supplement 3. Comparing measured IC50 values and prediction.

https://doi.org/10.7554/eLife.78589
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show binding ability (Figure 5c) may be ideal T cell targets. However, the permissiveness of the binding 
groove allows for peptides to bind that have mutations at the anchors, such as in NS5 (Figure 5d), where 
P4 Asn and P4 Met both allow binding. Interestingly, the serotype 3 core (LASNAICSA) only enriched in 
four peptides, which is below our described cutoff for high- confidence peptide cores. However, three 
adjacent peptides enriched and register inference for these peptides identifies the non- native, linker- 
containing version of the LASNAICSA core as binding in the MHC- binding groove. This results in an 
adjacent 9mer being highlighted as a binder in this region (Figure 5a) because overlapping 15mers 
enrich in five or more of the seven adjacent peptides. With this in mind, care must be taken for core iden-
tification in enriched regions and can be aided by coupling enrichment with register inference of enriched 
peptides. Further, we can also see relationships between conservation and binding in non- conserved 
regions, such as in the envelope protein (Figure 5b) with the mutations in serotype 3 enabling binding.

Figure 5. Conservation and enrichment of dengue virus serotypes 1–4. (a) Conservation and enrichment of 9mer peptides along four aligned dengue 
serotypes. All stretches of nine amino acids are compared across the four serotypes and conservation is indicated with a black vertical line (i.e. 2, 3, 
or 4 of four serotypes conserved). 9mers which enriched on HLA- DR401 are also indicated, colored by virus serotype. (b–d) Zoomed regions, showing 
enrichment for individual 15mer peptides to HLA- DR401. Only peptides which contain the bolded 9mer sequence are shown. Amino acids in the bolded 
9mer that are not conserved between serotypes are highlighted in yellow. Insets show regions which are differently conserved and enriched: (b) non- 
conserved sequences with peptides from one serotype enriched; (c) conserved sequences enriched across all serotypes; (d) non- conserved sequences 
which are enriched.

https://doi.org/10.7554/eLife.78589
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Discussion
CD4+ T cell responses play important roles in infection, autoimmunity, and cancer. By extension, 
understanding peptide- MHC binding is critical for identifying and engineering T cell epitopes. Here, 
we present an approach to directly assess defined libraries of peptides covering whole pathogen 
proteomes for binding to MHC- II proteins. We examine alternative modes of selection and utilize over-
lapping peptides to determine high- confidence binders. We demonstrate the utility of this approach 
by identifying binders that are missed by prediction algorithms, highlighting a prediction algorithm 
bias against cysteine- containing peptides and sensitivity to peptide flanking residues (Table 2 and 
Table 3). Finally, this approach can be utilized for different objectives, including comparing binding 
to multiple MHC alleles (Figure  3) or comparing peptides from related pathogen sequences for 
MHC- II binding (Figure 5). Whole protein- or proteome- scale analysis across related viruses provides 
insight into relationships between conserved epitopes and MHC binding (Figures 3b and 5a) and 
specific examples validate the consistency with the underlying biophysics of peptide- MHC binding 
(Figures 3c–e , and 5b–d).

When compared to previously described yeast display approaches to identify peptides binding 
to MHC- II molecules, our approach benefits from recent advances in next- generation sequencing 
and pooled oligonucleotide synthesis. Other library generation methods for peptide- MHC- II binding 
have relied on synthetic peptides (Liu et al., 2021a), randomized, DNA- encoded peptides (Rappazzo 
et al., 2020), or digested DNA from amplified viral genomes (Wen et al., 2008), which are imprac-
tical for comprehensive assessment of defined proteome- scale libraries. Next- generation sequencing 
further enables a comprehensive and granular view of peptide enrichment, beyond sequencing and 
validation of individual clones (Wen et al., 2008).

This approach for direct assessment shows benefit compared to prediction algorithms for iden-
tifying binders, particularly for finding weak peptide binders. Weak binding peptides have been 
reported to be less immunodominant than strong MHC- binding peptides (Burger et  al., 2021; 
Lazarski et al., 2005; Wu et al., 2019); however, there are also examples of weak MHC- binding 
peptides which can elicit T cell responses and be of clinical relevance in disease contexts, including 
in autoimmunity and cancer (Latek et al., 2000; Levisetti et al., 2008; Valmori et al., 1998; Zarour 
et al., 2000). As such, information about weak binding peptides can be of potential scientific and 
clinical relevance.

The overlapping peptides in our library were useful for identifying enriched cores, especially when 
combined with our register inference to identify consensus cores shared between these overlapping 
peptides. NetMHCIIpan4.0 exhibits a sensitivity to length and register, which may cause users to 
miss binders, albeit potentially of lower affinity. Of the overlapping peptides we tested to study this 
phenomenon, NetMHCIIpan4.0 correctly ranked the affinities of the overlapping peptides (Table 3), 
but missed binders. Figure 4—figure supplement 1 also highlights the sensitivity of NetMHCIIpan4.0 
to flanking sequences, where neighboring peptides with shared cores often are not predicted to 
bind, resulting in fewer clusters of peptides. Comparison with yeast display datasets also highlights 
several non- binding peptides predicted by NetMHCIIpan4.0 to be binders. Coupling this yeast 
display approach with computational predictions can be useful for identifying false positive predicted 
peptides in order to correctly prioritize peptides of interest.

Our work reveals insights on the design of epitope identification experiments, including the utility 
of overlapping peptides and considerations for comparing libraries of unbiased and proteome- derived 
peptides. Design of defined libraries with sources of redundancy, such as overlapping peptides, was 
critical for determining binders with higher degrees of confidence and allowed us to apply stringent 
cutoffs for individual peptides. Overlapping peptides allowed us to account for construct- specific 
confounding effects, such as the peptides binding using non- native residues in the linker. Future 
iterations can change the sequence of the linker, such as defining favorable P(–1) and P10 anchors 
to fix the register (Rappazzo et al., 2020), although these adaptations would likely require MHC- 
specific knowledge in advance and may need to be altered for different MHCs. Additionally, the 
engineered redundancy and multiple modes of selection result in hyperparameters that can be tuned 
to meet users’ stringency requirements, such as defining different thresholds for calling individual 
15mer binders or alternative integration of overlapping binders. Additionally, our comparison of unbi-
ased and proteome- derived libraries highlights how aggregate motifs may be affected by underlying 
amino acid preferences found in protein sequences themselves, which may inadvertently disfavor 
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sequences that can bind strongly to MHC molecules yet consist of amino acid covariates that are not 
as commonly found in proteins.

Further, this approach can be used to study MHC binding between similar viruses, as done with 
the dengue proteomes and the spike proteins from SARS- CoV- 2 and SARS- CoV, highlighting regions 
where mutations disrupt binding as well as regions where binding is unperturbed. This method can 
also be rapidly adapted to study future sequences if pathogens evolve over time.

As experimental approaches and computational approaches continue to co- develop, they present 
complementary benefits. Though this platform allows for rapid assessment of peptide- MHC binding, 
the speed of computational prediction surpasses experimental approaches. NetMHCIIpan4.0 predic-
tion and yeast display selections identified sets of non- overlapping misses, highlighting a utility for 
both. Additionally, all agreed binders and non- binders matched fluorescence polarization results, 
suggesting a consensus of yeast display enrichment and algorithmic prediction provide high- confidence 
results. Approaches such as yeast display assessment can be used to complement computational 
approaches, such as for identifying cysteine- containing peptides which are still under- predicted by 
algorithms. Similarly, prediction algorithms can be trained using large, quality datasets to account for 
biases. Training sets can specifically be augmented with data from defined peptide libraries designed 
to study peptides where current algorithmic predictions are of lower confidence. In another applica-
tion, our platform to assess peptide- MHC binding can be used to design high- throughput assays to 
test peptide immunogenicity in clinical samples (Klinger et al., 2015; Snyder et al., 2020).

Defined yeast display peptide libraries can also be readily applied to identification of T cell ligands 
and present an opportunity for identifying unknown ligands from orphan TCRs known to respond to 
a proteome of interest (Birnbaum et al., 2014; Gee et al., 2018). Yeast have also been previously 
utilized as artificial antigen- presenting cells to stimulate T cell hybridomas (Wen et al., 2008), making 
it possible to further streamline antigen discovery efforts. As DNA synthesis and sequencing continue 
to advance, defined peptide libraries expanding beyond viral proteomes to covering whole bacterial 
or human proteomes will be possible, and could present opportunities for investigating autoimmune 
diseases, which frequently have strong MHC- II associations (Karnes et al., 2017). Such tools would be 
rich resources for identifying both peptide- MHC binders and TCR ligands.

Methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(Saccharomyces cerevisiae) RJY100 PMID:26333274

Cell line (Trichoplusia ni) High Five cells Thermo Fisher Cat#:B85502

Cell line (Spodoptera frugiperda) Sf9 cells Thermo Fisher Cat#:11496015

Antibody
Anti- Myc- AlexaFluor647 (Mouse 
monoclonal) Cell Signaling Technology Cat#:2233 Library selections: 1:100

Recombinant DNA reagent
Peptide- MHC- II with cleavable 
peptide linker in pYal (plasmid) PMID:32887877

Recombinant DNA reagent HLA- DR401 in pAcGP67a (plasmid) PMID:32887877

Recombinant DNA reagent HLA- DM in pAcGP67a (plasmid) PMID:32887877

Peptide, recombinant protein 3C protease Other
Purified from Escherichia 
coli BL21 cells

Software, algorithm PandaSeq PMID:22333067

Software, algorithm NetMHCIIpan4.0 PMID:32406916

Software, algorithm Peptide register inference algorithm This paper See Code Availability

Software, algorithm Prism
GraphPad Prism software 
(http://www.graphpad.com/) Version: 9.3

https://doi.org/10.7554/eLife.78589
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Library design and creation
Yeast display libraries were designed to cover all 15mer sequences within a given proteome, with step 
size 1. Reference proteomes used in creating defined libraries were accessed from Uniprot, with the 
following Proteome IDs. SARS- CoV- 2: UP000464024, SARS- CoV: UP000000354, dengue serotype 1: 
UP000002500, dengue serotype 2: UP000180751, dengue serotype 3: UP000007200, dengue sero-
type 4: UP000000275. The dengue proteome is expressed as a single polypeptide, and peptides were 
generated from that contiguous stretch.

Each library peptide is encoded in DNA space, with specific codons selected randomly from possible 
codons, with probabilities matching yeast codon usage (GenScript Codon Usage Frequency Table). 
The DNA- encoded peptide sequences were flanked by invariant sequences from the yeast construct 
for handles in amplification and cloning, and the DNA oligonucleotide sequences were ordered from 
Twist Bioscience (South San Francisco, CA), with maximum length of 120 nucleotides. The DNA oligo 
pool was amplified in low cycle PCR, followed by amplification with construct DNA using overlap 
extension PCR. This extended product was assembled in yeast with linearized pYal vector at a 5:1 
insert:vector via electroporation with electrocompetent Saccharomyces cerevisiae RJY100 yeast (Van 
Deventer et al., 2015). Primers utilized in this study are included in Supplementary file 1d.

HLA- DR401 and HLA- DR402 libraries were generated using previously described vectors 
(Rappazzo et al., 2020) which contain mutations from wild type Metα36Leu, Valα132Met, Hisβ33Asn, 
and Aspβ43Glu to enable proper folding without disrupting TCR or peptide contact residues 
(Rappazzo et al., 2020). HLA- DR404 was generated using the same stabilizing mutations. As previ-
ously described (Rappazzo et al., 2020), the peptide C- terminus is connected to the MHC construct 
via a Gly- Ser linker (Figure 1a), and the N- terminus of the peptide includes an extra alanine to ensure 
consistent cleavage between the construct and its signal peptide.

The previously described null library (Dai et al., 2021) was generated with a peptide encoded as 
‘ NNNT AANN NNNN NNNT AGNN NNNN NNNN NNTG ANNNNNN’, where ‘N’ indicates any nucleo-
tide and encodes 10 random amino acids and three stop codons. This library was similarly generated 
in yeast using electrocompetent RJY100 yeast.

Peptide visualizations and predictions
Data visualizations of viral conservation and enrichment were generated using custom scripts. For 
each 9mer stretch in a protein of interest, there are seven 15mer sequences that overlap and contain 
that 9mer. We calculate how many of these seven 15mers enriched in both the doped and undoped 
libraries. If five or more of the seven 15mers enriched, that stretch is marked as a ‘hit’. To examine 
conservation between viruses, viral proteins are aligned using ClustalOmega (Madeira et al., 2019). 
Aligned 9mer stretches are compared between viruses and identical stretches are considered 
conserved. Hits are determined individually for each virus before merging, such that gaps in sequence 
alignments do not affect calculations of enrichment for a given virus.

Representations of 15mer hits (as in Figure 3, Figure 5 and Figure 4—figure supplement 1) were 
generated using in- house scripts, such that a 15mer that enriched in both the doped and undoped 
library was marked as a horizontal line above the relevant 15mer sequence. Only 15mers containing 
the bolded 9mer in Figure 3 and Figure 5 were included.

NetMHCIIpan4.0 webserver was used for computational predictions (Reynisson et  al., 2020), 
where a binder is defined as having a predicted percent rank  ≤10%, as defined in the webserver 
instructions.

Yeast library selections
Library selections were consistent with previous peptide- MHC- II yeast display dissociation studies 
(Dai et al., 2021; Rappazzo et al., 2020). Yeast were washed into pH 7.2 PBS with 1 µM 3C protease 
and incubated at room temperature for 45 min. Yeast were then washed into 4°C acid saline (150 mM 
NaCl, 20 mM citric acid, pH 5) with 1 µM HLA- DM and incubated at 4°C overnight. Each step takes 
place in the presence of competitor peptide (HLA- DR401: HA306- 318 PKYVKQNTLKLAT, 1 µM; HLA- 
DR402: CD4836- 51 FDQKIVEWDSRKSKYF, 5 µM; HLA- DR404: NKVKSLRILNTRRKL, 5 µM Vita et al., 
2019). Non- specific binders are removed by incubating yeast with anti- AlexaFluor647 magnetic beads 
and flowed over a magnetic Milltenyi column at 4°C. A positive selection follows, comprised of incu-
bation with anti- Myc- AlexaFluor647 antibody (1:100  volume:volume; Myc tag (9B11) Mouse mAb 

https://doi.org/10.7554/eLife.78589


 Tools and resources      Immunology and Inflammation

Huisman et al. eLife 2022;11:e78589. DOI: https://doi.org/10.7554/eLife.78589  18 of 24

AlexaFluor647 Conjugate #2233 Cell Signaling Technology) and anti- AlexaFluor647 magnetic beads 
(1:10 volume:volume) and flowed over a Milltenyi column on a magnet at 4°C, such that yeast with 
bound peptide are retained on the column. These yeast are eluted, grown to confluence in at 30°C in 
SDCAA media (pH 5), and sub- cultured in at 20°C SGCAA media (pH 5) at OD600=1 for 2 days. The 
first round of selections of doped libraries were conducted on 180 million yeast (SARS- CoV- 2 library) 
or 400 million yeast (dengue library) to ensure at least 20- fold coverage of peptides. Subsequent 
rounds of doped library selection, and all rounds of undoped library selections, were performed on 
20–25 million yeast. Before each round of selection, a sample of yeast are stained with an anti- Myc 
antibody to check induction of protein expression, as in Figure 1c.

Library sequencing and analysis
Libraries were deep sequenced to determine their composition after each round of selection. Plasmid 
DNA was extracted from 10 million yeast from each round of selection using the Zymoprep Yeast 
Miniprep Kit (Zymo Research), following the manufacturer’s instructions. Amplicons were generated 
through PCR, covering the peptide sequence through the 3C cut site. A second PCR round was 
performed to add i5 and i7 sequencing handles and in- line index barcodes unique to each round of 
selection. Amplicons were sequenced on an Illumina MiSeq using paired- end MiSeq v2 300 bp kits at 
the MIT BioMicroCenter.

Paired- end reads were assembled using PandaSeq (Masella et al., 2012). Peptide sequences were 
extracted by identifying correctly encoded flanking regions, and were filtered to ensure they matched 
designed members of the library or the randomized null construct encoding, providing a stringent 
threshold for contamination and PCR and read errors.

The resulting data are analyzed for convergence, as described in the main text. Once a library has 
converged, it is likely that changes in subsequent rounds of selection are due to stochastic variation 
rather than improved binding.

Peptide and read count data are in Supplementary file 1a and c. Columns are labelled as: [count]_
[doped or undoped library]-[HLA- DR allele] post- R[round number]-[positive or negative, for undoped 
libraries]. For unselected ‘R0’ libraries, an additional suffix may be present to indicate whether the 
library was sequenced before or after doping into the null library. Also indicated are: amino acid 
sequence (‘aa’), encoding DNA sequence (‘dna’), and whether the sequence matched the null library 
(indicated in ‘doped_match’ or ‘name’).

Register inference and sequence logos
The 9mer core of enriched sequences was inferred using an in- house alignment algorithm. In this 
approach, we utilize a 9mer PWM, which we assess at different offsets along the peptide. We one- 
hot encode sequences and pad with zeros on the C- terminus of the peptide; to assess seven native 
registers and four non- native registers, we pad the peptides with four zeros. Three of the non- native 
registers utilize the linker at the P9 anchor but not the P6 anchor, and the addition of a fourth register 
captures a minority set of peptides which utilize Gly- Gly- Ser- Gly of the linker at P6 through P9 in 
the groove. Register- setting is performed with zero- padded 15mers, rather than 15mers flanked by 
invariant flanking residues, because the PWM would otherwise align all sequences to the invariant 
region.

At the start, we randomly assign peptides to registers and generate a 9mer PWM. Over subse-
quent iterations, peptides are assigned to new registers and the PWM was updated. Assignments are 
random but biased, such that clusters corresponding to registers that match the PWM are favored. 
Specifically, at each assignment we first take out the sequence under consideration from the PWM. 
The PWM then defines an energy value for each register shift of a given peptide, which is then used to 
generate a Boltzmann distribution from which we sample the updated register shift. The stochasticity 
is decreased over time by raising the inverse temperature linearly from 0.05 to 1 over 60 iterations, 
simulating ‘cooling’ (Andreatta et al., 2017). A final deterministic iteration was carried out, where the 
distribution concentrates entirely on the optimal register shift.

After register inference, sequence logo visualizations of the 9mer cores were generated using 
Seq2Logo- 2.0 with default settings, except using background frequencies from the SARS- CoV- 2 
proteome and SARS- CoV spike and nucleocapsid proteins (Thomsen and Nielsen, 2012). For regis-
ters with the C- terminus utilizing the C- terminal linker, the relevant linker sequence was added to 
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achieve a full 9mer sequence for visualizing the full 9mer core. For HLA- DR401, distribution among 
registers, starting from N- terminally to C- terminally aligned in the peptide, is: 161, 237, 227, 238, 231, 
279, 237, 266, 271, 202, 118.

Recombinant protein expression
HLA- DM and HLA- DR401 were expressed recombinantly in High Five insect cells (species Trichoplusia 
ni; Thermo Fisher B85502) using a baculovirus expression system, as previously described (Birnbaum 
et al., 2014; Rappazzo et al., 2020). Ectodomain sequences of each chain were formatted with a 
C- terminal poly- histidine purification tag and cloned into pAcGP67a vectors. Each vector was indi-
vidually transfected into Sf9 insect cells (species Spodoptera frugiperda; Thermo Fisher 11496015) 
with BestBac 2.0 linearized baculovirus DNA (Expression Systems; Davis, CA) and Cellfectin II Reagent 
(Thermo Fisher), and propagated to high titer. Viruses were co- titrated for optimal expression to 
maximize balanced MHC heterodimer formation, co- transduced into High Five cells, and grown 
for 48–72  hr at 27°C. The secreted protein was purified from pre- conditioned media supernatant 
with Ni- NTA resin and purified via size exclusion chromatography with an S200 increase column on 
an AKTA PURE FPLC (GE Healthcare). To improve protein yields, the HLA- DRB1*04:01 chain was 
expressed with a CLIP87- 101 peptide (PVSKMRMATPLLMQA) connected to the N- terminus of the MHC 
chain via a flexible, 3C protease- cleavable linker.

Fluorescence polarization experiments for peptide IC50 determination
Peptide IC50 values were determined following a protocol modified from Yin and Stern, 2014, as in 
Rappazzo et al., 2020. In the assay, recombinantly expressed HLA- DR401 is incubated with fluores-
cently labelled modified HA306- 318 (APRFV{Lys(5,6 FAM)}QNTLRLATG) peptide and a titration series 
for each unlabelled competitor peptide is added (1.28 nM to 20 µM). A change in polarization value 
resulting from displacement of fluorescent peptide from the binding groove is used to determine IC50 
values.

Relative binding at each concentration is calculated as (FPsample – FPfree)/(FPno_comp – FPfree). Here, FPfree 
is the polarization value for the fluorescent peptide alone with no added MHC, FPno_comp is polarization 
value for MHC with no competitor peptide added, and FPsample is the polarization value with both MHC 
and competitor peptide added. Relative binding curves were then generated and fit in Prism 9.3 to 
the equation y=1/(1+[pep]/IC50), where [pep] is the concentration of unlabelled competitor peptide, 
in order to determine the concentration of half- maximal inhibition, the IC50 value.

Each assay was performed at 200 µL, with 100 nM recombinant MHC, 25 nM fluorescent peptide, 
and competitor peptide (GenScript). This mixture co- incubates in pH 5 binding buffer at 37°C for 
72 hr in black flat bottom 96- well plates. Competitor peptide concentrations ranged from 1.28 nM to 
20 µM, as a fivefold dilution series. Three replicates are performed for each peptide concentration. 
Fluorescent peptide- only, no competitor peptide, and binding buffer controls were also included. 
Our MHC was expressed with a linked CLIP peptide, so prior to co- incubation, the peptide linker 
is cleaved by addition of 3C protease at 1:10 molar ratio at room temperature for 1 hr; the residual 
cleaved 100 nM CLIP peptide is not expected to alter peptide- binding measurements.

Measurements were taken on a Molecular Devices SpectraMax M5 instrument. G- value was 1.1 
for each plate, as calculated per the manufacturer’s instructions for each plate based on fluorescent 
peptide- only wells minus buffer blank wells, with 35 mP reference for 5,6FAM (Fluorescein setting). 
Measurements were made with 470 nm excitation and 520 nm emission, 10 flashes per read, and 
default PMT gain high.

Cell lines
High Five insect cells (species T. ni; Thermo Fisher B85502) and Sf9 insect cells (species S. frugiperda; 
Thermo Fisher 11496015) were utilized for recombinant protein production. Their identities have been 
confirmed functionally through characterization of their secreted baculovirus and protein production.

RJY100 (S. cerevisiae) (Van Deventer et al., 2015) were utilized for yeast surface display. Yeast 
identity has been confirmed through analysis of growth and library generation characteristics and 
engineered protein surface expression profiling.

Sf9 cells have tested mycoplasma negative, and High Five cells have not been independently 
tested since purchased from the manufacturer. RJY100 yeast have not been mycoplasma tested.
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Code availability
Scripts used for data processing and visualization are publicly available at https://github.com/birn-
baumlab/Huisman-et-al-2022, copy archived at swh:1:rev:694c6976275bb02d1d498d0e8a01523a1c
b1799d; Huisman, 2022.
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the SARS- CoV and SARS- CoV- 2 libraries. (b) Inferred binding registers of enriched peptides from the 
SARS- CoV and SARS- CoV- 2 libraries. (c) Peptide count data from deep sequencing of the dengue 
libraries. (d) Primer sequences utilized for generation and deep sequencing of yeast display libraries.

•  MDAR checklist 

Data availability
All deep sequencing data are deposited on the Sequence Read Archive (SRA), with accession codes 
PRJNA806475 [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA806475] and PRJNA708266 [https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA708266]. Processed peptide data are available as a supple-
mental dataset, and source data for fluorescence polarization measurements are provided.
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