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Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a
variety of cargoes including early endosomes, late endosomes and other organelles.
In many cell types, dynein accumulates at the microtubule plus end, where it interacts
with its cargo to be moved toward the minus end. Dynein binds to its various cargoes
via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-
coil-domain-containing cargo adapters not only link dynein to cargo but also activate
dynein motility, which implies that dynein is activated by its cellular cargo. Structural
studies indicate that a dynein dimer switches between the autoinhibited phi state and
an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes
the dynein motor domains to have a parallel configuration, allowing dynein to walk
processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to
be required for dynein activation in vivo, and its mechanism of action involves preventing
dynein from switching back to the autoinhibited state. In this review, we will discuss our
current understanding of dynein activation and point out the gaps of knowledge on the
spatial regulation of dynein in live cells. In addition, we will emphasize the importance
of studying a complete set of dynein regulators for a better understanding of dynein
regulation in vivo.
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INTRODUCTION

In eukaryotic cells, motor proteins such as dyneins, kinesins and myosins are ATPases, and
they use the energy from ATP hydrolysis to drive intracellular motility (Hirokawa et al., 2009;
Verhey and Hammond, 2009; Dodding and Way, 2011; Hammer and Sellers, 2011; Reck-
Peterson et al., 2018; Olenick and Holzbaur, 2019; Scherer et al., 2020). In most mammalian
cells, polarized microtubules serve as tracks for long-distance transport: while the plus-end-
directed kinesins transport cargoes toward the microtubule plus ends near the cell periphery, the
minus end-directed cytoplasmic dynein transports cargoes inward from the cell periphery (Reck-
Peterson et al., 2018). Cytoplasmic dynein-1 (called “dynein” hereafter for simplicity) powers
the intracellular transport of nuclei/mitotic spindles, Golgi, mitochondria, early endosomes, late
endosomes, autophagosomes, proteins, mRNAs and/or virus particles (Dodding and Way, 2011;
Reck-Peterson et al., 2018; Olenick and Holzbaur, 2019; Scherer et al., 2020). Deficiencies in dynein
and its regulators such as dynactin and LIS1 (Lissencephaly-1) cause devastating neurodegenerative
diseases and brain developmental disorders (Wynshaw-Boris, 2007; Maday et al., 2014; Guedes-
Dias and Holzbaur, 2019; Markus et al., 2020).
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Studies have shown that dynein binds to its various cargoes
via the dynactin complex and cargo adapters. Importantly,
some cargo adapters not only link dynein to cargos but also
activate dynein motility, which implies that the dynein motor is
activated by its cargo (Reck-Peterson et al., 2018; Olenick and
Holzbaur, 2019; Canty and Yildiz, 2020). While some kinesin
and myosin motors are also known to be activated by cargo or
specific adapters/scaffolding proteins (Sellers and Knight, 2007;
Trybus, 2008; Hirokawa et al., 2009; Verhey and Hammond,
2009; Fu and Holzbaur, 2014; Sweeney and Holzbaur, 2018), the
mechanism of dynein activation is distinct due to the unique
structure of the dynein motor. In this review, we will cover our
current understanding on the mechanism of dynein activation.
We will mainly use early endosome transport in filamentous
fungi as an example to discuss how dynein activation is spatially
regulated in vivo and point out unresolved issues that need to be
addressed in the future.

DYNACTIN AND CARGO ADAPTER
PROTEINS MEDIATE THE
DYNEIN-CARGO INTERACTION

Compared to kinesins or myosins, dynein is extremely huge
and complex (Höök and Vallee, 2006; Sweeney and Holzbaur,
2018). It is a multi-protein complex of ∼1.4 MDa containing
two dynein heavy chains (HCs) as well as other subunits such as
intermediate chains (ICs), light intermediate chains (LICs), and
light chains (LCs) (Pfister et al., 2005; Reck-Peterson et al., 2018).
The HCs form a homodimer, and each HC monomer contains the
C-terminal motor head and the N-terminal tail. The motor head
is responsible for motility, while the tail is responsible for HC-
HC dimerization and also binds other dynein subunits as well as
the dynactin complex (King, 2000; Carter et al., 2016; Schmidt
and Carter, 2016). The motor head of the dynein HC consists
a motor ring with six AAA (ATPases Associated with diverse
cellular Activities) domains, a linker (∼10 nm) connecting the
motor ring with the tail (Burgess et al., 2003), and a microtubule-
binding domain that is connected to the motor ring via a coiled-
coil stalk extending out between AAA4 and AAA5 (Gee et al.,
1997; Gibbons et al., 2005; Cianfrocco et al., 2015; Figure 1A).
ATP binding and hydrolysis at AAA1 cause conformational
changes in the ring, which can be transmitted via the coiled-coil
stalk to the microtubule binding site, driving dynein movement
along a microtubule (Roberts et al., 2013; Carter et al., 2016).
ATP hydrolysis at AAA3 allows the proper transmission of
conformational changes around the ring, allowing dynein to be
released from the microtubule when ATP is bound to AAA1
(Bhabha et al., 2014; Dewitt et al., 2015; Nicholas et al., 2015).

The dynactin complex of ∼1 MDa is involved in almost all
functions of cytoplasmic dynein (Schroer, 2004). The backbone
of the dynactin complex is an Arp1 mini-filament of ∼37 nm
(Schafer et al., 1994), which provides the binding sites for dynein
tails and cargo adapters (Chowdhury et al., 2015; Urnavicius et al.,
2015). The pointed end of the Arp1 mini-filament is occupied
by the pointed-end subcomplex containing p25, p27, p62 and
Arp11 (Eckley et al., 1999; Figure 1B). The barbed end of the

FIGURE 1 | (A) A diagram of the dynein heavy chain with a motor ring
containing six AAA domains (1–6), a linker domain connected to the beginning
of AAA1 and the N-terminal tail domain connected to the linker.
A microtubule-binding domain is connected to the coiled-coil stalk that
emerges from a location between AAA4 and AAA5, and the buttress coming
from AAA5 supports the stalk. All these domains work together to ensure
minus-end-directed motility of dynein as well as other properties of the dynein
motor such as tension sensing (Roberts et al., 2013; Carter et al., 2016; Can
et al., 2019; Rao et al., 2019). (B) A diagram of the dynactin complex with its
Arp1 mini-filament, barbed-end capping protein, pointed-end proteins Arp11,
p62, p25, and p27, as well as the shoulder/sidearm proteins p150, p22/p24,
and p50 (Schroer, 2004; Urnavicius et al., 2015). Note that p150 is depicted
as a folded molecule, and its CC1A, CC1B, and microtubule-binding domain
(MTBD) are indicated by arrows. (C) A diagram of the dynein-dynactin-cargo
adapter complex and the cargo linked to the cargo adapter. The cargo
adapter, depicted as a homodimer, contains coiled-coil domains. Note that
the dynein tails bind to the Arp1 mini-filament of dynactin, as shown by EM
structural analyses (Schlager et al., 2014; Chowdhury et al., 2015; Urnavicius
et al., 2015). An extended form of p150 is depicted, and its CC1A, CC1B, and
microtubule-binding domain (MTBD) are indicated by arrows. Two dynein
dimers are depicted, since a fraction of the dynein-dynactin-cargo adapter
complexes could contain a second dynein dimer along the Arp1 mini-filament
(Grotjahn et al., 2018; Urnavicius et al., 2018). Dynein intermediate chains and
dynein light intermediate chains are depicted as gray circles on the dynein
tails, and dynein light chains are depicted as small gray circles connected to
the dynein intermediate chains.

Arp1 mini-filament is occupied by the actin-capping protein,
which also caps the barbed ends of conventional actin filaments
(Schafer et al., 1994; Wear and Cooper, 2004). The largest subunit
of the dynactin complex is p150Glued (or p150 for simplicity),
which contains a microtubule-binding domain (MTBD) at its
N-terminus (Holzbaur et al., 1991; Waterman-Storer et al., 1995).
Following the MT-binding domain are the coiled-coil domains
CC1 and CC2, and CC1 interacts with the N-terminus of dynein
IC in biochemical assays (Karki and Holzbaur, 1995; Vaughan
and Vallee, 1995; King et al., 2003). The CC1 domain of p150
can be further divided into CC1A and CC1B (Figures 1B,C), and
CC1B contains a dynein-IC-binding domain (McKenney et al.,
2011; Loening et al., 2020) whose function may be modulated by
the binding of CC1A (Tripathy et al., 2014; Saito et al., 2020).
Two other subunit of the dynactin complex, p22/p24 and p50
dynamitin that forms an oligomer (Echeverri et al., 1996; Karki
et al., 1998; Melkonian et al., 2007), together with part of the
p150 subunit, form a “shoulder/side arm” adjacent to the Arp1
mini-filament, and the p50 oligomer was proposed to function
as a template for Arp1 mini-filament assembly (Urnavicius
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et al., 2015). Interestingly, in the dynein-dynactin cargo adapter
tripartite complex, it is the Arp1 mini-filament rather than the
p150 subunit that interacts with the tails of dynein (Schlager
et al., 2014; Chowdhury et al., 2015; Urnavicius et al., 2015,
2018; Grotjahn et al., 2018; Figure 1C). Future work will be
needed to address whether the dynein IC-p150 interaction found
by biochemical assays is important for initiating the dynein-
dynactin interaction before cargo adapter binding.

The dynactin complex is needed for the dynein-cargo
interaction. This function of dynactin was proposed many years
ago (Schroer and Sheetz, 1991; Waterman-Storer et al., 1997), but
this idea had remained controversial (Haghnia et al., 2007). This
subject was revisited in two independent studies on the pointed-
end proteins of the Arp1-minifilament, in the filamentous fungus
Aspergillus nidulans and mammalian cells (Zhang et al., 2011;
Yeh et al., 2012). These studies have found that the pointed-
end proteins p25 in A. nidulans and the p25/p27 heterodimer
in mammalian cells play a critical role in the interaction of
dynein with its early endosome cargo (Zhang et al., 2011; Yeh
et al., 2012). Both p25 and p27 adopt a left-handed beta-helix
structure (Parisi et al., 2004; Yeh et al., 2013). Because p25 has
many hydrophobic residues, it seemed plausible that p25 may
contact membrane directly (Yeh et al., 2012). However, follow-
up genetic screens in A. nidulans as well as another filamentous
fungus Ustilago maydis led to the discovery that the FTS-Hook-
FHIP (FHF) complex (Xu et al., 2008) functions as an adapter
allowing dynein-dynactin to link with early endosomes (Bielska
et al., 2014b; Yao et al., 2014; Zhang et al., 2014).

The Hook proteins (three in mammalian cells: Hook1, Hook2
and Hook3) and the FHF complex were initially discovered in
higher eukaryotic cells (Krämer and Phistry, 1996; Walenta et al.,
2001; Xu et al., 2008). Within the fungal FHF complex, HookA
in A. nidulans and Hok1 in U. maydis use their N-terminal
Hook domain (Schroeder and Vale, 2016) and the coiled-coil
domains to interact with dynein-dynactin (Bielska et al., 2014b;
Zhang et al., 2014; Qiu et al., 2018), and this interaction
depends on Arp1 and p25 (Zhang et al., 2014). Structural
studies on the mammalian Hook3 protein further demonstrate
that a Hook protein binds dynein-dynactin directly via dynein
light intermediate chain (Schroeder and Vale, 2016; Lee et al.,
2018) and the Arp1 filament (Urnavicius et al., 2018). The
interaction of fungal hook proteins with the early endosome
depends on FTS and FHIP (Yao et al., 2014; Guo et al., 2016);
FHIP makes the closest contact with early endosome (Yao et al.,
2014), most likely via its direct interaction with Rab5 (Guo
et al., 2016). It is unclear whether FTS and FHIP are involved
in targeting mammalian Hook1, Hook2, or Hook3 onto other
cargoes or cellular structures, such as the TrkB–BDNF-signaling
endosome (Olenick et al., 2019), nuclear envelope (Dwivedi
et al., 2019b), centrosome (Szebenyi et al., 2007a), aggresome
(Szebenyi et al., 2007b), and the Golgi apparatus (Walenta et al.,
2001). It should be pointed out that Hook1 interacts directly
with cargo proteins of the recycling endosomes (Maldonado-
Báez et al., 2013), and Hook1 and Hook2 bind directly with AP4
(adaptor protein complex 4 of the trans-Golgi network), which
is responsible for trafficking of the autophagy protein ATG9A
(Mattera et al., 2020).

There are several other important dynein adapters (Reck-
Peterson et al., 2018; Olenick and Holzbaur, 2019), such as
proteins of the Bicaudal D (BICD) family including BicD2
(Hoogenraad and Akhmanova, 2016), Rab11-FIP3 (Horgan
et al., 2010) and Spindly (Griffis et al., 2007). The domain
organization of these dynein adapter proteins are similar in that
they all contain an N-terminal portion including the coiled-
coil domains important for binding dynein-dynactin and a
C-terminus required for cargo binding (Reck-Peterson et al.,
2018; Dwivedi et al., 2019a; Olenick and Holzbaur, 2019).
In vitro experiments show that the N-terminal portion of
the cargo adapters can enhance the interaction between the
dynein complex and the dynactin complex (Splinter et al., 2012;
McKenney et al., 2014; Olenick et al., 2016). Such an effect was
first shown for the N-terminal part of the BicD2 protein (Splinter
et al., 2012), a result highly instrumental to the ground-breaking
experiments revealing cargo adapters being critical for dynein
activation (McKenney et al., 2014; Schlager et al., 2014).

DYNACTIN AND SPECIFIC CARGO
ADAPTER PROTEINS ACTIVATE DYNEIN

Mammalian dynein by itself is incapable of moving along the
microtubule processively, although the dynein is active in a
microtubule-gliding assay (Trokter et al., 2012; McKenney et al.,
2014; Schlager et al., 2014). Adding dynactin alone does not
seem to help even when dynactin is added in large excess
(McKenney et al., 2014; Schlager et al., 2014). Astonishingly,
addition of both BicD2 and dynactin enhances the processivity of
dynein dramatically (McKenney et al., 2014; Schlager et al., 2014).
Importantly, not only the BicD2 N-terminus but also the dynein-
dynactin-binding portion of Hook3 and other cargo adapters
with a similar domain organization, including Rab11-FIP3 that
targets dynein to Rab11-positive vesicles (Horgan et al., 2010)
and Spindly that targets dynein to kinetochores (Griffis et al.,
2007; Gama et al., 2017), all stimulated dynein processivity via
an enhancement of the dynein-dynactin interaction (McKenney
et al., 2014). The processivity and velocity of dynein motility
activated by the N-terminal Hook1 and Hook3 are even higher
than that by the N-terminal BicD2 (Olenick et al., 2016). These
coiled-coil domain-containing dynein adapters are considered as
“activating adapters,” and new dynein activators with this domain
signature have continuously been discovered (Redwine et al.,
2017; Reck-Peterson et al., 2018; Olenick and Holzbaur, 2019;
Wang et al., 2019).

As revealed by a cryo-EM study, dynein activation results from
a conformational change of dynein upon binding to dynactin
and a cargo adapter (Zhang K. et al., 2017). Specifically, the
two dynein heavy chains within the dimer are initially held
in an auto-inhibited “phi” conformation with the two heavy
chains positioned very close to each other (Amos, 1989; Torisawa
et al., 2014; Zhang K. et al., 2017). This conformation can be
switched to an “open” state with the two dynein heavy chains
separated from each other. Although the “open dynein” has a
higher affinity for microtubules, it is still not configured properly
to move along a microtubule (Zhang K. et al., 2017). Only
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after the dynein tails bind dynactin and a cargo adapter, the
two motor domains with the microtubule-binding stalks become
parallel, which allows processive movement (Zhang K. et al.,
2017). It is important to point out that since dynactin and cargo
adapters bind dynein tails (Schlager et al., 2014; Chowdhury
et al., 2015; Urnavicius et al., 2015; Zhang K. et al., 2017), the
conformational change in the dynein motor domains must be
transmitted through the dynein tails. This may explain why
changes in the dynein tail, especially subtle mutations that do not
affect the dynein-dynactin interaction, can lead to a severe defect
in dynein function (Ori-McKenney et al., 2010; Sivagurunathan
et al., 2012; Qiu et al., 2013; Hoang et al., 2017; Marzo et al., 2019).

EM-based structural studies have shown that in some dynein-
dynactin-cargo adapter complexes, there are two dynein dimers
instead of one, and both dimers have their tails positioned along
the Arp1 mini-filament (Grotjahn et al., 2018; Urnavicius et al.,
2018). Some cargo adapters including Hook3 and BicDR1 have
a much stronger tendency to form this type of complexes with
an extra dynein compared to other cargo adapters such as BicD2,
and the presence of two dynein dimers enhances dynein’s speed
and force output (Urnavicius et al., 2018). This may be part of
the reason why some of the dynein-dynactin-Hook3 complexes
move with a higher velocity compared to the dynein-dynactin-
BicD2 complexes (Olenick et al., 2016). Recently, the dynein
regulator LIS1 has also been shown to enhance the recruitment
of the second dynein dimer to the dynein-dynactin-cargo adapter
complex in vitro (Elshenawy et al., 2020; Htet et al., 2020), further
suggesting the importance of the second dynein dimer. However,
it still remains to be determined what proportion of cargo-bound
dynactin in live cells contain two dynein dimers associated with
the Arp1 mini-filament and how different regulators change
this proportion.

While the in vitro motility studies and structural analysis
provided significant insights into the mechanism of dynein
activation, knowledges gained from in vivo studies further shed
light on the spatial regulation of dynein activity. In filamentous
fungi including Aspergillus nidulans and Ustilago maydis, the
dynamic microtubule plus ends face the hyphal tip, and both
dynein and dynactin are strongly enriched at the microtubule
plus ends (Han et al., 2001; Zhang et al., 2003; Lenz et al.,
2006). Fungal dynein transports many cargoes and its major
cargo is the early endosome, which undergo rapid bi-directional
movements (Wedlich-Soldner et al., 2002; Lenz et al., 2006;
Abenza et al., 2009; Zekert and Fischer, 2009; Penalva et al., 2017;
Hernández-González et al., 2018; Otamendi et al., 2019; Bieger
et al., 2020). Early endosome motility not only is coupled to
endosome maturation (Abenza et al., 2010, 2012), it also helps
distribute hitchhiking cargoes including peroxisomes, ribosomes
and RNAs (Baumann et al., 2012; Bielska et al., 2014a; Higuchi
et al., 2014; Guimaraes et al., 2015; Pohlmann et al., 2015; Lin
et al., 2016; Salogiannis et al., 2016). Early endosomes are moved
by kinesin-3 toward the plus ends near the hyphal tip and then
delivered to dynein to be moved away from the hyphal tip (Lenz
et al., 2006). The accumulation of dynein at the microtubule
plus end depends on kinesin-1 and dynactin (especially the
microtubule-binding domain of p150) (Xiang et al., 2000; Zhang
et al., 2003; Lenz et al., 2006; Egan et al., 2012; Yao et al., 2012), and

FIGURE 2 | Dynein activation in A. nidulans depends on NudF/LIS1. In
wild-type cells, dynein is accumulated at the microtubule plus ends, and this
accumulation is represented by the comet-like structures formed by
GFP-labeled dynein near the hyphal tip (Xiang et al., 2000; Han et al., 2001).
Dynein activation, as judged by dynein relocation from the microtubule plus
ends at hyphal tip (yellow arrowhead) to the minus ends at septum (Zhang Y.
et al., 2017) (brown arrow), is driven by the dynein-dynactin-binding portion of
the cargo adapter HookA, 1C-HookA, overexpressed under the gpdA
promoter (gpdA-1C-hookA-S, note that “S” indicates S-tag, an affinity tag for
biochemical studies) (Qiu et al., 2019). In the nudF6 mutant, a NudF/LIS1
loss-of-function mutant, dynein is retained at the microtubule plus ends.
Bright-field images are shown below to indicate hyphal shape and septal
position. Bars, 5 µm. These images have been published previously in the
Journal of Cell Biology (Qiu et al., 2019).

dynein-mediated early endosome transport depends on kinesin-
1, most likely because the accumulation of dynein at the plus end
enhances the chance for the dynein-early endosome interaction
(Lenz et al., 2006; Zhang et al., 2010).

Given the current understanding of dynein’s structural change
during its activation (Zhang K. et al., 2017), we speculate that
fungal dynein is in the autoinhibited phi conformation while
being transported by kinesin-1 toward the microtubule plus
end. This would prevent a tug-of-war between kinesin-1 and
dynein. Conceptually, this is similar to the regulatory mechanism
of dynein-2 in intraflagellar transport (IFT) as revealed by
cryo-electron tomography: dynein-2 is in an autoinhibited
conformation when it is being transported to the plus end by
kinesin-2 (Jordan et al., 2018). In A. nidulans and U. maydis,
the microtubule plus end-localized dynein-dynactin interact
with early endosomes on which the activating cargo adapter
HookA or Hok1 is bound (Bielska et al., 2014b; Zhang et al.,
2014). In A. nidulans, overexpression of the cytosolic 1C-
HookA drives dynein departure from the microtubule plus
ends and causes dynein to accumulate at the minus ends (Qiu
et al., 2019; Figure 2). This supports not only the idea of
cargo adapter-mediated dynein activation emerged from in vitro
studies (McKenney et al., 2014; Schlager et al., 2014) but also
the postulation that the plus-end dynein is activated by its early
endosome cargo (Lenz et al., 2006).

The activating function of the cargo adapters has been thought
to be involved in the enhancement of the dynein-dynactin
interaction. Interestingly, the dynein-dynactin interaction must
have occurred to a certain extent before cargo binding in cells.
In filamentous fungi, dynactin is required for the plus-end
localization of dynein (Xiang et al., 2000; Zhang et al., 2003,
2008; Lenz et al., 2006; Egan et al., 2012; Yao et al., 2012),
suggesting that either the two complexes are transported together
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by kinesin-1 to the plus end or they associate at the plus end
after being transported separately. It seems likely that they are
transported together because loss of Arp1 reduced the interaction
between dynein and kinesin-1 (Qiu et al., 2018). HookA is able to
interact with dynein or dynactin only when both complexes are
present (Zhang et al., 2014), although dynein LIC binds the Hook
domain directly (Malone et al., 2003; Schroeder and Vale, 2016;
Lee et al., 2018). Thus, it is most likely that an early endosome
interacts with a plus end dynein-dynactin complex and changes
the configuration of the dynein-dynactin interaction to make
it productive for minus-end-directed movement. This notion is
consistent with previous findings that while the dynein IC in the
dynein tail interacts with the p150 subunit of dynactin without
cargo adapter (Karki and Holzbaur, 1995; Vaughan and Vallee,
1995; King et al., 2003), the dynein tails bind the Arp1 filament in
the presence of cargo adapters (Schlager et al., 2014; Chowdhury
et al., 2015; Urnavicius et al., 2015, 2018; Zhang K. et al., 2017;
Grotjahn et al., 2018).

The spatial regulation of dynein activation appears to
be evolutionarily conserved. In Drosophila oocyte, and in
Caenorhabditis elegans and mammalian neurons, kinesin-1 has
been implicated in transporting dynein toward the microtubule
plus ends for function (Brendza et al., 2002; Duncan and Warrior,
2002; Januschke et al., 2002; Palacios and St Johnston, 2002;
Yamada et al., 2008, 2010; Arimoto et al., 2011; Twelvetrees
et al., 2016). The kinesin-1-dynein interaction has been dissected
in detail, and it was found that the dynein intermediate chain
interacts directly with the light chains of kinesin-1 in mammalian
hippocampal neurons (Ligon et al., 2004; Twelvetrees et al.,
2016). In C. elegans, however, the interaction between kinesin-
1 and dynein is mediated by UNC-16 that binds to the dynein
light intermediate chain (Arimoto et al., 2011). In mouse DRG
neurons, dynactin and dynein are transported separately by
kinesin-1 via mNudC (Yamada et al., 2010). Thus, how kinesin-
1 transports dynein may differ in different cell types. What
appears to be conserved is the need to get dynein-dynactin to
the microtubule plus end using the plus-end-directed kinesin-
1, which could enhance the chance of dynein-cargo interaction.
In mammalian and Drosophila neurons, the microtubule-
binding domain of p150 dynactin is required for enriching
dynactin at the distal end of an axon, thereby facilitating
the initiation of retrograde transport from the neurite tip or
synaptic termini (Lloyd et al., 2012; Moughamian and Holzbaur,
2012). Hook1, which is able to activate dynein (Olenick et al.,
2016), is required for transporting signaling endosomes in axons
(Olenick et al., 2019).

In the budding yeast, dynein is almost exclusively used for
moving nuclei/spindles (Eshel et al., 1993; Li et al., 1993; Winey
and Bloom, 2012), and both dynein and dynactin are clearly
accumulated at the microtubule plus end (Lee et al., 2003;
Sheeman et al., 2003; Moore et al., 2008). Although dynein
can be recruited directly from a cytoplasm to the plus end
via Bik1/Clip170 and Pac1/LIS1, Kip2 (kinesin-7) also plays an
important role in transporting Bik1/Clip170 and dynein to the
microtubule plus end (Lee et al., 2003; Sheeman et al., 2003;
Carvalho et al., 2004; Markus et al., 2011; Roberts et al., 2014).
Dynein accumulated at the microtubule plus end is activated by

its cortical anchor Num1, which is a cargo adapter-like molecule
containing coiled-coil domains (Farkasovsky and Küntzel, 1995;
Lee et al., 2003; Sheeman et al., 2003; Markus and Lee, 2011; Tang
et al., 2012; Lammers and Markus, 2015). In the fission yeast,
dynein drives the oscillatory movement of meiotic prophase
nucleus (Yamamoto et al., 1999), and this function of dynein
depends on dynactin and the Num1-like cortical anchor (Niccoli
et al., 2004; Yamashita and Yamamoto, 2006). It was found that
dynein molecules along microtubules are inactive but activated
by the cortical Num1 homolog (Ananthanarayanan et al., 2013).
Thus, although yeast dynein is active on its own in vitro (Reck-
Peterson et al., 2006), yeast dynein’s cortical anchor functions as
an activating cargo adapter in vivo.

LIS1 IS A POSITIVE REGULATOR FOR
DYNEIN ACTIVATION

Beside dynactin and cargo adapters, another important protein
involved in dynein activation is LIS1 (Lissencephaly-1) (Markus
et al., 2020). The mechanism of LIS1 action in the dynein
pathway has been controversial, but multiple recent studies
suggest that LIS1 promotes the open dynein conformation,
thereby facilitating dynein activation (Qiu et al., 2019; Elshenawy
et al., 2020; Htet et al., 2020; Marzo et al., 2020; McKenney,
2020). LIS1, a WD40-repeats-containing protein, was initially
identified as a causal gene for type 1 lissencephaly, a human
brain developmental disorder (Reiner et al., 1993). Its functional
connection to dynein was first suggested by genetic studies in
fungi and further demonstrated in higher eukaryotic organisms
and cell types (Xiang et al., 1995; Geiser et al., 1997; Liu et al.,
1999, 2000; Faulkner et al., 2000; Lei and Warrior, 2000; Smith
et al., 2000; Markus et al., 2020). In contrast to dynactin that
binds to the dynein tail (Karki and Holzbaur, 1995; Vaughan and
Vallee, 1995; Chowdhury et al., 2015; Urnavicius et al., 2015),
LIS1 binds directly to the dynein motor ring at AAA3/AAA4 as
shown by cryo-EM studies (Huang et al., 2012; Toropova et al.,
2014; Desantis et al., 2017; Htet et al., 2020). LIS1’s binding to this
site is not compatible with the autoinhibited phi conformation of
dynein (Htet et al., 2020; Marzo et al., 2020), which supports a
“check valve” (Markus et al., 2020) model of LIS1 mechanism of
action: it stabilizes the open dynein conformation and prevents it
from switching to the autoinhibited phi state, thereby facilitating
cargo-adapter-mediated dynein activation (Qiu et al., 2019; Canty
and Yildiz, 2020; Elshenawy et al., 2020; Htet et al., 2020; Markus
et al., 2020; Marzo et al., 2020).

In budding yeast and mammalian cells, LIS1 is required for the
microtubule plus-end accumulation of dynein and consequently
dynein offloading to cortex or cargoes (Lee et al., 2003; Sheeman
et al., 2003; Markus and Lee, 2011; Markus et al., 2011; Splinter
et al., 2012; Tame et al., 2014). However, dynactin rather than LIS1
plays a critical role in the plus-end accumulation of dynein in
filamentous fungi (Zhang et al., 2003; Lenz et al., 2006; Egan et al.,
2012). This allows the role of LIS1 in cargo-adapter-mediated
dynein activation in vivo to be shown clearly in A. nidulans
(Qiu et al., 2019). Specifically, while overexpression of 1C-
HookA drives almost a complete relocation of dynein from
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the microtubule plus ends to the minus ends, dynein remains
at the plus ends in the nudF (lis1) loss-of-function mutants
when 1C-HookA is overexpressed (Qiu et al., 2019; Figure 2).
This requirement of LIS1 for HookA-mediated dynein activation
in vivo is consistent with a role of LIS1 in enhancing the frequency
of departure of the dynein-dynactin-cargo adapter complex from
the microtubule plus end in vitro (Baumbach et al., 2017; Jie
et al., 2017). Importantly, a phi mutation that promotes open
dynein (Zhang K. et al., 2017) bypasses the requirement for LIS1
to a significant extent (Qiu et al., 2019), suggesting that LIS1 is
involved in promoting open dynein, thereby facilitating cargo
adapter-mediated dynein activation (Qiu et al., 2019). This main
conclusion agrees with three other recent studies (Elshenawy
et al., 2020; Htet et al., 2020; Marzo et al., 2020), although LIS1
in A. nidulans does not seem to significantly affect the formation
of the dynein-dynactin-1C-Hook complex (Qiu et al., 2019),
while LIS1 enhances the recruitment of the second dynein to the
dynein-dynactin-BicD2N complexes in vitro (Elshenawy et al.,
2020; Htet et al., 2020). Possibly, A. nidulans LIS1 still enhances
the dynein-dynactin interaction as described in other systems
(Dix et al., 2013; Wang et al., 2013), but this effect was not
easily detected when the concentration of cytosolic cargo adapters
is high enough. We should also point out that LIS1 may play
roles beyond stabilizing the open dynein because constitutively
opening dynein does not allow the requirement for LIS1 to be
completely bypassed (Qiu et al., 2019; Elshenawy et al., 2020; Htet
et al., 2020; Marzo et al., 2020).

In filamentous fungi and budding yeast, LIS1 accumulates
at the microtubule plus end just like dynein (Han et al., 2001;
Lee et al., 2003; Callejas-Negrete et al., 2015). LIS1’s plus-end
accumulation depends partly on dynein, its binding partner
NudE as well as the CLIP170 homolog CLIPA or Bik1 (Zhang
et al., 2003; Li et al., 2005; Efimov et al., 2006; Markus et al., 2011).
This is consistent with earlier data from mammalian cells and
budding yeast indicating a direct interaction between LIS1 and
CLIP170/Bik1 (Coquelle et al., 2002; Sheeman et al., 2003). In
the budding yeast, the dynein-LIS1-Bik1/CLIP170 complex could
be transported by the Kip2 kinesin-7 to the microtubule plus
end, or, dynein and LIS1 form a complex before being directly
recruited from the cytosol to the plus end via Bik1/CLIP170
(Carvalho et al., 2004; Markus et al., 2011). Thus, the plus-end
dynein in yeast is most likely in the open conformation and
can interact effectively with dynactin and Num1 (Markus et al.,
2020; Marzo et al., 2020). In cultured cells and in reconstituted
in vitro systems with dynamic microtubules, LIS1 also enhances
the plus-end targeting of mammalian dynein, although the
plus-end dynein localization also requires dynactin (Splinter
et al., 2012; Baumbach et al., 2017; Jha et al., 2017). In the
filamentous fungi such as A. nidulans and U. maydis, the plus-
end accumulation of dynein requires kinesin-1 and dynactin
but not LIS1 (Zhang et al., 2003; Lenz et al., 2006; Egan et al.,
2012). Thus, the plus-end dynein in filamentous fungi could be in
the autoinhibited phi conformation before it interacts with LIS1
(Figure 3). In A. nidulans, dynein localized along microtubules
in cells lacking kinesin-1 is still able to be activated by LIS1 and
1C-HookA (Qiu et al., 2019), suggesting that LIS1 can also bind
to dynein not at the plus end. It cannot be excluded that some

LIS1 molecules may bind to dynein during plus-end-directed
transport mediated by kinesin-1, and in that case, dynein at the
plus end is in the open conformation, waiting to be activated by
the early endosome cargo.

When bound to dynactin and cargo adapters, dynein carrying
LIS1 at its motor ring is able to undergo processive movement
toward the microtubule minus end (Baumbach et al., 2017;
Gutierrez et al., 2017), which differs from the inhibitory function
of LIS1 on dynein alone (Yamada et al., 2008; McKenney et al.,
2010; Huang et al., 2012). However, LIS1 tends to dissociate
from the motile dynein-dynactin-cargo adapter complex both
in vivo and in vitro (Lenz et al., 2006; Egan et al., 2012; Lammers
and Markus, 2015; Jha et al., 2017; Elshenawy et al., 2020;
Htet et al., 2020). In the budding yeast, LIS1 has never been
observed to co-localize with dynein-dynactin at the cell cortex
(Markus et al., 2011). In filamentous fungi such as U. maydis
and A. nidulans, while dynactin remains associated with a motile
early endosome after its dynein-mediated movement has been
initiated, LIS1 tends to fall off from it (Lenz et al., 2006;
Egan et al., 2012). By observing many A. nidulans hyphal tip
cells of a nudF/lis1 deletion mutant in which early endosome
motility is rarely observed, it was found that loss of LIS1 does
not affect the speed of occasional dynein-mediated transporting
events, and thus, LIS1 was considered as an initiation factor
(Egan et al., 2012). The idea that LIS1 is only important for
transport initiation is consistent with the current results on LIS1
promoting the open dynein state (Qiu et al., 2019; Elshenawy
et al., 2020; Htet et al., 2020; Marzo et al., 2020), thereby
enhancing the formation of the dynein-dynactin-cargo-adapter
complex (Zhang K. et al., 2017). However, the dynein-dynactin-
1C-HookA complex still forms without LIS1 in A. nidulans,
suggesting that dynein-dynactin at the microtubule plus end
are capable of binding the HookA-linked early endosome but
cannot initiate minus-end-directed movement (Qiu et al., 2019).
Further studies will be needed to determine the structure of the
dynein-dynactin-1C-HookA complex isolated from cells with or
without NudF/LIS1, as it seems intriguing why such a complex
is not capable of leaving the microtubule plus end in vivo in
the absence of NudF/LIS1. We should also point out that in
neurons, while the microtubule-binding domain of the p150
dynactin is only required for transporting initiation from the
distal axon containing dynamic MT plus ends (Lloyd et al.,
2012; Moughamian and Holzbaur, 2012), LIS1 is additionally
required for continued transport in the mid-axon with much
more stable MT (Moughamian et al., 2013). Why is LIS1
so critical in vivo while the dynein-dynactin-cargo adapter
complex can move without LIS1 in vitro? We can envision
two possibilities. First, the assembly of the dynein-dynactin-
cargo adapter complex containing a second dynein, which is
promoted by LIS1 (Elshenawy et al., 2020; Htet et al., 2020),
leads to a higher force production (Urnavicius et al., 2018;
Elshenawy et al., 2020), thereby facilitating the movement of
dynein cargoes in a viscous cytoplasm. Second, there could
be a negative regulator that keeps dynein at the phi state
in vivo, which makes LIS1 absolutely necessary to work against
such an inhibition. Future studies will be needed to address
these possibilities.
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FIGURE 3 | Model of dynein activation in filamentous fungi. This model is based on the structural data on the LIS1-dynein interaction and cargo-adapter-mediated
dynein activation (Huang et al., 2012; Zhang K. et al., 2017; Htet et al., 2020), live cell imaging data on dynein, dynactin and LIS1 from filamentous fungi (Han et al.,
2001; Zhang et al., 2003; Efimov et al., 2006; Lenz et al., 2006; Egan et al., 2012; Yao et al., 2012) as well as recent data on LIS1 mechanism (Qiu et al., 2019;
Elshenawy et al., 2020; Htet et al., 2020; Marzo et al., 2020). In this model, dynein in the autoinhibited phi conformation is transported by kinesin-1 to the
microtubule plus end together with dynactin. At the microtubule plus end, the dynein-LIS1 interaction keeps the motor domains of the dynein dimer in an open
configuration but still being incapable of processive movement until dynein-dynactin interacts with an early endosome cargo. The cargo adapter (HookA or Hok1) on
the early endosome interacts with dynein-dynactin-LIS1 and switches the dynein dimer into a parallel configuration, allowing it to walk toward the microtubule minus
end. Note that there is also a conformational change of dynactin after cargo adapter binding so that the p150 protein is in an extended conformation (Urnavicius
et al., 2015). Finally, LIS1 dissociates from dynein during the minus-end-directed movement (Lenz et al., 2006; Egan et al., 2012). The questions marks in this figure
indicate the speculative nature of the dynein-dynactin configurations at these sites.

OTHER PROTEINS IMPORTANT FOR
DYNEIN ACTIVATION IN VIVO-NUDE
AND P150 OF DYNACTIN

LIS1’s binding partner NudE and its homologs are also involved
in dynein function (Minke et al., 1999; Efimov and Morris, 2000;
Feng et al., 2000; Niethammer et al., 2000; Sasaki et al., 2000; Yan
et al., 2003; Liang et al., 2004, 2007; Shu et al., 2004; Li et al.,
2005; Guo et al., 2006; Stehman et al., 2007; Ma et al., 2009;
Lam et al., 2010; Pandey and Smith, 2011; Wang and Zheng,
2011; Zylkiewicz et al., 2011; Wang et al., 2013; Klinman and
Holzbaur, 2015; Reddy et al., 2016; Simões et al., 2018). NudE
(homologous to Ro11 in Neurospora crassa) (Minke et al., 1999)
and its interaction with NudF/LIS1 were first identified in A.
nidulans and in higher eukaryotic model systems (Efimov and
Morris, 2000; Feng et al., 2000; Niethammer et al., 2000; Sasaki
et al., 2000). In both A. nidulans and budding yeast, loss of
NudE causes defects in nuclear migration/spindle orientation,
but the defects are much milder compared to that caused by loss
of LIS1/NudF/Pac1 (Efimov and Morris, 2000; Li et al., 2005).
In A. nidulans, mammalian cells, budding yeast and Xenopus
egg extract, NudE becomes dispensable if LIS1 concentration is
increased (Efimov, 2003; Shu et al., 2004; Li et al., 2005; Wang and
Zheng, 2011), consistent with a role of NudE in recruiting LIS1 to
dynein (McKenney et al., 2010). In A. nidulans, NudE is required
for 1C-HookA-mediated dynein activation, and the requirement
of NudE for dynein-mediated early endosome transport can be
partially bypassed by constitutively opening dynein using the phi
mutations (Qiu et al., 2019). Thus, NudE supports LIS1’s function
in dynein activation. NudE not only binds LIS1 but also binds
dynein (Sasaki et al., 2000; Liang et al., 2004; McKenney et al.,

2011; Wang and Zheng, 2011; Zylkiewicz et al., 2011; Nyarko
et al., 2012), but intriguingly, NudE and dynactin p150 compete
for binding to the N-terminal site of dynein IC (McKenney et al.,
2011; Nyarko et al., 2012). Further studies are needed to reveal
how these binding events are regulated to allow dynein activation
by LIS1, dynactin and cargo adapters.

EM structural analysis suggests that cargo adapter binding
to dynactin may change the conformation of p150 dynactin
(Urnavicius et al., 2015). Without cargo adapters, p150 proteins
can be seen under EM to exist in either folded or more extended
conformations (Urnavicius et al., 2015; Saito et al., 2020). In
the folded state, p150’s CC1A and CC1B domains contact the
pointed-end complex of the Arp1 mini-filament (Urnavicius
et al., 2015), and its microtubule-binding domain (MTBD) is
most likely folded inside rather than being exposed (Figure 1B).
Although only a minority of dynactin complexes contain folded
p150 under EM (Urnavicius et al., 2015), the idea that p150
is mainly in a folded state in the absence of cargo adapters is
consistent with the observation that isolated dynactin does not
bind microtubules in vitro in the presence of dynein without
cargo adapters (McKenney et al., 2014). Interestingly, the pointed
end proteins including p25 interact with both the cargo adapter
and p150’s CC1A and CC1B domains (Urnavicius et al., 2015; Qiu
et al., 2018), and the binding sites of the dynein cargo adapters
BicD2, Hook3, and BicDR1 at the pointed end overlap with the
CC1A- and CC1B-binding sites (Urnavicius et al., 2015; Lau et al.,
2020). Thus, it seems possible that BicD2, Hook3, BicDR1 or
other similar cargo adapters may compete with p150’s CC1A and
CC1B domains for binding to the pointed end, thereby forcing
p150 to open up (Cianfrocco et al., 2015; Lau et al., 2020). The
pointed end protein p25 is likely to be critically involved in this
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process as it plays a dual role in cargo adapter binding and the
regulation of dynactin-microtubule interaction (Qiu et al., 2018).
The most recent structural analysis shows that the whole pointed
end complex including p25 acts as an interaction hub for cargo
adapters and p150 (Lau et al., 2020). Future studies are needed
to address whether cargo adapter binding indeed causes p150 to
change its conformation, and if so, how this contributes to the
process of dynein activation.

FUTURE DIRECTIONS

While the dynein field has made significant progress toward
understanding how dynein is activated, some basic questions still
remain to be answered. For example, what is the physiological
significance of cargo adapter-mediated dynein activation? One
obvious purpose of such a regulatory strategy could be to allow
inactive dynein to be delivered to the microtubule plus end and
stay there to receive its cargo rather than leaving prematurely
toward the minus end without the cargo. However, could this
regulatory strategy also help save the cellular energy currency
ATP and ease the cellular burden of using metabolic pathways
to generate ATP, especially when food source is limited? In
A. nidulans, overexpressing 1C-HookA in phi mutant cells
where dynein is constitutively open produces colonies that
are nearly inviable (much sicker than the dynein-null mutant)
(Qiu et al., 2019). Could this be related to abnormal ATP
consumption, which affects other ATP-utilizing processes or
causes the overproduction of unhealthy metabolic products (like
lactic acid in a skeletal muscle cell)? Currently, the published
dynein ATPase activity (∼200 nmol/min/mg dynein) (Mesngon
et al., 2006; McKenney et al., 2010) is likely from inactive dynein,
and given the cellular ATP concentration of ∼2 nmol/µl, a fungal
tip cell with the volume of ∼1 × 10−7 µl would need about half
a million dynein molecules to consume the total cellular ATP
within a minute (if ATP is not generated by metabolic pathways).
It does seem unlikely to have so many dynein molecules in a
fungal cell to significantly affect the cellular ATP pool. However,
if a fully active dynein has a much higher ATPase activity, this
number of dynein molecules will become smaller and more
reasonable. It is known that the ATPase activity of an activated
myosin II motor can be >100× higher than that of an inactive
one (Trybus, 1989; Heissler and Sellers, 2016). In this context,
it would be worthwhile to measure the ATPase activities of the
inactive phi dynein, open dynein and fully activated dynein (with
dynactin and cargo adapters).

There are important open questions on the spatial regulation
of dynein in live cells. For example, what are the dynein-dynactin
conformational states during kinesin-mediated transport to
the microtubule plus end and/or at the plus end? While it
will be technically challenging to apply structural analysis on
live cells to reveal these states, it should be possible to use
dynein-dynactin isolated from specific mutants for biochemical,
single molecule and structural analyses. For example, in an
A. nidulans 1hookA mutant without any early endosomal dynein
adapters, many dynein and dynactin molecules accumulate at
the microtubule plus end, and it will be interesting to determine

their conformational states. Similarly, it would be interesting
to determine the conformation of dynein-dynactin or dynein-
dynactin-cargo-adapter isolated from cells with or without LIS1.
Another interesting issue is how kinesin-3 delivers an early
endosome to dynein in vivo without being a competitor of
dynein, given that U. maydis Hok1 affects the kinesin-3-early-
endosome interaction and the mammalian Hook3 binds both
dynein and kinesin-3 (Bielska et al., 2014b; Kendrick et al.,
2019; Siddiqui et al., 2019)? In addition, how do the interactions
between the microtubule-binding domain of p150 dynactin and
differently modified tubulins affect dynein-mediated transport
in vivo (Barisic and Maiato, 2016; McKenney et al., 2016; Nirschl
et al., 2016; Roll-Mecak, 2020)?

One specific question that deserves to be discussed in more
detail is how p150 of dynactin is involved in the dynein activation
process. The microtubule-binding domain (MTBD) of p150
is needed for the plus-end accumulation of dynactin-dynein
(Vaughan et al., 2002; Kim et al., 2007; Yao et al., 2012) and the
initiation of minus-end-directed transport, especially in neurons
(Lloyd et al., 2012; Moughamian and Holzbaur, 2012), possibly by
helping dynein landing on tyrosinated microtubules (McKenney
et al., 2016; Nirschl et al., 2016). However, data from multiple
labs also suggest that p150 is an allosteric activator of dynein
rather than simply a microtubule-tethering factor (Kim et al.,
2007; Dixit et al., 2008; Kardon et al., 2009; Tripathy et al.,
2014; Feng et al., 2020). The possibility that cargo binding may
change p150 conformation is of great interest in this context.
Before cargo binding, p150 could be in folded and more extended
conformations and these states are in equilibria (Urnavicius
et al., 2015; Saito et al., 2020). We speculate that in fungal cells,
before the formation of the dynein-dynactin-kinesin-1 complex,
the extended p150 allows its MTBD to be exposed to bind
microtubule (Yao et al., 2012). This will help recruit dynein to the
microtubule, possibly via the p150 (CC1B)-IC interaction (Karki
and Holzbaur, 1995; Vaughan and Vallee, 1995; King et al., 2003;
McKenney et al., 2011). We speculate that the subsequent binding
to kinesin-1 changes this interaction mode and promotes a folded
state of p150 to prevent its MTBD from interfering with kinesin-
1-mediated transport, although it is unclear how dynein binds
dynactin with a folded p150 (Figure 3). We also speculate that
after kinesin-1 is dissociated from dynein-dynactin at the plus
end, a transient NudE-IC interaction (Efimov, 2003; McKenney
et al., 2011; Wang and Zheng, 2011) may prevent p150’s CC1B
from binding to IC (McKenney et al., 2011), thereby stabilizing
the folded state of p150. Does cargo adapter binding promote the
open state of p150 at the microtubule plus end (Figure 3) and
allow its CC1B domain to bind dynein IC again (Urnavicius et al.,
2015)? If so, how does the p150-IC interaction in the presence of
the cargo adapter change the configuration of dynein HC tails to
position them along the Arp1 filament, which eventually leads to
dynein activation (Zhang K. et al., 2017)?

Related to the questions on the conformational states of
dynactin p150, another important question is how dynein stays
at the microtubule plus end. Since the binding to a cargo adapter
is a prerequisite for dynein activation, dynein is expected to
remain at the plus end before cargo binding. However, we do
not know exactly how dynein interacts with the microtubule plus
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end. In the budding yeast, the microtubule-binding domain of
dynein HC is not needed for dynein’s plus-end accumulation
(Lammers and Markus, 2015), and thus, yeast dynein is most
likely retained at the plus end via LIS1 that binds the plus end-
tracking protein Bik1/CLIP170 (Lin et al., 2001; Sheeman et al.,
2003; Markus et al., 2011). However, the plus-end accumulation
of dynein in filamentous fungi does not need LIS1 or CLIP170
homologs (Zhang et al., 2003; Efimov et al., 2006; Lenz et al.,
2006; Egan et al., 2012), but it needs the MTBD of p150
(Yao et al., 2012). Nevertheless, if p150 is folded at the plus
end before cargo binding, its MTBD is unlikely to be exposed
and used for anchoring dynein at the plus end. Thus, we
hypothesize that in filamentous fungi, an open dynein (with LIS1
bound) contacts the microtubule plus end directly using its own
microtubule-binding domains (Figure 3), and this open dynein
is primed for cargo binding and the subsequent minus-end-
directed movement. More data will be needed to either support
or refute this hypothesis.

Finally, to gain a full picture of dynein regulation in vivo, it
will also be important to study the new regulators of dynein.
A good example for illustrating this point is the recent progress
toward understanding LIS1’s mechanism of action, which was
possible only after specific cargo adapters were identified and
shown to activate dynein. In this context, we should also
point out the need of further dissecting how NudE participates
in dynein activation (Qiu et al., 2019), as NudE competes
with the CC1B domain of p150 for binding to dynein IC
(McKenney et al., 2011; Jie et al., 2017). Moreover, is there any
negative regulator that helps keep dynein in the autoinhibited
conformation in vivo? While we still do not know if such a
regulator exists for cytoplasmic dynein, a recent study using
Tetrahymena has identified a novel axonemal dynein-binding
protein, Shulin, as a regulator that keeps axonemal dynein in
an inactivate conformation before it is delivered to cilia (Mali
et al., 2020). While both biochemical and genetic approaches
can be powerful, genetic screens in A. nidulans have been
highly valuable in identifying new proteins involved in dynein-
mediated intracellular transport (Osmani et al., 1990; Xiang
et al., 1995; Efimov and Morris, 2000; Yao et al., 2014; Zhang

et al., 2014; Salogiannis et al., 2016). Recently, two new proteins,
VezA/vezatin and Prp40A/PRPF40A, have been identified in
A. nidulans as important factors for dynein-mediated early
endosome transport (Yao et al., 2015; Qiu et al., 2020). Vezatin
was initially identified as a protein involved in stabilizing cell-
cell adhesions (Kussel-Andermann et al., 2000), and PRPF40A
is homologous to the yeast RNA-splicing factor Prp40 (Kao
and Siliciano, 1996). Interestingly, both vezatin and PRPF40A
were identified as Arp1-binding proteins in a biochemical
pulldown assay (Hein et al., 2015; Qiu et al., 2020). For
vezatin, the interaction with Arp1 could be direct as Arp1
(ACTR1A) was identified as a protein in close proximity to
vezatin (VEZT) in human cells (Go et al., 2019)1. VezA/vezatin
in A. nidulans is clearly not a cargo adapter like HookA, and
intriguingly, it localizes at the hyphal tip in an actin cytoskeleton-
dependent fashion (Yao et al., 2015), and how it affects the
microtubule plus end-localized dynein-dynactin will need to
be addressed. Recently, a forward genetic screen in Drosophila
has also identified a vezatin homolog as being important for
dynein-mediated axonal transport, and furthermore, a zebrafish
vezatin homolog is also involved in a similar dynein-mediated
process (Spinner et al., 2020). The mechanisms of actions of
these proteins will need to be further studied in different
experimental systems.
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