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Neural signatures associated with temporal
compression in the verbal retelling of past events
Elizabeth Musz 1✉ & Janice Chen 1

When we retell our past experiences, we aim to reproduce some version of the original

events; this reproduced version is often temporally compressed relative to the original.

However, it is currently unclear how this compression manifests in brain activity. One pos-

sibility is that a compressed retrieved memory manifests as a neural pattern which is more

dissimilar to the original, relative to a more detailed or vivid memory. However, we argue that

measuring raw dissimilarity alone is insufficient, as it confuses a variety of interesting and

uninteresting changes. To address this problem, we examine brain pattern changes that are

consistent across people. We show that temporal compression in individuals’ retelling of past

events predicts systematic encoding-to-recall transformations in several higher associative

regions. These findings elucidate how neural representations are not simply reactivated, but

can also be transformed due to temporal compression during a universal form of human

memory expression: verbal retelling.
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More than any other creature, humans have a great ability
to describe their past experiences to others. When we
retell past experiences from memory, the goal is to

reproduce some version of the original events; this reproduced
version is often shorter, sparser, or otherwise reduced from the
original1–5. For example, when you tell a friend about a book you
recently read, your retelling is unlikely to take as long as it took
you to read the book. Instead, a temporally compressed summary,
in which you have extracted what you consider to be the most
important aspects of the book—the main plotline, the characters’
personalities, the distinctive writing style—will be much more
appreciated by your friend than a verbatim recreation.

The compression of experience into memory often occurs in a
similar manner across people. Psychological studies show that,
given the same events, different people tend to remember and
forget in patterns common with each other. One source of
commonality in remembering arises from the intrinsic memor-
ability of items: if people are asked to remember a large number
of images, some images are less likely to be forgotten than others
due to factors such as distinctiveness and social content6–12. In
memories of more complex material such as events in a narrative
or autobiographical experience, the relative prominence of event
features may be modified, such that some aspects are strength-
ened in the remembered version while other details are
minimized13–18. Individuals also draw on their world knowledge
when recalling their experiences13,19; over time, errors may be
introduced that shift memory closer to existing schema1,20, and
recollections often become more semanticized, gist-like versions
of the original events21–25. Such losses and changes between
encoding and recall should not necessarily be viewed as failures;
rather, if the changes are consistent across individuals, they may
confer benefits such as building common ground needed for
effective communication26.

How does the compressed nature of memories manifest in brain
activity? As with behavior, the retrieved or reconstructed neural
representation is an imperfect copy of the original
representation27,28. Many studies have shown that, when people
retrieve episodic memories, brain activity patterns similar to those
present at the time of encoding a given item or event are reinstated
in a set of brain regions which typically include default mode
network (DMN) and high-level sensory areas, with reinstatement
strength modulated by retrieval strength or vividness29–36. Unlike
vivid memories that allow us to re-experience the past, “compres-
sion” suggests the initially encoded events have been altered. Thus, a
compressed memory might present as a neural pattern during
retrieval which is more dissimilar to the original pattern relative to a
more detailed or vivid memory. However, retrieval conditions may
differ from the encoding conditions in many ways, such as the
surroundings, the task demands, and the physical state of the
rememberer. Given these caveats, a raw dissimilarity measurement
alone between neural patterns at encoding and those during recall
seems insufficient, as it would incorporate both: (1) interesting
changes, e.g., behaviorally-relevant shifts in representations of spe-
cific items or events; and (2) uninteresting changes, e.g., broad
differences between brain states when one is watching video versus
producing speech, as well as random decay of memory traces37.
Furthermore, while raw dissimilarity captures both subject-
consistent and subject-idiosyncratic changes, it cannot dis-
criminate subject-idiosyncratic changes from task-irrelevant noise.

A complementary approach would be a test which selectively
measures neural changes between encoding and recall that are
consistent across people. In a prior study, Chen et al. (2017)2

observed that activity patterns in certain brain regions changed
systematically from their form during encoding—in this case,
watching a movie—to an altered form during spoken recollection of
the movie. Importantly, the analyses showed that whatever activity

pattern change occurred between watching a given movie event (the
original) and recalling it (the reproduction), the change was com-
mon across brains yet specific to individual movie events. This
approach selectively identifies subject-consistent changes, separating
them from state-related changes, subject-idiosyncratic changes, and
task-irrelevant noise38. While raw dissimilarity between encoding
and recall patterns would increase with any change, an approach
which computes only subject-consistent changes necessarily rules
out random decay of memory traces, i.e., identified changes are
consistent across brains and thus non-random. These cross-subject,
systematic pattern changes were observed in DMN cortical regions,
in keeping with observations that these regions participate in epi-
sodic memory retrieval33 and carry information about mental
models of situations or perspectives39,40. However, in this prior
work, the neural effect was not grounded in a psychological
description, e.g., not linked to any specific features of the movie
contents, nor to the nature of the individuals’ recollections2.

In the present study, we hypothesized that subject-consistent
changes in neural patterns between encoding and retrieval—chan-
ges that are common across brains yet specific to individual events
—would be related to the compression of events as participants
retold them from memory. Compression, or summarization, was
assessed in the spoken recall of a recently viewed audiovisual movie
by quantifying, for any given utterance of verbal recollection, the
duration of the described event during encoding (i.e., movie-view-
ing). Behaviorally, we observed that speakers naturally varied the
level of temporal precision that they provided for any given event.
Some recollections pinpointed a specific moment (e.g., “I picked up
the knife and sliced the butter”), while other descriptions sum-
marized over longer periods of time (e.g., “I ate breakfast”), i.e.,
temporally compressed events to a greater degree. In neural ana-
lyses, we first asked whether summarization during recall was
associated with greater raw pattern dissimilarity between encoding
and recall; multi-voxel correlation analyses showed that, relative to
temporally precise utterances, summary utterances during recall
were indeed associated with reduced neural reinstatement in the
posterior medial cortex, a key DMN region, as well as weaker
reductions in other posterior DMN regions. Critically, we next
examined changes that were common across brains yet specific to
individual movie events. As predicted, we observed that summar-
ization was significantly positively associated with encoding-to-
recall changes in a number of high-level associative and visual areas:
events that were later summarized underwent a greater transfor-
mation of their neural patterns between initial perception and later
recall, relative to events described with high temporal precision. Our
findings show that reactivation effects, typically observed in the
DMN, are modulated by the degree to which people temporally
compress recollected naturalistic events.

Results
Description of the paradigm and dataset. Participants (n= 17)
viewed an audiovisual stimulus, the first 50 min of Episode 1 of
BBC’s Sherlock, while undergoing fMRI. All participants reported
that they had not seen any episodes of the series before. Partici-
pants were informed that immediately after viewing the video,
they would be instructed to describe what they had seen. After the
end of the video, participants verbally recalled the plot of the
movie aloud in as much detail as possible and in their own words,
also during fMRI scanning (Fig. 1a). The speech was recorded
with a microphone. No visual or auditory cues were provided
during the recall session. Data were from Chen et al. (2017)2,41.

Classification of summarization vs. temporal precision for
individual utterances during spoken recall. To characterize
summarization during recall, we created a rubric to score
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individual utterances spoken by participants during their verbal
recall of the movie. The rubric assesses the degree to which a
given utterance refers to a specific moment of the movie (Tem-
porally Precise), as opposed to describing a longer period of time
(Summary). Here, utterances correspond roughly to sentences; in
continuous speech, it is often not clear how to delineate sen-
tences, and thus transcriptionists were instructed to break the text
into short sentences using their best judgment. Each participant’s
speech was labeled sentence-by-sentence by two coders. Sum-
marization was calculated in three ways: Direct judgment,
Automatic, and Temporal compression factor. As the three yiel-
ded similar results, in the remainder of the paper we report results
derived from the Direct judgment procedure: utterances were
classified as Temporally Precise if they described movie events
that elapsed in less than ten seconds and classified as Summary if
they described events spanning more than ten seconds during the
movie. See Methods for further details about the rubric and
comparisons between all three approaches.

The total duration of the recall session varied across
participants, as did the total number of recall utterances,
ranging from 114 to 468 utterances (M= 203.1, SD= 110.1).

Each utterance was comprised of 14 words on average (SD= 2.4),
and the mean utterance duration was 6.83 s (SD= 1.6 s). On
average, 46.7% of participants’ utterances were coded as
Temporally Precise and 29.8% as Summary. Across participants,
an average of 23.6% of utterances were labeled as Other
(statements that were inaccurate or not about specific movie
events) and excluded from subsequent analyses (Fig. 1). To
compare the relative amounts of the different speech categories
present in each subject’s recall, we counted the number of words
included in each category, summing across all of a subject’s
statements (Fig. 1c). Most participants produced a greater
proportion of Temporally Precise versus Summary words (11/
17 participants), although the number of words and the relative
proportion of utterances in the different categories varied across
individuals. For additional descriptive statistics see Supplemen-
tary Table 1.

Summary utterances diverge from the original movie contents:
a text-based analysis. Summarization entails modifying the ori-
ginal event content, e.g., by synthesizing multiple elements of, or

0  5 10 15 20 25

Time during spoken recall (min)

0

5

10

15

20

25

30

35

40

45

T
im

e 
du

rin
g 

m
ov

ie
 v

ie
w

in
g 

(m
in

)

Audiovisual movie viewing Spoken recall, no cues or audiovisual input

“Anyway, Dr. Holmes, I mean Dr. Watson shows up
Sherlock notices a bunch of things about him

That seems to impress Dr. Watson
Then at that point it flashed to a news conference

     And at the news conference they talked about the
     third suicide..”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Subjects

0
0.5

1

S
um

m
ar

y 
bi

as

5   10 15   20 25   30  35          40  45  50
Scene ID

0
0.5

1

10 20 30 40
Minutes

17

1

S
ub

je
ct

s

0 0.25 0.5 0.75
Proportion of total words

1

17

Precise
Summary

Other

d.

b.

c.

a.

Fig. 1 Experiment design and recall behavior. a Each subject participated in two fMRI scanning runs. During Run 1, participants watched a 50-min movie,
BBC’s Sherlock, Episode 1. During the immediately following Run 2, participants recalled the movie content via verbal recall. Participants’ responses were
audio-recorded, transcribed, and segmented into utterances that roughly aligned with the ends of sentences and breaks in speech (each row). Each
utterance was categorized according to the movie content that it referred to, and according to its temporal precision (i.e., the amount of time that it took for
the described events to elapse in the movie). Utterances that described events that occurred in 10 s or less were coded as Temporally Precise, while events
that spanned longer than 10 s were coded as Summary. Utterances were coded as Other if they did not provide literal and accurate descriptions of the
movie events. b Violin plots depicting the Summary bias across scenes for each individual subject (top row) and across subjects for each individual scene
(bottom). Scenes shown in gray were recalled by less than 5/17 participants and were excluded from all subsequent inter-subject analyses. c Subject-
specific timelines of recall utterances, colored by the degree of temporal precision, and proportion of spoken words during recall that were included in
utterances coded as Summary, Precise, or Other. d Diagram of scene durations during movie viewing (y-axis) and movie recall (x-axis) and scene order
during recall (diagonal) in a representative participant. Each white box shows one scene from the original 50-scene segmentation2. Overlaid on top are
the durations and scene identities of the specific recall utterances, coded by temporal precision. The insets show zoomed-in subsets of this recall behavior.
For illustration purposes only, Other recall utterances are labeled as the most recently described movie scene. The images in Fig. 1a were purchased from
The Noun Project, https://thenounproject.com.
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selectively recalling only some aspects of, the original experience.
As a validation test for our rubric, we sought to verify that recall
utterances classified as Summary diverged more from the original
material than those classified as Temporally Precise. To this end,
we performed a text-based analysis using natural language pro-
cessing tools to estimate the similarity between movie events and
recall utterances.

The movie content was transcribed and annotated; then, these
detailed natural language descriptions of the movie events were
segmented into 1000 unique micro-segments, each approximately
4 s in duration (SD= 2.2 s, min= 1 s, max= 19 s), and then the
recall utterances for each subject were linked to the matching
movie micro-segment from a written description of the movie
(see for details). After converting each of the movie micro-
segment annotations and recall utterances into a unique 512-
element sentence embedding vector using the Universal Sentence
Encoder42, we computed similarity between each recall utterance
vector and all movie segment vectors for each participant. Movie
vs. recall text cosine similarity was reliably greater for matching
versus mismatching movie micro-segments and recall utterances;
this was true for both Summary utterances, t(16)= 32.54,
p= 4.7e-16, d= 7.89, 95% CI [0.10, 0.11] (M cosine difference=
0.10, SD= 0.01) and Temporally Precise utterances,
t(16)= 44.77, p= 3.1e-18, d= 10.86, 95% CI [0.18, 0.19] (M
cosine difference= 0.18, SD= 0.02). Critically, movie vs. recall
text cosine similarity was significantly lower for micro-segments
that were later summarized, relative to micro-segments that were
precisely recalled, t(16)= 10.26, p= 1.9e-8, d= 2.49, 95% CI
[0.06, 0.09] (M cosine difference= 0.07, SD= 0.04); this effect
was in the same direction for all individual subjects (17 of 17)
(Supplementary Fig. 1). These results provide support for the
effectiveness of our rubric in separating utterances which
compressed across longer periods of movie time (Summary)
from those which described events Temporally Precise manner.

To what extent did Summary utterances and Temporally
Precise utterances arise from a recall of distinct events? In other
words, did a participant tend to recall one set of events in a
summarized manner and a different set of events in a temporally
precise manner? For each subject, each Summary utterance’s
micro-segments were compared against the micro-segments
associated with each Temporally Precise utterance. On average,
30% of a subject’s Summary utterances covered micro-segments
that were also described during Temporally Precise utterances
(SD= 17.3, min= 7.7%, max= 74%).

Encoding-Recall neural pattern similarity is weaker for sum-
marized than for temporally precise utterances. We next
examined the strength of neural reactivation, i.e., raw pattern
similarity, associated with Summary utterances as opposed to
Temporally Precise utterances. By design, Summary utterances
are associated with greater temporal compression of the memory
relative to the encoded material; and as revealed above in the text-
based analysis, Summary utterances diverge more from the ori-
ginal movie contents in terms of sentence-level semantics. Thus,
we predicted that Summary utterances should be accompanied by
weaker reactivation (greater raw pattern dissimilarity) than
Temporally Precise utterances.

To measure memory reactivation, we computed the correlation
between a given subject’s brain pattern while (1) viewing specific
moments of the movie versus (2) recalling the same moments. In
order to separate the conditions of Summary and Temporally
Precise to the greatest possible extent, this analysis was performed
at the micro-segment level, i.e., separately for movie micro-
segments that were later summarized versus those that were later
described in a temporally precise manner.

The reinstatement analysis (movie vs. recall pattern correla-
tion) was conducted first in a posterior medial cortex (PMC) ROI
motivated by the previous study2, and then in cortical parcels
across the whole brain (citations and see Methods). Reinstate-
ment was significant in the PMC ROI both for movie micro-
segments that were recalled in a Temporally Precise manner,
t(16)= 9.49, p= 5.6e-8, d= 2.30, 95% CI [0.08, 0.12] (mean
r= 0.10, SD= 0.04) and those that were later Summarized,
t(16)= 7.07, p= 2.7e-6, d= 1.71, 95% CI [0.04, 0.07] (mean
r= .05, SD= 0.03). Furthermore, in 16/17 subjects, reinstatement
was greater for Temporally Precise than for Summarized recall;
t(16)= 5.11, p= 0.0001, d= 1.24, 95% CI [0.03, 0.07], all two-
tailed tests (Fig. 2a). In the whole-brain parcel-based analysis,
several regions exhibited significant reinstatement for both the
Temporally Precise (Fig. 2b) and Summarized (Fig. 2c) micro-
segments, including multiple parcels in lateral prefrontal and
lateral temporal cortex, as well as posterior medial areas. The
plurality of regions exhibiting these effects were located in parcels
within the DMN (as defined from the parcellation atlas; see
Fig. 3b), including 36% of the parcels in the Temporally Precise
reinstatement map, and 30% in the Summarized reinstatement
map (Table 1). These results are consistent with reinstatement
effects reported in the searchlight analysis of the same data2 as
well as with many observations in the literature using a variety of
stimuli and retrieval methods29–31.

Several parcels in the DMN showed numerically greater
reactivation for Temporally Precisely recalled versus Summarized
movie micro-segments, including the left lateral parietal cortex
and posterior medial cortex (Fig. 2d); however, for this contrast,
no parcels survived FDR correction at q= 0.05. See Fig. 3b and
Supplementary Table 2 for lists of the parcels defined as DMN
and PMC, respectively.

In sum, Summary utterances during recall were associated with
weaker neural reinstatement in PMC, relative to Temporally Precise
statements, and subsequent brain-wide analysis found a number of
DMN parcels in the medial and lateral parietal cortex trending in
the same direction. These results suggest that temporal compression
during recall modulates reinstatement effects in DMN subregions.
Whereas previous work has reported that DMN reinstatement can
vary depending on subjective ratings of memory vividness34,36, here
we show that the temporal compression of movie events, as
identified in individuals’ naturally varying speech content during
spoken recall, is associated with decreased pattern similarity
between encoding and recall.

Regions exhibiting the memory transformation effect. We
hypothesized that subject-consistent changes in neural patterns
between encoding and retrieval—changes that are common
across brains yet specific to individual events—would be related
to the behaviorally-identified compression of retrieved events.
Thus, we next identified brain parcels that exhibited cross-
subject-consistent changes between encoding and retrieval, i.e., a
transformation effect. This analysis reiterates an analysis con-
ducted by Chen et al. (2017)2, now using a parcel-based approach
rather than a searchlight procedure.

Chen et al. (2017)2 introduced a simple method for identifying
functionally relevant changes between encoding and recall
patterns by leveraging similarity between individuals. In brief,
the reasoning was that if memory-evoked patterns are more
similar between individuals than to the original event pattern,
then it can be inferred that patterns were transformed between
perception and memory in a systematic (non-noise) manner.
Using this method, the encoding-to-recall transformation was
observed in many subregions of the default mode network in a
searchlight analysis.
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For the present study, we employed a parcel-based approach,
and thus our first step was to recalculate transformation within
individual parcels (400 parcels43). We first identified and
averaged across the timepoints (TRs) that corresponded to each
of the 50 movie scenes for movie-viewing and for recall, and then
computed the parcel maps for movie-to-recall (MR) similarity
and recall-to-recall (RR) similarity across people. The brain was
then masked to retain only parcels that exhibited reliable activity

patterns across subjects during movie-viewing or recall (174/400
parcels, see Methods). Within this mask, transformation scores
were computed by subtracting each parcel’s movie-recall correla-
tion from its recall–recall correlation value. Transformation
scores were positive in 136 of 174 parcels and these were retained
for subsequent analyses (Fig. 3a). These parcels were distributed
throughout several networks, including DMN (29% of parcels),
the Visual Network (21% of parcels), the Frontoparietal Network
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Fig. 2 Within-subject movie-recall reinstatement analysis for movie micro-segments later recalled in a Summarized versus Temporally Precise
manner. Pattern similarity was performed at the individual-subjects level using movie micro-segments of short duration (M= 4 s, SD= 2.2 s).
a Reinstatement analysis in the bilateral PMC ROI. Movie-recall pattern similarity was greater for movie micro-segments recalled in a Temporally Precise
as opposed to a Summarized manner, t(16)= 5.11, p < 0.001, two-tailed. b Parcel map of the movie versus recall pattern similarity, limited to movie
segments that were later recalled in a Temporally Precise manner. c Parcel map of movie-recall pattern similarity, limited to movie micro-segments that
were later Summarized during recall. d Parcels where movie-recall similarity was greater for Temporally Precisely recalled segments versus Summarized
segments. This analysis was limited to parcels that showed reliable reinstatement effects in either the Temporally Precise (2b) or Summary (2c)
reinstatement maps; excluded parcels are shown in dark gray.

a. b.

 R
R

 - M
R

 

0.003

0.80

Encoding-to-Recall Transformation Schaefer et al. (2018) Parcellation

Default
Ventral Attention
Limbic
Frontoparietal
Somatomotor
Dorsal Attention
Visual

Fig. 3 Parcel maps of encoding-to-recall memory transformation. a Parcel map depicting group-level memory transformation effects, where scene-level
recall-to-recall similarity (RR) was greater than movie-to-recall similarity (MR) across subjects (136/174 parcels). Values were only computed in parcels
within a reliability mask, which was limited to parcels where either RR similarity or MR similarity was reliable (174/400 parcels). Parcels outside of this
reliability mask are shown in dark gray, and parcels in the reliability mask where RR did not exceed MR are shown in light gray. Subsequent analyses were
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(15% of parcels), and the Dorsal (13%) and Ventral (11%)
Attention Networks (see Fig. 3b and Table 1). Neither anterior
hippocampus nor posterior hippocampus showed memory
transformation or reliable within-subject reinstatement effects
(Supplementary Note 1). A comparison to the searchlight-based
transformation map from Chen et al. (2017)2 is provided in
Supplementary Fig. 2. For estimates of test-retest reliability for
recall-to-recall similarity, movie-to-recall similarity, and memory
transformation, see Supplementary Fig. 3.

Summarization during recall scales positively with memory
transformation. We next sought to test our hypothesis that
compression, as identified by summarization behavior in recol-
lection speech, would be positively related to transformation—the
magnitude of cross-subject-consistent pattern change from
encoding to subsequent recall. We first computed scene-level
Summary bias scores for all participants, as the transformation
was calculated at the 50-scene level in the prior study (in contrast
to the 1000 micro-segment levels we used in the reinstatement
analysis reported above in Fig. 2). Summary bias was computed,
for each movie scene, as the proportion of words describing that
scene during recall that were from Summary utterances, versus
Temporally Precise utterances. While the movie scenes varied in
duration (M= 37.3 s, SD= 27.8), scene duration was not corre-
lated with Summary bias across participants, t(16)=−0.3,
p= 0.76 (mean r=−0.01, SD= 0.16). Participants varied in the
degree to which they summarized each movie scene (Fig. 1b).
Across movie scenes, the relative prominence of summarization
does not appear to systematically differ depending on the movie
timeline, although most participants summarize the second movie
scene and produce temporally precise utterances about the final
scene (Fig. 1b).

To test whether a bias toward summarization was positively
related to memory transformation across movie scenes, we
computed the correlation between these variables in each brain
parcel. Testing was constrained to parcels that exhibited positive
memory transformation scores in the prior analysis (i.e., parcels
where recall–recall similarity exceeded movie-recall similarity; see
Fig. 3a), as our interpretation of negative memory transformation
scores is that subject-consistent encoding-to-recall changes have not
been detected. We found a positive relationship between Summary
bias and memory transformation in a number of parcels, such that
scenes with a greater Summary bias underwent greater pattern
changes from movie to recall, relative to scenes with a greater bias
toward being recalled in a Temporally Precise manner (Fig. 4b): 40
parcels passed FDR correction at q= 0.05. These parcels were
distributed across several functional networks: 27% of parcels were
located in the DMN, 22% in the Visual Network, and 20% each in
the Dorsal Attention Network or Frontoparietal Network (Fig. 4c
and Table 1). For proportions calculated based on the mask in
Fig. 3a, see Supplementary Note 3. Of note, transformation increased
with greater Summary bias in the precuneus, retrosplenial cortex,
bilateral lateral parietal cortex, and right prefrontal cortex. The effect
was significant in the reverse direction for two parcels, located in the
left medial temporal cortex and right ventral temporal cortex; i.e., for
these two parcels, scenes with lower Summary bias scores exhibited
stronger memory transformation.

Discussion
Our memories of the past often seem to be temporally com-
pressed versions of the original experiences. In this study, we
investigated how the brain instantiates the compression of
memories for naturalistic events. We hypothesized that reacti-
vation effects during spoken retelling, previously observed in
many high-level associative and visual areas, would be modulatedT
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by the degree to which people temporally compress experienced
events during their recall. To test this idea, we first developed a
rubric to score individual utterances spoken by participants
during their unguided verbal recall of a recently viewed movie.
The rubric assesses the degree to which a given utterance refers to
a specific moment of the movie (Temporally Precise), as opposed
to describing a longer period of time (Summarizing). We found
that Summary utterances during recall were associated with
greater dissimilarity between encoding and recall in PMC and to a

lesser extent other regions of the DMN, relative to Temporally
Precise statements. This observation agrees with prior studies
showing that reinstatement (encoding-recall similarity) is posi-
tively related to subjective vividness36 and the amount of detail of
the retrieved information44,45. Our results extend these findings
by showing that naturally varying speech content—in particular,
signatures of temporal compression during a recall—also mod-
ulate reinstatement effects. However, we argue that raw dissim-
ilarity alone is an incomplete measure, as it incorporates both

a. Correlation between Summary bias & Memory transformationc.
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Fig. 4 Analysis schematic and parcel-level results testing the relationship between summary bias during recall and memory transformation. a Analysis
schematic depicting how memory transformation is related to summarization in each participant and each tested brain parcel. In each parcel, the scene-
level transformation values are correlated with each individual subject’s Summary bias scores. The example scatterplot depicts the correlation between
Summary bias and the degree of memory transformation across scenes for one subject. Subject-level correlation values are then submitted to a random-
effects analysis (t-test versus zero, two-tailed). The bar plot (middle) depicts the correlation values, aggregated across subjects. The resulting t-statistic
value is then assigned to the parcel on the brain map. b Parcel-level maps of the relationship between memory transformation and summarization. This
relationship was only tested in parcels that showed reliable memory transformation effects (136/400 parcels, see Fig. 3a). Memory transformation scaled
with summarization in 40/136 parcels (colored). In 96/136 of the tested parcels, this relationship was not statistically reliable (light gray). 264/400
parcels were outside the memory transformation mask and were excluded from analysis (dark gray). c Relationship between summarization and memory
transformation across the 136 memory transformation parcels. Bar color indicates the functional network of each above-threshold parcel. Bars are sorted
by the t-statistic from the random-effects analysis on the subject-level correlation values. Individual dots for each bar show subject-level correlation values
and error bars indicate the standard error of the mean.
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interesting changes (e.g., behaviorally-relevant shifts in repre-
sentations of specific items or events) and uninteresting changes
(e.g., broad differences between brain states at encoding versus at
recall, and random decay). Thus, in a complementary analysis, we
tested the relationship between summarization during recall and
the encoding-to-recall transformation of brain activity patterns—
a measure which selectively identifies changes which are con-
sistent across subjects2. The results showed that, at the scene level,
a bias toward summarization in recall speech significantly pre-
dicted the magnitude of transformation in a number of high-level
visual and associative areas, with a plurality of parcels found in
the DMN. Importantly, as the changes were shared across sub-
jects, this result demonstrates that temporal compression during
recall does not merely result in noisier reinstatement; rather,
neural representations of events shift between encoding and recall
in a systematic, potentially meaningful way. Together, these
findings elucidate how the temporal compression of memories for
naturalistic events manifests in brain activity.

The act of recollecting an event from memory typically takes
less time than the original event duration1,3,4,46. Why should the
memory of real-world events be a compressed version of the
original? In addressing this question, it is important to distinguish
between the compression of the stored information and of the
retrieved information. In the current study, we measured brain
activity during encoding and during retrieval; this allowed us to
test ideas about retrieved information but did not give us access to
the representational format of information stored in memory.
Compression makes intuitive sense as a strategy for efficient
storage—there is no need to remember everything, only what is
required to meet future demands47. By analogy, computer algo-
rithms for compressing image files succeed by discarding infor-
mation that is not needed, while still meeting the demand that the
compressed image will appear similar to the original48. In the case
of JPEG, for example, as the human eye discriminates image
brightness more finely than color, compression involves down-
sampling color information while brightness information is
retained at a higher resolution.

On top of what has been modified in the stored memory
representation, the demands of a given task can lead to further
compression in the retrieved information: e.g., telling someone
the steps of a recipe versus describing the atmosphere of the
cooking class where you learned the recipe. Prior work has
demonstrated that episodic memory retrieval can be directed or
biased by the person’s task demands and goals14,49. In the case of
our task, the instructions were to retell the story (the plot) in as
much detail as possible, as if telling a friend. Thus, people were
mainly conveying the plot of the story and some pertinent sen-
sory features. If subjects had been probed with questions
demanding more detail, most likely they would be able to produce
more detail50. However, the current task did not require that;
instead, participants naturally varied the level of detail they
provided across utterances. Our Temporal precision and Sum-
mary scores, and related behavioral measures which estimate
descriptive precision during recall51,52 indicate only the level of
detail retrieved at the time of the test, not of the stored infor-
mation. Future work using memory probes which more exhaus-
tively probe stored memories could investigate the gap between
what is stored and what is retrieved.

Why should the compression scheme be similar across people?
We suggest three reasons. First, compression of stored or
retrieved memories could be similar across people simply because
brain anatomy and function are similar across people. In com-
parative studies, learning behavior for a given task is more vari-
able across species than within species53. Second, beyond shared
anatomy, participants also have shared past experiences to some
degree; several studies have shown that shared past experiences

lead to shared neural responses to narrative stimuli in DMN
regions. For example, Parkinson and colleagues (2018) showed
that inter-subject similarity in the posterior medial cortex during
movie-viewing was predicted by proximity in a social network,
which the authors attribute to homophily: friends are likely to
have similar prior experiences54. However, an extensive shared
past is not needed to predict variation in inter-subject similarity:
Yeshurun and colleagues (2017) showed that, when subjects were
presented with an ambiguous story, a single disambiguating
paragraph was presented just before the story was sufficient to
push subjects into distinct groups55. Thus, a follow-up question
for the current study is: given that people evince some similarity
in how they compress memories of events, to what extent is this
influenced by shared prior experiences? Finally, a third reason
that memories might follow a similar compression scheme across
people is that such commonality could facilitate communication
between individuals. Given a shared experience by a group of
individuals, later conversation between the individuals may be
more coherent if they have a common ground56,57 based on
similarly remembered, forgotten, or otherwise transformed
memories. This point may be particularly pertinent in our
paradigm, as participants recounted their memories orally, a
delivery format that may have evoked a mode of thinking asso-
ciated with interpersonal communication.

What is the problem with raw dissimilarity as a measure of
compression, and what is provided by the complementary trans-
formation measure? It has been widely demonstrated that episodic
remembering is accompanied by reinstatement in a set of brain
regions which typically include the default mode network and high-
level sensory areas; reinstatement is calculated as a similarity score
between the brain activity pattern at encoding versus retrieval32. As
“compression” implies that retrieval will be different in some way
from encoding, a natural prediction would be that the more com-
pressed a retrieved memory is, the more dissimilar its neural
representation should be to that observed during encoding. Indeed,
we did see this relationship in PMC (Fig. 2). However, a raw dis-
similarity measurement is problematic because it will be driven up
by multiple types of non-signal which cannot be discriminated from
each other: broad differences between brain states at encoding vs. at
retrieval, random decay of memory traces during the delay between
encoding and retrieval, and other measurement or machine noise37.
Dissimilarity will also be driven up by both subject-consistent and
subject-idiosyncratic changes, both of which are interesting signals
which experimenters would like to measure; but again, these cannot
be separated from task-irrelevant noise. Thus, we applied a com-
plementary test which selectively measures neural changes between
encoding and recall2 to selectively identify subject-consistent chan-
ges, separating them from state-related changes, subject-
idiosyncratic changes, and task-irrelevant noise.

Chen et al. (2017)2 reasoned that if retrieved activity patterns
are more similar between individuals than to the originating
pattern at encoding, then it can be inferred that patterns were
transformed in the interval between encoding and retrieval in a
systematic (non-noise) manner. In the schematic shown in Fig. 5,
brain activity patterns are visualized as vectors in multi-
dimensional space, where each dimension corresponds to a
brain voxel; we propose functional labels for different types of
pattern shifts.

Noise and subject-idiosyncratic shifts. For a given event, the
retrieved event pattern may differ from the original event pattern
due to (1) task-irrelevant noise, and/or (2) the idiosyncratic way
in which an individual recollects the event; 1 and 2 cannot be
distinguished. In this scenario (Fig. 5, Model 1), the direction in
which the Recall pattern shifts away from the original Movie
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pattern varies across individuals. The similarity between different
individuals’ recalled scene patterns must be lower than the
similarity between recall and movie patterns (in Fig. 5, Model 1,
the average distance between rings must be greater than the
average distance between the rings and the filled circle).

Event-specific shifts. Alternatively, the retrieved event pattern
may differ from the original event pattern in a common way
across people, such that each person’s recall pattern shifts away
from the original pattern in the same direction for a given event,
but in different directions for different events (Fig. 5, Model 2).
With the addition of this cross-subject-consistent shift, it
becomes possible for recall patterns to be more similar to each
other than they are to the original patterns (in Fig. 5 Model 2, for
a given color, the average distance between rings is smaller than
the average distance between the rings and the filled circle). These
event-specific shifts reflect differences in the stimulus features
across events that in turn affect their transformation (one com-
ponent of which could be compression) between encoding and
recall. For example, imagine that for Event A the most memor-
able features are foreground objects, while for event B the most
memorable feature is the spatial layout; and that 50% of voxels are
sensitive to object category, while the other 50% are sensitive to
the spatial layout. In this case, the A and B event patterns would
shift in different directions, but the direction of the shift would be
the same across people within each event (A or B).

In the current paper, we show evidence that event-specific
shifts are predicted by behaviorally-expressed summarization, or
temporal compression, during recall; the degree of compression
determines the degree of observed pattern transformation in a
number of parcels throughout high-level visual and associative
areas, with a plurality of parcels located in the DMN.

Future directions. Although these inter-subject comparisons
enable the identification of pattern changes that are shared across
subjects, they do not capture pattern changes that are specific to
individual subjects, which includes both a subject-specific signal
component and a subject-specific noise component. Recently,
there has been growing interest in measuring such subject-
idiosyncratic differences using other methods such as inter-
subject representational similarity analysis (IS-RSA)58–62. Using
IS-RSA, researchers can examine whether second-order statistics
among individuals (e.g., their similarity relations along a

behavioral dimension) correspond to the geometric mapping of
brain pattern similarities across individuals. For example, while
watching an animation of abstract shapes61 and listening to an
audio story63, subject pairs who expressed more similar inter-
pretations of the stimulus also showed increased ISC in several
brain regions. A promising avenue of exploration for future work
could be the quantification of separate contributions for subject-
shared and subject-idiosyncratic signals during naturalistic
encoding and recollection. Future studies could also benefit from
the inclusion of larger datasets, as the relatively small sample size
in the current dataset (n= 17) limited our ability to estimate the
test-retest reliability of the between-subjects similarity measures
(see Supplementary Fig. 3).

Changes in event representations between encoding and recall,
whether they are subject-idiosyncratic or subject-consistent, are
likely not limited to compression. We envision compression as an
operation wherein representations are selectively pruned, and
perhaps guided by previously learned templates or schemas1.
Alongside the compression of the encoded experience, new
information could also be incorporated into the retrieved
memory, e.g., the representation could be integrated or
supplemented with related prior episodes64–67. Such changes
would also contribute to event-specific shifts (see Fig. 5: changes
could be modeled as new information being added to recall event
patterns in a subject-consistent manner) but would not be
captured in our Summary/Temporally Precise ratings. In the
current study, we focused on compression due to what we
observed in the behavior: on average, 76% of participants’
utterances were judged by raters to be literal and accurate (either
Summary or Temporally precise), leaving 24% of utterances in
the Other category, which included inaccurate and metacognitive
statements, as well as elaborations and inferences which might be
considered new information. Exploration of additional operations
embedded in the changes between neural event representations at
encoding and recall could be pursued with paradigms in which
subjects are specifically instructed, e.g., to compress, integrate, or
add information during retrieval68.

In conclusion, this work provides evidence that the temporal
compression of remembered events manifests in brain activity in
a distributed set of high-level visual and associative areas. During
temporally compressed recall, individuals’ speech content and
brain patterns showed decreased similarity to the original movie
events, indicating that the summarized memories are altered
versions of the initial experiences. In order to address possible
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Fig. 5 Schematic of possible contributions to the pattern changes observed between encoding and recall of a movie scene. Each solid dot represents the
neural pattern evoked by a single scene during movie viewing, here shown in a hypothetical two-dimensional space. The rings of the same color depict the
neural patterns evoked when different subjects recall the scene. In both proposed models, a scene’s pattern change from movie to recall is partly due to
noise or subject-idiosyncratic shifts, shown as gray arrows. In Model 1, the pattern shifts from movie to recall are entirely explained by either noise or
subject-idiosyncratic shifts (the two are indistinguishable). In Model 2, the pattern change is consistent across people, but varies by a movie scene, such
that the magnitude and direction of the shift (colored arrows) depends on the features of each movie scene. Noise/subject-idiosyncratic shifts (gray
arrows) are also present.
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problems with raw dissimilarity measures, we additionally
assessed encoding-to-recall pattern changes that were consistent
across subjects; even under these restricted conditions, we
observed a significant relationship between temporal compression
and neural pattern changes in many of the same high-level
regions, with a plurality of the identified parcels falling within the
DMN. These findings illuminate how our memories of real-world
events diverge from the original experiences in a consistent
manner across people and reveal the neural transformations that
accompany the summarization or compression of our
experiences.

Methods
Participants. Twenty-two adults (10 female, ages 18–26) were recruited from the
Princeton community. Participants were recruited using flyers posted on the
Princeton University campus and an announcement posted on a university-
affiliated participant recruitment website. All participants were right-handed native
English speakers who reported normal or corrected-to-normal vision and had not
watched any episodes of Sherlock prior to the experiment. Participants were ran-
domly sampled from those who met the age, language, and handedness criteria. In
addition, all participants had not watched any episodes of Sherlock before the
experiment. No statistical methods were used to predetermine the sample size, and
the sample size was similar to those reported in previous publications. Participants
provided written consent prior to the experiment in accordance with the Princeton
University Institutional Review Board. Data from five participants were discarded
due to excessive head motion, short recall (less than 10 min), or falling asleep
during scanning. Data were collected between June and December 2013, and no
participants declined participation. This dataset was originally reported in Chen
et al., (2017)2.

fMRI acquisition. Whole-brain anatomical and functional MRI data were collected
on a 3 Telsa Siemens Skyra scanner. Anatomical images were acquired with T1-
weighted MPRAGE pulse sequences (0.89 mm3 resolution). T2*-weighted func-
tional images were collected with a gradient echo-planar imaging sequences in 27
ascending interleaved slices with 3 × 3 mm2 voxels and a 1.5-s TR (echo time:
28 ms, flip angle: 64 degrees, field-of-view: 192 × 192 matrix, slice thickness:
4.0 mm). The Psychophysics Toolbox (http://psychtoolbox.org/) for MATLAB was
used to display the movie and to synchronize stimulus onset with MRI data
acquisition. Participants’ speech was recorded using a customized MR-compatible
recording system (FOMRI II; Optoacoustics Ltd.).

Procedure. Participants completed three scanning runs. During the first two
scanning runs (23 and 25 min in duration, respectively), the participants viewed the
first episode of the BBC television series Sherlock. During the third scanning run,
participants were instructed to retell the events of the episode in their own words,
as though they were describing the episode to a friend. During verbal recall, par-
ticipant responses were recorded via microphone and transcribed. The duration of
the third scanning run varied according to how long each participant spoke but
lasted at least 10 min. Motion was minimized by instructing participants to remain
very still while speaking and by stabilizing participants’ heads with foam padding.
Artifacts generated by speech may introduce some noise, but they cannot induce
positive results, as the inter-subject correlation analyses depend on spatial corre-
lations between sessions (movie–recall or recall–recall). Data were later segmented
into discrete events according to plot/character changes, as determined by an
independent annotator who was blind to the experimental hypotheses.

Behavioral data processing. Transcripts were written of the audio recording of
each participant’s spoken recall. Timestamps were then identified that separated
each audio recording into the same 50 scenes that had been previously selected for
the audiovisual stimulus. A scene was counted as recalled if the participant
described any part of the scene. Scenes were counted as out of order if they were
initially skipped and then described later.

fMRI preprocessing. Preprocessing was performed using FSL (http://fsl.fmrib.ox.
ac.uk/fsl) and custom MATLAB code, and included motion correction, slice time
correction, linear detrending, high-pass filtering (140 s threshold), and coregis-
tration and affine transformation of the functional volumes to a brain template
(MNI, Montreal Neurological Institute, standard). Functional images were
resampled to a spatial resolution of 3 mm isotropic voxels. All calculations were
performed in volume space. As a final step, projections onto a cortical surface for
visualization were performed using the Human Connectome Project (HCP)
workbench (https://www.humanconnectome.org/software/connectome-
workbench).

Movie event boundaries. The movie (Sherlock Episode 1) was segmented into
individual events at two different levels of granularity. For the coarse-grained

segmentation, the movie was split into 50 scenes, where scene boundaries followed
major narrative shifts2. Coarse scenes were on average 57.7 s long (SD= 41.6 s,
max= 180 s, min= 11 s). The fine-grained segmentation consisted of 1000 micro-
segments, including the original 50-scene boundaries. Fine-grained micro-seg-
ments lasted 3.95 s on average (SD= 2.20 s, max= 19 s, min= 1 s).

Utterance coding by direct judgments. Each participant’s speech from the recall
session was transcribed. The transcribed speech was then divided into individual
utterances, where each utterance roughly corresponded to a single complete sen-
tence. For long sentences that contained three or more subordinate clauses, sen-
tences were broken up into multiple utterances. Utterance boundaries were
subjectively defined as breaks in the participant’s speech. These breaks could occur,
for example, during pauses in speech, or during shifts in the recalled content, such
as when the speaker switches to a new topic. Each utterance was comprised of 14
words on average (SD= 2.4), and the mean utterance duration was 6.83 s (SD=
1.6 s). The total duration of the recall session varied across participants, as did the
total number of recall utterances, ranging from 114 to 468 utterances across par-
ticipants (average= 203.1, SD= 110.1). For additional descriptive statistics see
Supplementary Table 1.

Each utterance was coded according to (1) the movie events it described and (2)
the amount of time that it took for the described events to elapse in the movie (i.e.,
the degree of temporal precision). First, for the movie scene coding, each utterance
was assigned a Start movie segment and an End movie segment label. The scene
labels were assigned according to the fine-grained, 1000 micro-segmentation. The
labeling of each utterances starting and ending movie scenes was completed by a
single annotator with no knowledge of the experimental design or hypotheses2.

Next, for temporal precision, each utterance was labeled as either Summary,
Temporally Precise, or Other (Fig. 1). These labels were generated in two distinct
ways: Direct Judgment and Automatic. The two methods yield consistent labels
across subjects, r= 0.60 (min: r= 0.39, max: r= 0.77, SD= 0.12). In addition, the
automated labeling method can provide a continuous measure of temporal
compression, as opposed to the binary summary/temporally precise distinction.
The main reported results use the Direct Judgment labels; we describe the
procedure for generating these labels below.

For the Direct Judgment labeling, participants’ speech during recall was
categorized into the three non-overlapping categories (i.e., Summary, Temporally
Precise, and Other). Literal and accurate statements about the movie content were
categorized as Temporally Precise if they describe movie events that elapsed in less
than ten seconds. In contrast, literal and accurate statements were classified as
Summary if they described events that took longer than ten seconds to occur. Only
literal and accurate utterances were coded; utterances that contained factually
incorrect information (i.e., confabulation) or that referred to events other than the
movie content (i.e., not recall) were coded as Other and excluded from subsequent
analysis.

The temporal precision labeling was completed by two coders (including author
EM) who were provided the definitions for Temporally Precise and Summary
utterances listed above. Each coder worked separately to label all utterances
according to these definitions. After completing the labels for each participant, the
two coders met and identified all utterances for which their labels did not match.
The raters originally had a 77% agreement rate. For utterances with mismatching
labels, the coders then reviewed the utterance content and re-watched the
corresponding movie scenes together to arrive at a consensus label.

All participants produced utterances in all three categories (Fig. 1c). On average,
47% of participants’ utterances were coded as Temporally Precise and 30% as
Summary. Across participants, an average of 24% of utterances were labeled as
Other and excluded from subsequent analyses (Fig. 1).

To compare the relative amounts of the different speech categories present in
each subject’s recall, we counted the number of words included in each category,
summing across all of a subject’s statements (Fig. 1b). Most participants produced a
greater proportion of Temporally Precise versus Summary words (11/17
participants), although the number of words and the relative proportion of
utterances in the different categories varied across individuals.

In contrast to the Direct Judgment method, the Automatic method considers
the micro-segment(s) assigned to each recall utterance and then sums the duration
of these segments to determine whether each utterance’s described movie events
elapsed in less than or greater than ten seconds. Additional details for the
Automatic method, and details for measuring temporal compression as a
continuous measure (termed temporal compression factor, or TCF), are
described below.

Utterance coding by automatic methods. The behavioral and fMRI results
described in the Results section were based on Direct Judgments of temporal
precision, in which human raters labeled recall utterances based on whether the
described events elapsed in more than ten seconds (Summary) or less than ten
seconds (Temporally Precise). These labels can also be assigned with Automatic
methods, as described below.

Indirect/automatic. In a complementary analysis to the Direct Judgments, the
categories of Summary and Precise were determined automatically, based on the
movie segment labels assigned to each statement, as judged by a coder who worked
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with the data prior to the current analysis (see Chen et al., 2017 and Vodrahalli
et al., 2018 for details). This method differs from the Direct Judgment approach in
that the Direct Judgment coders specifically considered whether each statement
referred to a 10 s window or longer, while the Automatic coder began by first
segmenting the movie into 1000 events, then had the goal of assigning movie
segments to each recall statement, without considering the unit of 10 s. In the
Automatic method, if the total summed duration of the labeled movie segments
exceeded 10 s, the statement was labeled as Summary, otherwise, it was labeled as
Precise. Utterances for which no corresponding movie segments could be identified
were labeled as Other.

Scene-level values of recall behavior can also be computed for each subject, akin
to the Summary bias scores reported using the Direct Judgment method in the
main manuscript. To compute these values, we repeated the steps described for
Direct Judgment as follows: for each of the 50 movie scenes, we identified the recall
utterances that described the scene (after translating the utterance-level movie
event labels from the 1000 micro-segment level to the 50-scene level). Then, we
counted the number of words (excluding stop words) contained in these utterances
and calculated the proportion of words that came from utterances that had been
automatically labeled as Summary. The list of stop words excluded from the word
counts are provided in Supplementary Note 2.

Temporal compression factor. The Indirect/Automatic approach also enabled us to
calculate a temporal compression factor (TCF) for each recall utterance. For each
utterance, we computed the number of spoken words (excluding stop words) and
then divided this value by the total duration of the described movie events, which is
the same duration described in the Automatic method above. Thus, the TCF value
is a ratio, where the numerator quantifies the amount of information the partici-
pant devoted to describing the events, and the denominator quantifies how long it
looks for these events to elapse in the movie. This value is subtracted from 1, so
that higher TCF scores indicate increased temporal compression, or that fewer
words were spent relative to the amount of time passed.

To compute scene-level TCF values for each subject, we identified the
utterances that described each scene (scaling from the 1000 micro-segment level up
to the 50-scene level), and then calculated the scene-average TCF value by
averaging across the utterance-level TCF values.

Thus, the three different measures (Direct Judgment, Automatic, and Temporal
Compression Factor) can each provide scene-level values of recall behavior for each
subject (e.g., Summary bias scores for each scene, as described in the main
manuscript). The three measures were positively correlated in each subject, as
should be expected given that are variations of the same judgment (i.e., degree of
temporal compression at recall relative to encoding). The Direct Judgment ratings
of Summary bias are moderately correlated with both the Automatic ratings
(r= 0.55, SD= 0.18, min= 0.19, max= 0.84) and the TCF scores (r= 0.41,
SD= 0.15, min= 0.11, max= 0.64), while the TCF and Automatic ratings are
correlated at r= 0.68 (SD= 0.09, min= 0.51, max= 0.85). A parcel-level map of
the relationship between TCF and memory transformation is shown in
Supplementary Fig. 4.

Text-based analysis of the similarity between movie annotations and sum-
mary and precise recall. In order to compute the overlap between movie and
recall content, and to test how movie-to-recall text similarity varied by recall type
(i.e., for Summary versus Temporally Precise recall utterances), we performed an
utterance-level analysis comparing the speech generated at recall against the ori-
ginal movie annotations. All movie segment annotations and recall statements were
converted into unique 512-element vectors using the Universal Sentence Encoder
algorithm42. We computed the similarity between each recall statement vector and
its corresponding movie segment vector(s). If a recall utterance described multiple
segments, a separate cosine similarity score was computed for each of these seg-
ments and then averaged together to yield one composite cosine similarity score for
the utterance. Average movie versus recall vector similarity was then computed
separately for each participant and each recall type (i.e., movie segments vs.
Summary utterances and movie segments vs. Precise utterances).

Within-subjects reinstatement for summarized versus temporally precise
recall. Memory reactivation was measured at the individual-subjects level by
computing pattern similarity between each micro-segment during movie viewing
and subsequent recall utterance(s) that described each micro-segment. If several
recall utterances described the same micro-segment, the patterns for these utter-
ances were first averaged together prior to computing the reinstatement value.
Reactivation scores were calculated separately for segments that were later recalled
in a Temporally Precise manner versus Summarized. If a micro-segment was later
described with both Summary and Temporally Precise utterances, it received two
separate reactivation scores.

For the ROI-based analysis, pattern similarity was computed in voxels located
in a bilateral PMC ROI (see Fig. 3a and Supplementary Table 2 for ROI definition).
In a parcel-based analysis, reinstatement was computed separately for Summary
and Temporally Precise recall in every parcel in the brain. To create a contrast map
of Summary versus Temporally Precise reinstatement at the parcel level, we limited
our analyses to parcels that showed a reliable Summary or Temporally Precise
reinstatement effect (283/400 parcels, see Fig. 2d). No parcels survived FDR

correction at q= 0.05; at a more liberal threshold (q= 0.10), ten parcels showed
marginal effects of greater reinstatement for Temporally Precise versus
Summarized recall.

Computing degree of summarization by a movie scene. We computed the
average degree of temporal precision for each movie scene in each subject. First, for
each participant, we sorted the utterances according to the movie scene(s) that they
referred to. Note that the same utterance could be assigned to several different
movie scenes, depending on its Start movie scene and Stop movie scene labels.
Then, we counted the total number of words spoken about each movie scene by
summing across all words in all of its corresponding utterances. We then sorted
each scene’s utterances by temporal precision, and removed “stop” words (e.g., “a”,
“is”, “the”) and non-words (e.g., “uh”, “um”) from all utterance transcriptions (see
Supplementary Note 2). Finally, we counted the proportion of words that were
assigned to each label (i.e., Summary, Temporally Precise, or Other). For each
participant, this analysis yielded a one %Summary bias score for each movie scene
that the participant recalled. Movie scenes that were recalled by less than five out of
the 17 participants were excluded from this analysis.

Memory transformation: methods (parcels). We tested for brain areas that
contain scene-specific content that is shared across individuals in each of 400
parcels from an independent whole-brain resting-state parcellation43. In each
parcel, we first performed the scene-level, between-subject analyses, computing
recall-to-recall similarity and movie-to-recall similarity for each scene2. The movie-
to-recall analysis uses the fMRI data acquired during both the movie-viewing
session and the subsequent free recall session. Each timepoint (TR) was labeled
according to the scene that the subject was currently viewing (during encoding) or
describing (during recall). The constituent TRs in each scene were then averaged
together, yielding 50 scene patterns for the movie data in each subject. For the
recall data, the number of scene patterns varied across subjects, depending on
which scenes each subject mentioned during recall. For the between-subjects
movie-to-recall analysis, each individual’s movie scene patterns were compared to
the corresponding recall patterns for that same scene, averaged across all of the
other subjects who recalled that scene. This analysis yields two values for each
parcel: one indexing the scene-average movie-to-recall similarity in the parcel, and
one for the scene-average recall-to-recall similarity. We then constrained our
analyses to parcels that showed significant effects in either the movie-to-recall or
recall-to-recall comparisons. Of the 400 parcels, 174 met this criterion (all light
gray and hot colored parcels in Fig. 3). For these statistically reliable parcels, we
identified the ones where between-subjects recall-to-recall similarity exceeded
movie-to-recall similarity. The difference between these values quantifies the
memory transformation value for that parcel.

Linking transformation and summarization: methods. To test for relationships
between the degree of summarization and memory transformation, we focused on
the parcels that showed memory transformation effects. In these parcels, we cor-
related each subject’s scene-level %Summary bias scores with the group-average
memory transformation value for each scene.

Statistics and reproducibility. For the text-based analysis comparing the simi-
larity between USE vectors for the movie annotations and spoken recall, sig-
nificance was evaluated using paired t-tests (two-tailed) to compare cosine
similarity for vectors of matching segments (i.e., movie segments and recall
utterances that covered the same content) versus mismatching segments across all
participants (n= 17). This was performed separately for each recall type (i.e.,
movie segments versus temporally precise recall utterances, and movie segments
versus summarized recall utterances). To directly compare participants’ average
movie-to-recall cosine similarity for Summary versus Temporally Precise recall
segments, the cosine similarity values for the matching segments of each recall type
were submitted to a paired t-test (two-tailed). These t-tests were deemed significant
at p < 0.05 (two-tailed).

For the within-subjects reinstatement analysis in the PMC ROI, the resulting
reinstatement values across subjects (n= 17) were submitted to a one-sample t-test
versus zero (two-tailed), computed separately for Summary and Temporally Precise
Reactivation. To directly compare reinstatement across recall types, each subject’s
two reactivation values were submitted to a paired t-test and deemed significant at
p < 0.05 (two-tailed). For the parcel-based analysis, one-tailed p values were
computed at each of the 400 parcels by comparing the group-average reinstatement
value to a null distribution that was generated by randomly shuffling the segment-
to-utterance correlation matrices 1000 times. To determine thresholding and
correct for multiple comparisons, the parcel-level p values were submitted to false
detection rate (FDR) correction (q= 0.05). Statistical significance and FDR
correction were computed separately for the Summary reinstatement and
Temporally Precise reinstatement maps.

To compute the parcel map that contrasts Summary versus Temporally Precise
within-subject reinstatement, analyses were limited to parcels that showed a
reliable Summary or Temporally Precise reinstatement effect (283/400 parcels, see
Fig. 2d). Subsequent FDR correction was limited to parcels included in this mask.
At each parcel in the mask, we directly compared the two reinstatement values
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across subjects (n= 17) with a paired t-test (two-tailed). No parcels survived FDR
correction at q= 0.05; at a more liberal threshold (q= 0.10), ten parcels showed
marginal effects of greater reinstatement for Temporally Precise versus
Summarized recall.

For the inter-subject pattern similarity analyses (i.e., movie-to-recall and recall-
to-recall), statistical significance was determined by shuffling the scene labels 1000
times to generate a null distribution. For each analysis, a one-tailed p value was
calculated as the proportion of values from the null distribution that were equal to
or greater than the observed similarity values for matching scenes. The resulting p
values were then corrected for multiple comparisons using FDR correction
(q= 0.05). To test for reliable a correlation between %Summary bias and memory
transformation, we submitted each participant’s (n= 17) scene-level correlation
between %Summary bias and memory transformation values to a one-sample t-test
versus zero (two-tailed). This test was performed at each parcel included in the
memory transformation mask, which was limited to parcels with either significant
movie-to-recall or significant recall-to-recall similarity. Across parcels in the
memory transformation mask, FDR correction (q= 0.05) was then applied to
determine statistical thresholding.

Citation diversity statement. Recent work in several fields of science has iden-
tified a bias in citation practices such that papers from women and other minority
scholars are under-cited relative to the number of such papers in the field69–77.
Here we sought to proactively consider choosing references that reflect the diversity
of the field in thought, form of contribution, gender, race, ethnicity, and other
factors. First, we obtained the predicted gender of the first and last author of each
reference by using databases that store the probability of a first name being carried
by a woman73,78. By this measure (and excluding self-citations to the first and last
authors of our current paper), our references contain 16.2% woman(first)/
woman(last), 12.92% man/woman, 24.42% woman/man, and 46.45% man/man.
This method is limited in that (a) names, pronouns, and social media profiles used
to construct the databases may not, in every case, be indicative of gender identity
and (b) it cannot account for intersex, non-binary, or transgender people. Second,
we obtained the predicted racial/ethnic category of the first and last author of each
reference by databases that store the probability of a first and last name being
carried by an author of color79,80. By this measure (and excluding self-citations),
our references contain 8.14% author of color (first)/author of color(last), 15.43%
white author/author of color, 18.88% author of color/white author, and 57.56%
white author/white author. This method is limited in that (a) names, Census
entries, and Wikipedia profiles used to make the predictions may not be indicative
of racial/ethnic identity, and (b) it cannot account for Indigenous and mixed-race
authors or those who may face differential biases due to the ambiguous raciali-
zation or ethnicization of their names. We look forward to future work that could
help us to better understand how to support equitable practices in science.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
In addition, the data and materials that support the findings of this study are available on
the Open Science Framework data and code repository titled “Neural Signatures of
Compression in the Retelling of Past Events” at the following URL: https://osf.io/8gmes/
The preprocessed fMRI data are available for download at: https://dataspace.princeton.
edu/handle/88435/dsp01nz8062179.

Code availability
The custom MATLAB computer code for reproducing the parcel maps and all depicted
figures in this study are available for download on the Open Science Framework data and
code repository titled “Neural Signatures of Compression in the Retelling of Past Events”
at the following URL: https://osf.io/8gmes/. The code and the corresponding data81 are
also available for download at the following URL: https://doi.org/10.5281/zenodo.
6382857.
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