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Abstract

The protein deacetylase SIRT1 has been implicated in the regulation of a large number of cellular processes that are
thought to be required for cancer initiation and progression. There are conflicting data that make it unclear whether
Sirt1 functions as an oncogene or tumor suppressor. To assess the effect of SIRT1 on the emergence and
progression of mammary tumors, we crossed mice that harbor a point mutation that abolishes SIRT1 catalytic activity
with mice carrying the polyoma middle T transgene driven by the murine mammary tumor virus promoter (MMTV-
PyMT). The absence of SIRT1 catalytic activity neither accelerated nor blocked the formation of tumors and
metastases in this model. There was a lag in tumor latency that modestly extended survival in Sirt1 mutant mice that
we attribute to a delay in mammary gland development and not to a direct effect of SIRT1 on carcinogenesis. These
results are consistent with previous evidence suggesting that Sirt1 is not a tumor promoter or a tumor suppressor.
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Introduction

The lifespan of many metazoan animals can be prolonged by
restricting daily caloric intake [1]. The working model emerging
from these studies is that caloric restriction (CR) activates the
catalytic activity of a class of enzymes called sirtuins and this is
responsible for conferring stress resistance and extending
lifespan [2–4]. Sirtuins are NAD+-dependent protein
deacetylases [5] and the most studied mammalian member of
this group is SIRT1.

In mammals, CR extends lifespan and forestalls the onset of
various diseases including cancer [1]. There is evidence that
Sirt1 is required for CR-induced lifespan extension in mice [6]
suggesting that Sirt1 may be a tumor suppressor gene. Indeed
a number of studies have suggested that this is true [7–10]
although paradoxically there are as many studies indicating
that Sirt1 is an oncogene [11–15] and still others demonstrating
that Sirt1 has no effect on oncogenesis [16]. Most reviews on
the subject describe Sirt1 as having both pro- and anti-
oncogenic properties [17].

Sirt1 is a promiscuous protein deacetylase with more than 80
established substrates [18] and a large number of other
proteins with which it interacts [19]. Amongst its substrates are

a number of well-established proteins with roles in the initiation
and progression of cancer. These include p53 [5,12], p73 [20],
RB [21], NF-κB [22], and c-MYC [23]. SIRT1 itself is in turn
regulated by tumor suppressor proteins including HIC1 [13],
BRCA1 [24], and the putative tumor suppressor DBC1 [25,26].
The notion of a major role for SIRT1 in carcinogenesis is
further strengthened by the apparent involvement of SIRT1 in
the maintenance of genome stability [9,27].

A potential role for Sirt1 in the etiology of breast cancer was
postulated recently when a retrospective study found that
breast cancer patients whose tumors where positive for SIRT1
via immunohistochemistry had an increased likelihood of
metastasis to a distant site as well as decreased overall
survival and relapse-free survival [28,29]. SIRT1 expression
has also been found to correlate with metastatic spread in the
triple negative subtype [29]. A putative SIRT1 activator was
found to promote the formation of lung metastases in a breast
cancer xenograft model [30]. SIRT1 expression is decreased in
breast cancer arising in BRCA1 mutation carriers [24].

Our previous studies of cancer development employed
animals carrying a null mutation for Sirt1 and used 2-stage skin
carcinogenesis and APC-dependent colon cancer [16]. These
studies showed that the Sirt1 genotype did not influence the
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efficiency of cancer development but in both cases, the tumors
arising with these 2 paradigms are benign polyps or adenomas
that did not progress into frank malignancies. We set out to
investigate the possibility that Sirt1 is involved in later stages of
carcinogenesis, using a transgenic mouse (MMTV-PyMT) in
which the polyoma middle t antigen is expressed in the
mammary epithelium. These animals develop rapidly growing
mammary tumors that frequently metastasize to the lung [31].
The MMTV-PyMT mouse model of breast cancer is a long-
established and well characterized model that accurately
recapitulates the disease process observed in human breast
cancer [32]. We introduced the MMTV-PyMT transgene into
animals carrying a point mutation in the Sirt1 gene, the
Sirt1tm2.1Mcby gene referred here to as the Sirt1Y allele. This gene
encodes a SIRT1(H355Y) protein that has no catalytic activity
[33]. This point mutation was created by gene knock-in, and
thus the mutant protein is expressed throughout the mice and
is present at levels indistinguishable from the SIRT1 levels
from the Sirt1+ allele. Our results indicate that mice carrying the
MMTV-PyMT transgene and homozygous for Sirt1Y efficiently
develop mammary tumors that subsequently metastasize.

Materials and Methods

Animals
Male FVB/N-Tg(MMTV-PyMT)634Mul/J mice (hereto

referred to as MMTV-PyMT), were a generous gift from Dr. Bill
Muller [31]. These male animals were crossed with
heterozygotes (Sirt1Y/+) of our own female 129sv/CD1-
Sirt1tm2Mcby mice who harbour a missense mutation in the
catalytic domain of Sirt1 [33]. Male mice from the resulting F1
generation who were positive for the MMTV-PyMT transgene
and Sirt1Y/+ were then crossed with female Sirt1Y/+ mice. From
the resulting F2 generation, only female mice that were positive
for the MMTV-PyMT transgene were followed. Genotyping for
the MMTV-PyMT transgene and the Sirt1 H355Y mutation was
performed as previously described [33,34]. Mice were housed
in groups of 2-4, with a constant room temperature of 24°C and
a 12 hour light/dark cycle. They received food and water ad
libitum. Upon weaning, animals were weighed weekly and
digital palpation of the mammary glands was used to assess
the presence of palpable masses. Mice were monitored until
they had reached criteria for predetermined loss of wellness
endpoint. These endpoints were defined as tumor burden
where any tumor had a diameter of 20 mm, impaired mobility,
tumor ulceration, and/or respiratory distress. All animal work
was carried out in accordance with Guidelines for the Care and
Use of Animals established by the Canadian Council on Animal
Care with protocols approved by the Animal Care Committee of
the University of Ottawa, Ottawa, Ontario, Canada.

Tissue Collection
Animals were euthanized via CO2 asphyxiation. Tumors were

removed, weighed and fixed in 10% neutral buffered formalin.
Formalin-fixed tissues were embedded in paraffin and 3-4 µm
sections were cut for staining with hematoxylin and eosin or for
immunohistochemistry. Lungs were perfused with phosphate
buffered saline and fixed in formalin.

Lung Metastases
To assess the presence and degree of metastasis to the

lungs, lung tissue was collected as described above. Following
embedding in paraffin, eight 10 µm sections, spaced at 50 µm
intervals, where cut and affixed to glass slides. Sections were
deparaffinized and stained with hematoxylin and eosin. Slides
were blinded and the total number of individual metastatic
nodules in each sample of lungs was counted at 100X
magnification using an Olympus BX50 microscope (Olympus,
Melville, NY, USA).

Mammary Gland Whole Mounts
At six or eleven weeks of age, virgin female mice were

euthanized via carbon dioxide asphyxiation and the fourth
abdominal mammary gland was dissected, spread onto a glass
slide and allowed to dry for 30 minutes. Slides were placed in
acetone overnight followed with hematoxylin for 4 hours.
Glands were then destained in an acid-alcohol solution
overnight and then dehydrated in 100% ethanol for 1 hour
followed by transfer to xylene. Whole mounts were then
coverslipped with Permount. Mammary glands from ten mice
from each genotype were examined at each time point.

Immunohistochemistry
Paraffin sections were deparaffinised through three changes

of xylene and rehydrated in series of graded ethanols. High
temperature antigen retrieval was performed using a 0.01M
sodium citrate buffer (pH 6.0) in PBS and endogenous
peroxidase activity was blocked via treatment with 3%
hydrogen peroxide in PBS. Additional blocking was performed
using a serum-free protein block (DAKO, Carpenteria, CA,
USA). Primary antibodies were diluted in background-reducing
antibody diluent (DAKO) at the following concentrations:
SIRT1, 1:50 (Cell Signaling Technologies, Danvers, MA, USA),
Middle T Antigen, 1:15 (Ab-4, Calbiochem, Mississauga, ON,
Canada), ERα, 1:100 (MC-20, Santa Cruz Biotechnology,
Santa Cruz, CA, USA ). For the SIRT1 and ERα antibodies,
sections were incubated with primary antibody overnight at
room temperature. Following three washes with PBS, sections
were incubated with an anti-rabbit Envision+ Labelled Polymer
(Dako) for 30 minutes at room temperature. For the polyoma
Middle T Antigen antibody the Vector®Mouse on Mouse™ kit
(Vector Labs, Burlingame, CA, USA) was followed according to
the manufacturer’s specifications. Developing was performed
with diaminobenzidine (DAB, Sigma-Aldrich, Oakville, ON,
Canada) and slides were counterstained with hematoxylin,
dehydrated and coverslipped using Permount (Fisher Scientific,
Ottawa, ON, Canada)

Statistics
The probability of significant differences was determined by

analysis of variance (ANOVA), employing the Kruskal-Wallis
test with the Dunn’s multiple comparison test. Survival and
time-to-detection curves were compared using the LogRank
test. Correlation was tested using the Spearman rank test.
Data is expressed as mean±SEM (standard error of the mean)
and P-values are two-sided. Analysis was performed using
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Graphpad Prism statistical software (Graphpad Software, San
Diego, CA, USA).

Results

Abrogation of SIRT1 catalytic activity does not prevent
mammary tumor formation in MMTV-PyMT mice

Female mice carrying the MMTV-PyMT transgene develop
mammary tumors that progress rapidly and metastasize to the
lung [31]. We introduced the MMTV-PyMT transgene into
stocks of mice carrying the H355Y point mutation in the Sirt1
gene (an allele referred to as Sirt1Y) and studied the
emergence of mammary tumors in Sirt1+/+, Sirt1+/Y, and Sirt1Y/Y

females. All females regardless of Sirt1 genotype developed
tumors that required the sacrifice of the animal within 200 days
of birth (Figure 1A). Upon necropsy, all mammary tumors were
removed, weighed and expressed as a proportion of body
weight. The total tumor burden at endpoint was similar for the 3
genotypes (Figure 1B). Representative mammary tumors were
examined histologically. All were positive for expression of the
polyoma middle T antigen, which was associated with the
cytoplasmic membrane (Figure 2D-F), and for estrogen
receptor alpha (ERα), which was present in the nucleus (Figure
2G-I). The SIRT1 protein was also present in the nuclei of cells
from all tumors regardless of genotype (Figure 2A-C).

Loss of SIRT1 catalytic activity is associated with
increase tumor latency in MMTV-PyMT mice

Most of the Sirt1Y/Y mice reached endpoint later than their
Sirt1+/+ and Sirt1+/Y littermates (Figure 1A). Median survival of
Sirt1Y/Y animals was 144 days (range: 95-195 days), which was
significantly longer than that of the Sirt1+/+ animals (median
117.5 days, range: 101-156 days, P< 0.05) as well that of the
Sirt1Y/+ mice (median 106 days, range: 83-126 days,
P<0.0001). There was no statistically significant difference in
the overall survival of the Sirt1+/+ and the Sirt1Y/+ animals. We
monitored the animals at weekly intervals and assessed the
age at which the first palpable mammary tumor was detected.
Palpable tumors appeared in the Sirt1Y/Y mice with significantly
longer latency than those of Sirt1+/+ and Sirt1+/Y mice (Figure
3A). The median age of detection of the first mammary gland
mass was 55 days (range: 38-73 days) in Sirt1+/+ mice and 57
days (range: 24-70 days) in Sirt1Y/+ animals. Both were
significantly shorter than the 70 days (range: 63-92 days)
observed in Sirt1Y/Y mice (P< 0.01). The delayed onset of tumor
development in Sirt1Y/Y animals was more obvious (Figure 3B)
when we counted the number of mammary glands that had a
palpable mass (there are 10 mammary glands on each
mouse). At ten weeks of age, when all ten animals in each
group were still alive, the Sirt1Y/Y animals had significantly
fewer palpable tumors than either the Sirt1+/+ (1.0±1.0 versus
5.1±1.3, P< 0.05) or Sirt1Y/+ mice (1.0±1.0 versus 5.6±1.2, P<
0.01).

Histological examination of mammary glands of 6 week old
animals carrying the MMTV-PyMT transgene indicated similar

Figure 1.  Abrogation of SIRT1 catalytic activity does not prevent mammary tumor formation in the MMTV-PyMT mouse
model of breast cancer.  A) Kaplan Meir plot showing the percentage of surviving animals over time. N= 10 mice per genotype.
Sirt1Y/Y animals had a significantly longer overall survival time than the Sirt1+/+ and the Sirt1Y/+ mice (p <0.01) B) Tumor burden as a
proportion of total body weight at humane endpoint. All tumors were removed and weighed at necropsy. Points represent individual
animals and bars represent the median. N=10 mice per genotype, all animals carried the MMTV-PyMT transgene.
doi: 10.1371/journal.pone.0082106.g001
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levels of polyoma middle T antigen in both Sirt1+/+ and Sirt1Y/Y

mice indicating that loss of SIRT1 catalytic activity did not
impact the expression of the PyMT oncogene (Figure 4). These
sections also revealed microscopic pre-neoplastic hyperplastic
nodules in all animals examined regardless of Sirt1 genotype
suggesting that the delay in tumor development in the Sirt1Y/Y

mice was a consequence of reduced rates of tumor
progression rather than initiation.

Delayed mammary gland development in Sirt1Y/Y mice
SIRT1 is reported to be required for efficient maturation of

the mammary gland [35]. We examined the fourth inguinal
mammary gland from virgin mice at eleven weeks of age, when
development should be complete. These mice did not carry the
MMTV-PyMT transgene. The Sirt1+/+ and Sirt1Y/+ animals had
mammary glands comprised of a complex ductal network with
primary and secondary branching throughout the length of the
gland (Figure 5). In all cases examined, the mammary glands
from Sirt1Y/Y mice appeared to have stunted branching ductal
morphogenesis. There was incomplete outgrowth into the
entire gland and the ductal branching structure was simplistic
when compared to the glands from Sirt1+/+ and Sirt1Y/+ mice
(Figure 5).

SIRT1 catalytic activity does not affect metastasis in
MMTV-PyMT mice

The mammary tumors that arise in animals carrying the
MMTV-PyMT transgene are highly malignant and frequently
form lung metastases [31]. In order to determine if SIRT1
affects metastatic spread, lungs were formalin-fixed at endpoint
and the presence and number of metastatic nodules per lung
were assessed in H&E stained sections (Figure 6A). In our
experiments, lung metastases were detected in 70% of the Sirt
+/+, 80% of SirtY/+, and 50% of the SirtY/Y mice. The number of
metastatic nodules was not different (P > 0.05) between
animals of the various Sirt1 genotypes when metastases were
present (Figure 6B), with a mean of 11.5±3.5 nodules (range
0-31) observed in the lungs of Sirt+/+ mice, 12.2±4.2in the SirtY/+

animals (range 0-36), and 9.2±4.0 in the SirtY/Y animals (range
0-33). As with the primary mammary tumors, lung nodules
expressed both polyoma middle T antigen and ERα (Figure
6A).There was no correlation between the number of lung
metastases and survival time observed in the Sirt+/+ (r= 0.58,
P=0.09), SirtY/+ (r= 0.36, P=0.30) or the SirtY/Y mice (r= 0.43,
P=0.20)(Figure 6C).

Figure 2.  Expression of SIRT1, Middle T Antigen, and ERα protein in mammary tumors.  Representative
immunohistochemical staining for SIRT1 (A-C), Middle T Antigen (D-F), and ERα (G-I) in mammary tumors collected at humane
endpoint from Sirt1+/+, Sirt1Y/+ and Sirt1Y/Y mice at 200X magnification (scale bars, 100 μm).
doi: 10.1371/journal.pone.0082106.g002
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Figure 3.  Loss of SIRT1 catalytic activity is associated with increase tumor latency.  A) Kaplan Meir plot measuring the
percentage of mice without any palpable mammary gland mass at the given age. N= 10 mice per genotype. There was a significant
delay in the time at which the Sirt1Y/Y developed their first detectable mass as compared to the Sirt1+/+ and the Sirt1Y/+ mice (P <0.01
and P < 0.05, respectively). B) The mean number of mammary glands with a palpable mass over time as measured at weekly
intervals after birth. N= 10 mice per genotype. Error bars indicate SEM.
doi: 10.1371/journal.pone.0082106.g003

Figure 4.  Loss of SIRT1 catalytic activity does not affect expression of the PyMT transgene.  Representative
immunohistochemical staining for Middle T Antigen in mammary glands of PyMT+/Sirt1+/+ and PyMT+/Sirt1Y/Y mice collected at 6
weeks of age (scale bars equal to 100 μm). Arrows indicate areas of mammary intraepithelial neoplasia.
doi: 10.1371/journal.pone.0082106.g004
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Discussion

Amongst the multitude of substrates of SIRT1 catalysis [18]
and its interacting proteins [36] are many known to play
important roles in oncogenesis. The evidence has been
generally interpreted to indicate that Sirt1 is a tumor
suppressor gene [37]. We undertook to directly test the idea
that the protein deacetylase activity of SIRT1 suppresses tumor
formation in mice that develop aggressive mammary
carcinomas under the influence of the polyoma middle T
oncogene. Tumor development in mice with catalytically
inactive SIRT1(H355Y) protein was not accelerated, a result
inconsistent with the notion that Sirt1 is a tumor suppressor.
This conclusion is the same as from our previous work in skin
and intestinal carcinogenesis [16]. Tumors that arise in MMTV-
PyMT mice metastasize to the lung and this late stage of tumor
progression is also not accelerated in Sirt1Y/Y mice suggesting
that SIRT1 has little effect at even late stages of tumor
development.

Mammary glands from 6 week old female Sirt1Y/Y mice
carrying the MMTV-PyMT transgene contained sites of
hyperplasia/adenoma similar to those found in Sirt1+/+ mice
suggesting that SIRT1 has little effect on the very early stages
of tumor initiation. However, the rate at which palpable
mammary tumors appeared in Sirt1Y/Y animals was delayed
compared to that of their normal littermates and the proportion
of mice with lung metastases was also slightly reduced. These

Figure 5.  Abolition of SIRT1 enzymatic activity results in
blunted ductal morphogenesis in the mammary
gland.  Right panel, representative photographs of whole
mounts of the 4th abdominal mammary gland in Sirt1+/+, Sirt1Y/+

and Sirt1Y/Y mice at eleven weeks of age (scale bar, 5mm). Left
panel, a higher magnification view of the ductal network in
representative mammary gland whole mounts of the 4th

abdominal mammary gland in Sirt1+/+, Sirt1Y/+ and Sirt1Y/Y mice
at eleven weeks of age. 400X magnification (scale bar, 0.7
mm).
doi: 10.1371/journal.pone.0082106.g005

observations may indicate that SIRT1 has some tumor
promoting activity. An alternative explanation for this delay in
oncogenesis is that it is a consequence of the delay in the rate
of maturation of mammary glands in Sirt1Y/Y animals. Li et al
[35] reported impeded ductal morphogenesis in the mammary
glands and lactation failure in SIRT1-deficient mammary tissue.
We similarly found blunted ductal outgrowth and a less
complex ductal network in Sirt1Y/Y mice despite the fact that
Sirt1Y/Y females are fertile [33] and able to suckle their pups.

The mammary glands of ERα knockout mice (αERKO), like
those of Sirt1Y/Y mice, show reduced ductal outgrowth [38].
Estrogen is a key regulator of mammary gland development
[39] and has been shown to promote tumor growth in MMTV-
PyMT mice [40]. The connection between the SIRT1 and ERα
is confusing. Inhibition of SIRT1 deacetylase activity has been
reported to suppress ERα transcription [41] whereas another
report showed that SIRT1 repressed estrogen signaling and
ERα-mediated cell growth in breast cancer cells in vitro [42].
Elangovan et al reported that ERα increases Sirt1 transcription
and that this is essential for estrogen to promote mammary
tumorigenesis [43]. In our mice, regardless of Sirt1 genotype,
mammary tumors all had similar levels of SIRT1 and ERα
protein levels as assessed by immunohistochemistry,
suggesting that absence of SIRT1 catalytic activity does not
appear to affect ERα expression in this context.

There are several reports indicating that SIRT1 is involved in
processes thought to be important for tumor progression and
metastases. For example, SIRT1 is reported to modulate
growth and invasion [44], neoangiogenesis [45], cell motility
[46], epithelial-to-mesenchymal transition [47], and expression
of matrix metalloproteinases (MMPs) [48,49]. Nevertheless,
tumors arising in the mammary glands of mice containing no
SIRT1 catalytic activity are capable of growing aggressively
and metastasizing to the lung suggesting that the modulation of
these functions is only conditionally dependent on SIRT1. In
breast cancer, extremely limited clinical evidence suggests that
SIRT1 expression is associated with poorer prognosis [28,29],
implying that SIRT1 has a pro-oncogenic effect. This inference
is consistent with our result reported above as well as the
developing general notion that the biological role of SIRT1 is
manifest only under circumstances requiring cellular adaptation
to a stress [18]. Breast cancer is, however, a heterogeneous
disease with numerous molecular subtypes, and the MMTV-
PyMT mouse model is not representative of all of these.
Further studies investigating whether the results obtained here
were also observed in breast cancer models with different
molecular and pathological signatures is warranted.

Although the results reported in this communication are
consistent with our previous work [16] that found that SIRT1-
null mice were not differentially sensitive to oncogenic
treatments, these results are at odds with other reports [8,9]
that suggest that SIRT1 has tumor suppressive properties. For
example, the report from Wang et al [9] found that mice
heterozygous for a Sirt1 deletion have enhanced cancer
susceptibility and that SIRT1 plays a role in genome stability.
One explanation for the conflicting observations might emerge
from consideration of the scale-free network of proteins in
which SIRT1 is a hub [18]. One might imagine that the line of
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mice carrying the Sirt1- allele created by Wang et al [9] carries
another unknown mutation that is synthetic with SIRT1-
deficiency to predispose to cancer. Alternatively, the mice
carrying the Sirt1Y allele described here might carry a different
unknown mutation that synthetically suppresses a possible pro-
oncogenic property of SIRT1-deficiency. In either case, it
seems clear that the effect of compromising SIRT1 function is
importantly dependent on genetic context. It may be important
to note that both Sirt1 mutations (and many other genetic
modifications to mouse strains) were created by gene knock-in
strategies in embryonic stem (ES) cells growing in culture
where there is likely to be strong selective pressures for rapid
growth and survival. ES cells that acquire mutations in genes
that enhance growth or survival would introduce these into the
murine germ line and contribute to genetic heterogeneity within
the population of animals being compared.
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Figure 6.  Loss of SIRT1 catalytic activity does not affect metastasis.  A) Mouse lungs displaying metastatic nodules (arrows)
(H&E, left, scale bar 5 mm, right, scale bar 100 μm) and metastatic nodules stained via immunohistochemistry for polyoma middle T
antigen and ERα (scale bar 100 μm) B) The number of individual metastatic nodules in whole lung H&E sections assessed at
endpoint. Eight 10µm sections spaced 50µm apart were evaluated in each mouse. N=10 mice per genotype. Points represent
individual animals and bars represent the mean number of metastatic nodules. C) The average number of individual metastatic
nodules in whole lung H&E sections assessed at endpoint correlated with overall survival time in days.
doi: 10.1371/journal.pone.0082106.g006
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