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In their commentary on our paper1, Xiao et al.2 make a point that
the predictive performance of ImmuneCells.Sig is inconsistent.
This is mainly due to the batch effect across different RNA-seq
data sets (Fig. 1a). The relatively poor generalization of gene
expression profiling (GEP) is common in predicting immunother-
apy response. For example, Cui et al.3 analyzed ten well-established
GEP signatures in the three data sets (VanAllen15, Liu19, Kim18).
All ten signatures showed AUC (Area Under The Curve) values
<0.66 and nine signatures had AUC < 0.6 in the Liu19 data set (Fig.
6D in Cui et al.3). The IMPRES signature4 performed poorly in all
three data sets (AUC values are in the range of 0.5–0.63, Fig. 6D–F
in Cui et al.3) and the AUC value of Messina signature is only
about 0.2 in the Kim18 data set (Fig. 6F in Cui et al.3). Similarly,
inconsistent and low AUC values of the established ICT (immune
checkpoint therapy) response signatures were found in another
study (Fig. 4g–i in Jiang et al.5). In addition, a study involving
tumor specimens from 8135 patients and using the broad category
of GEP developed from ten studies showed that the AUC value of
this well-trained GEP is only 0.656. It should be noted that some
gene expression-based tests are successful in cancer diagnosis such
as Oncotype DX for breast cancer. This is because that it is a tumor
proliferation genes-based signature measured by a single reference
laboratory7. Tumor proliferation genes’ expressions are highly
correlated with cancer recurrence, so it is reasonable for Oncotype
DX to predict the recurrence of breast cancer. Nevertheless,
Oncotype DX could still perform poorly in predicting breast cancer
outcome, with AUC values being 0.64 and 0.59 in two breast cancer
data sets8.

In the four bulk RNA-seq data sets we used for validation,
there existed the missing data problem. About 18% of the sig-
nature genes (19 of 108) had no expression data available in two
or three bulk RNA-seq data sets. In addition, the patients received
different treatment schemes that may result in the high hetero-
geneity of the biological samples. For example, for the GSE78220
data set9, patients received the anti-PD-1 therapy; for the
PRJEB23709 data set10, the patients received either anti-PD-1 or

combined anti-CTLA-4 and anti-PD-1 therapy; for the GSE91061
data set11, before the patients were treated with nivolumab (anti-
PD-1), about half of them progressed on ipilimumab (Ipi) therapy
(anti-CTLA-4) and the other half were Ipi-naive; for the MGSP
study, some patients were exposed to the anti-CTLA-4 Ipi ther-
apy while the others were Ipi-naive before they were treated with
anti-PD-1 therapy. It could be difficult to accurately define ICT
outcome, too. In some patients subjected to ICT, the durable
responses may occur only after pseudoprogression that would be
considered to be the disease progression phenotype12. Further-
more, the RNA samples were prepared differently across studies,
with some being fresh samples and some being FFPE samples.
Different bioinformatics approaches were used to process the
sequencing data, too. All of these and other unknown factors
contributed to the batch effects that hindered the generalization
of the ImmuneCells.Sig signature we developed.

For the prediction, we were remiss to use the training AUC
values for the comparison of the ICT response signatures. To
correct this glitch, we have re-tested the predictive performance
of ImmuneCells.Sig and the other 12 ICT signatures using the
fivefold cross-validation13. To test a GEP signature in a data set,
we split the data set into five parts of approximately equal size
(called folds) and performed prediction for each part with a
predictor trained on the remaining four parts. The mean testing
AUC values from the fivefold cross-validation represent the
generalization accuracy of a GEP signature. The results showed
that ImmuneCells.Sig still had good predictive values (Fig. 1b).
Comparing ImmuneCells.Sig to the other 12 ICT signatures
suggested that the conclusion in our original paper remain valid,
i.e., the ImmuneCells.Sig is better than the previously developed
ICT signatures in predicting ICT outcomes (Fig. 2). For the data
sets of GSE91061 and MGSP, ImmuneCells.Sig’s performance is
obviously better than any of the other 12 ICT signatures (Fig. 2b,
d). For the GSE78220 data set, ImmuneCells.Sig is one of the two
best signatures (the other one is IPRES.Sig, Fig. 2a). For the
PRJEB23709 data set, ImmuneCells.Sig is also one of the two best
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Fig. 1 Divergence between different data sets and the fivefold cross-validation of ImmuneCells.Sig across the data sets. a First two principal
components of all individuals from data sets GSE78220, GSE91061, PRJEB23709, and MGSP. b The fivefold cross-validation showed that the ImmuneCells.
Sig still had good predictive values across the independent data sets. The plots of the results of the mean testing AUC values for each of the four data sets
were shown, i.e., for GSE78220, GSE91061, PRJEB23709, and MGSP data sets.

Fig. 2 Comparison of the performance of ImmuneCells.Sig with other ICT (immune checkpoint therapy) response signatures and independent
validation of ImmuneCells.Sig without or with batch effect correction. The multiple bar plots of the fivefold cross-validation calculated mean testing AUC
(Area Under The Curve) values of the whole 13 ICT signatures are shown in a For the GSE78220 data set. b For the GSE91061 data set. c For the
PRJEB23709 data set. d For the MGSP data set. e Testing the predictivity of the ImmuneCells.Sig trained in the GSE91061 data set in the other three
independent data sets—PRJEB23709, GSE78220, and MGSP without or with batch effect correction. f Testing the predictivity of the ImmuneCells.Sig
trained in the PRJEB23709 data set in the other three independent data sets—GSE78220, MGSP, and GSE91061 without or with batch effect correction.
g Testing the predictivity of the ImmuneCells.Sig trained in the GSE78220 data set in the other three independent data sets—MGSP, PRJEB23709, and
GSE91061 without or with batch effect correction.
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signatures (the other one is IMPRES.Sig, Fig. 2c). These results
demonstrate that the ImmuneCells.Sig is an effective signature to
predict ICT outcome.

In addition, we reanalyzed the data using the regularized
logistic regression method according to the previous
studies14,15. The AUC value within 0.7–0.8 and 0.8–0.9 is
considered acceptable and excellent, respectively16. The new
results showed that the ImmuneCells.Sig was validated in the
independent testing data sets for prediction. If we corrected the
batch effect using the removeBatchEffect function in the limma
package v3.44.3 implemented in the R software package v3.6.3,
the AUC values were further improved. For example, without
batch effect correction, the ImmuneCells.Sig trained in the
GSE91061 data set was validated in the independent test data
sets—PRJEB23709 and GSE78220, which achieved the AUC
values of 0.693 and 0.728, respectively (Fig. 2e). It was not
validated in the MGSP data set without batch effect correction
(AUC= 0.6, Fig. 2e). After batch effect correction, the Immu-
neCells.Sig was validated in these test data sets. The AUC values
were 0.771, 0.728, and 0.738 for the batch effect corrected
PRJEB23709, GSE78220, and MGSP data sets, respectively
(Fig. 2e). The PCA plots of batch effect correction were given in
Supplementary Fig. 1. Except for the GSE78220 data set whose
AUC value remained 0.728, ImmuneCells.Sig performance was
improved in the other two test data sets after batch effect
correction. Specifically, in the PRJEB23709 data set, the
acceptable AUC value was improved to a higher value (from
0.693 to 0.771); in the MGSP data set, the AUC value in the
batch effect corrected data increased to the acceptable level
(from 0.6 to 0.738).

Similar improvement was also seen for the ImmuneCells.Sig
trained in the PRJEB23709 data set. Without batch effect cor-
rection, ImmuneCells.Sig trained in the PRJEB23709 data set
achieved AUC values of 0.651, 0.659, 0.662 in the three inde-
pendent test data sets—GSE78220, MGSP, and GSE91061. With
batch effect correction, the AUC values reached 0.882, 0.757,
0.654, respectively, for these data sets. Except for GSE91061,
ImmuneCells.Sig was validated in the corrected GSE78220 and
MGSP data sets, at the excellent (0.882) and acceptable (0.757)
levels, respectively (Fig. 2f). A similar effect was also observed for
ImmuneCells.Sig trained in the GSE78220 data set (Fig. 2g). The
AUC values were 0.552, 0.696, and 0.547 in the initial test data
sets—MGSP, PRJEB23709, and GSE91061. They increased to the
acceptable validation levels of 0.749 and 0.771 for the batch
effected corrected MGSP and PRJEB23709 data sets and reached
0.668 for the corrected GSE91061 data set that was close to the
acceptable validation (Fig. 2g). Therefore, batch effect correction
could improve the prediction performance of ImmuneCells.Sig to
the acceptable level.

It is a known issue that batch effects of heterogeneous gene
expression data sets greatly impair the generalization of predictive
models trained in one data set to other data sets17,18. The use of
fivefold cross-validation, batch effect correction, and regularized
logistic regression defended the prognostic values of Immune-
Cells.Sig in predicting ICT response proposed in our original
study1.

Methods
Principal component analysis and batch effect correction. The four bulk
RNA-seq data sets (GSE78220, GSE91061, PRJEB2370922, and MGSP), our self-
developed gene expression signature—ImmuneCells.Sig and the twelve other
published gene expression signatures for comparison in our original publication1

were also used in this study. Principal Component Analysis (PCA) was conducted
using the factoextra R package v1.0.7. To correct the batch effect, we utilized the
removeBatchEffect function in the limma package v3.44.3 implemented in the R
software package v3.6.3.

Data analysis. For validation study of the accuracy of the gene expression sig-
nature—ImmuneCells.Sig in predicting ICT outcome, we reanalyzed the data using
the regularized logistic regression methods according to the previous studies14,15.
The custom codes for applying the regularized logistic regression methods to our
own data were developed based on the modification of the original codes kindly
provided by Dr. Zhi-Ping Liu from a previous study14.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
GES accession codes for the first two data sets used in this reply study are GSE78220 and
GSE91061. The third data set PRJEB2370922 was retrieved from the website link—
https://www.ebi.ac.uk/ena/data/view/PRJEB23709. The fourth data set—MGSP was
available in dbGaP under accession number phs000452.v3.p1. The data files generated
during the processing of the above raw data sets are freely available in our GitHub
repository https://github.com/donghaixiong/Immune_cells_analysis.

Code availability
The code for our new computation related to the figures has been uploaded in the
GitHub repository (https://github.com/donghaixiong/ReplyToMattersArising). The
corresponding DOI is as follows https://doi.org/10.5281/zenodo.4717985.
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