
ARTICLE

A Selection Operator for
Summary Association Statistics
Reveals Allelic Heterogeneity of Complex Traits

Zheng Ning,1 Youngjo Lee,2 Peter K. Joshi,3 James F. Wilson,3,4 Yudi Pawitan,1 and Xia Shen1,3,*

In recent years, as a secondary analysis in genome-wide association studies (GWASs), conditional and joint multiple-SNP analysis

(GCTA-COJO) has been successful in allowing the discovery of additional association signals within detected loci. This suggests that

many loci mapped in GWASs harbormore than a single causal variant. In order to interpret the underlyingmechanism regulating a com-

plex trait of interest in each discovered locus, researchers must assess the magnitude of allelic heterogeneity within the locus. We devel-

oped a penalized selection operator for jointly analyzingmultiple variants (SOJO) within eachmapped locus on the basis of LASSO (least

absolute shrinkage and selection operator) regression derived from summary association statistics. We found that, compared to stepwise

conditional multiple-SNP analysis, SOJO provided better sensitivity and specificity in predicting the number of alleles associated with

complex traits in each locus. SOJO suggested causal variants potentially missed by GCTA-COJO. Compared to using top variants from

genome-wide significant loci in GWAS, using SOJO increased the proportion of variance prediction for height by 65%without additional

discovery samples or additional loci in the genome. Our empirical results indicate that human height is not only a highly polygenic trait,

but also has high allelic heterogeneity within its established hundreds of loci.
Introduction

Genome-wide association studies (GWASs) have success-

fully identified many genetic variants that regulate com-

plex traits. However, the associations between a complex

trait and genetic variants, such as single-nucleotide poly-

morphisms (SNPs), are usually very small relative to noise.

Thus, GWASs often require large sample sizes to achieve

sufficient power, and substantial efforts have been spent

on the development of statistical methods to boost

GWAS discovery power.

Given the legal restrictions on public sharing of individ-

ual-level data, it is rarely feasible to pool individual-level

data from a number of different cohorts. In spite of this,

GWAS summary-level data, in the form of association sta-

tistics, are mostly meta-analyzed and reported.1 Hence,

the recent focus in methodology has been on meta-anal-

ysis techniques that use summary-level data based on es-

tablished results to extract further knowledge. Based on as-

sociation statistics, a few state-of-the-art methods, such as

summary-level Mendelian randomization (SMR) analysis

for candidate-gene-target prediction;2 LD score regression

(LDSC) for polygenicity detection, heritability, and genetic

correlation estimation;3 and conditional and joint multi-

ple-SNP analysis (GCTA-COJO) for detection of indepen-

dent associations within quantitative trait loci (QTL)

discovered in GWAS,4 have been developed.

In GWASs, if the single most statistically significant

variant at a locus is reported, we only capture all the ge-

netic variance—i.e., there is no missing heritability at the
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locus—when two assumptions hold: (1) there is only one

underlying causal variant at the locus, and (2) the causal

variant is in complete linkage disequilibrium (LD) with

the top variant. However, these two assumptions can

both be questioned: (1) there might be multiple causal var-

iants or alleles at the locus so that a single variant cannot

account for all the genetic variance at the locus. The phe-

nomenon wherein multiple causal variants or alleles for a

particular trait are located at the same locus is known as

allelic heterogeneity (AH), whose presence in various com-

plex diseases is reported in a recent study.5 (2) Even if there

is only one underlying causal variant at the locus, a single

top variant cannot capture all the genetic variance if the

LD between the top variant and the causal variant is

incomplete. To identify secondary association signals,

many GWAS meta-analyses have used conditional analysis

such as GCTA-COJO. GCTA-COJO performs a secondary

association analysis conditioned on discovered top vari-

ants; such conditional analysis is conducted with GWAS

meta-analysis summary statistics rather than individual-

level data of the full sample. In recent analyses conducted

by global consortia such as GIANT and DIAGRAM, GCTA-

COJO was successful in detecting multiple associations in

LD at the same loci.6–9

However, the forward stepwise selection procedure, such

as that implemented in GCTA-COJO, is known to be overly

‘‘greedy’’; it is prone to eliminating useful predictors

that happen to be correlated with selected predictors.10

This indicates that GCTA-COJOmight miss some informa-

tive variants as a result of their LD with detected variants.
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More variants can be discovered when the discovery

p value threshold is less stringent in GCTA-COJO. But as

a fixed-effect model-selection strategy, there is a risk of

overfitting for GCTA-COJO, especially when too many

predictors are included in the model as p value threshold

is increased.

There is theoretical and empirical evidence that simulta-

neous modeling of multiple predictors with penalization

provides a better variable selection procedure than the

forward stepwise selection.11 In this framework, the least

absolute shrinkage and selection operator (LASSO)12 was

introduced and applied to variable selection problems

in various disciplines.13,14 Instead of only considering

the square loss function ð1=2Þky �Xbb k 2

2, LASSO takes

the [1-norm regularization kbb k 1 into account and solves

minbb˛Rp

1

2
ky �Xbb k 2

2 þ lkbb k 1;

where the tuning parameter lR0. Intuitively, the [1 term is

a penalization: the larger l is, the larger the penalty

imposed on the coefficients. This makes LASSO allow large

coefficients only when they lead to a substantially better

fit. LASSO leads to better interpretability and prediction

accuracy.12 Because of [1 regularization, LASSO has the

ability to perform variable selection and get parsimonious

results. Besides, as a shrinkage method, LASSO alleviates

overfitting problems by performing a more reasonable

bias-variance trade-off, which allows LASSO to include

more informative predictors in the model without serious

overfitting. The LARS algorithm10 and regularization path

algorithm15 provide computationally fast ways for solving

the LASSO. These benefits make LASSO potentially highly

useful in genetics research. In many recent papers, LASSO

was used for selecting variants16 and building prediction

models.17

The aim of this study is to develop, implement, and vali-

date LASSO by using GWAS summary statistics (SOJO) for

genomic loci discovered in standard GWASs. First, we

show that using summary-level data for LASSO achieves re-

sults that are approximately equivalent to those obtained

when LASSO is based on individual-level data. We then

provide simulation studies to show how SOJO can outper-

form GCTA-COJO in finding additional association signals

in loci with different LD structures. We applied SOJO

on GWAS summary-level data of three anthropometric

traits—height, body mass index (BMI), and waist-to-hip

ratio after adjustment for body mass index (WHRadjBMI)

reported by the GIANT consortium—and validated the

out-of-sample predictive performance in the large national

cohort UK Biobank (UKB). By implementing SOJO, we

have added additional association information to the

results of standard GWASs and GCTA-COJO analyses,

improved out-of-sample predictive heritability, and re-

vealed different levels of allelic heterogeneity for different

traits. The SOJO analysis is implemented in our free and

open-source R package.
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Material and Methods

LASSO Regularization Path Based on GWAS Summary

Statistics
In this section, we describe how to achieve LASSO estimates by

using summary-level statistics from a GWAS meta-analysis and

a reference sample. Assume a quantitative trait y is potentially

affected by a group of genetic variants X1;.;Xp and a multi-

variant linear model

y ¼ Xbþ e; (Equation 1)

where X ¼ ðX1;.;XpÞ. If we have n individuals, then y ¼ fyig is

the n31 phenotype vector, andX ¼ fxijg is the n3 p genotypema-

trix. To get an estimate of regression coefficients bb ¼ ðbb1;.; bbpÞ, we

look at the square loss function ð1=2Þky �Xbb k 2

2 and the [1-norm

regularization kbb k 1, which leads to the LASSO optimization

problem

minbb˛Rp

1

2
ky �Xbb k 2

2 þ lkbb k 1; (Equation 2)

where the tuning parameter lR0.

The regularizationpath10 canbeusedtocomputeLASSOestimates

in Equation 2 as a function of l, denoted by bbðlÞ, for all l˛½0;N�.
Interestingly, when the sample size is large, the regularization-path

algorithmonly dependson (1) the covariance structure between var-

iants and the trait, and (2) the LD structure between variants. There-

fore, we can approximate LASSO estimates by using summary-level

statistics from a GWAS meta-analysis and a reference sample.

Thefirst step is to get the covariance structure betweenvariants and

the trait. To simplify the formulae, we center the data so that y ¼ 0

and Xj ¼ 0, where j ¼ 1;2;.;n, and the intercept does not need to

be included. Because the centering does not affect the estimates of

slope in summary-level statistics, we can take the GWAS results in

meta-analysis as they are from centered data. Then in the GWAS,

each variant is fitted according to a univariate regression model:

y ¼ Xjbj þ e: (Equation 3)

Based on Equation 3, the marginal effect of variant j is

bbj ¼
�
XT

j Xj

��1

XT
j yz

Cov
�
Xj; y

�
Var

�
Xj

� ; (Equation 4)

and its variance is

s2bbj ¼ s2
r

�
XT

j Xj

��1

z
s2

nVar
�
Xj

�; (Equation 5)

where s2r is the residual variance in univariate regression

(Equation 3) and s2 is the phenotypic variance. Because the effect

of a single variant is usually small, we can approximate s2r by s2.

From Equation 4 and Equation 5, we have

dCov
�
Xj; y

� ¼
bbjs

2

s2bbj n
; (Equation 6)

where all terms on the right side except s2 are reported in the

GWAS meta-analysis results. For s2, because all bbs and l in the al-

gorithm are proportional to s2, it is fine to assume s2 ¼ 1 if only

the variable selection or R2 explained by polygenic scores is con-

cerned. If exact estimates of coefficients are needed, s2 can be esti-

mated by the phenotypic variance in the reference sample

mentioned below.
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The LD structure between variants can be approximated by a

representative reference sample where individual-level genotype

data are available.4 A proper reference sample can be a cohort

included in the meta-analysis study. Let W ¼ fwijg represent the

nW 3 p genotype matrix of the reference sample. Then

dVarðXÞ ¼ VarðWÞ: (Equation 7)

To simplify symbols, we define Cp31 ¼ dCovðX; yÞ and

Bp3p ¼ dVarðXÞ. Considering different allele frequency between

variants, we suggest using C and B with standardized X. Let DW

denote the diagonal matrix of VarðWÞ. Standardized X leads to

C ¼ D�1=2
W

dCovðX; yÞ (Equation 8)

B ¼ D�1=2
W

dVarðXÞD�1=2
W : (Equation 9)

Let k be the step counter, lk be the tuning parameter at the cur-

rent step, sj denote the sign of bbj, and A ¼ fj : sjs0g be the active

set. Starting with k ¼ 0; l0 ¼ N, and A ¼ f. The LASSO regulariza-

tion path algorithm can be implemented as follows;

1. Get the next hitting time

lhitkþ1 ¼ maxþ
j;A;sj˛f�1;1g

XT
j y �XT

j XA

�
XT

AXA

��1
XT

Ay

n
�
sj �XT

j XA

�
XT

AXA

��1
sA
� (Equation 10)

z maxþ
j;A;sj˛f�1;1g

Cj �BjAB
�1
A CA�

sj �BjAB
�1
A sA

�; (Equation 11)

where maxþ means the maximum argument that is smaller than

lk. Denote the index of the hitting variable as hk and its sign as

shk. Specifically,

lhit1 ¼ max
j

jXT
j y j
n

zmax
j

j Cj j : (Equation 12)

2. Get the next crossing time

lcrosskþ1 ¼ maxþ
j˛A

h�
XT

AXA

��1
XT

Ay
i
j

n
h�
XT

AXA

��1
sA
i
j

(Equation 13)

zmaxþ
j˛A

�
B�1

A CA

�
j�

B�1
A sA

�
j

; (Equation 14)

where maxþ means the maximum argument that is smaller than

lk. Denote the index of the crossing variable as ck and its sign as

sck. Specifically, l
cross
1 ¼ 0.

3. Let

lkþ1 ¼ max
�
lhitkþ1; l

cross
kþ1

	
:

If lhitkþ1Rlcrosskþ1 , then add the index of the hitting variable hk to A and

its sign shk to sA. If lhitkþ1 < lcrosskþ1 , then remove the index of the

crossing variable ck from A and its sign sck from sA.

4. Get the LASSO estimate at lkþ1 from

bbAðlkþ1Þ ¼
�
XT

AXA

��1�
XT

Ay � lkþ1sA
�

(Equation 15)

zB�1
A ðCA � lkþ1sAÞ (Equation 16)

bbjðlkþ1Þ ¼ 0; for all j;A: (Equation 17)
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5. Then update k to kþ 1 and repeat steps 1–4 until lkþ1 ¼ 0.

If the standardized X is used, and if the coefficients under stan-

dardization with tuning parameter l are denoted as bbsðlÞ, then the

coefficients on the original scale

bbðlÞ ¼ D�1=2
W

bbsðlÞ; (Equation 18)

for any l˛½0;N�.
In GWAS meta-analysis results, the sample sizes for different var-

iants are usually different because of imputation failures in the

studies involved. However, CovðXj; yÞ is estimated for each variant

separately in Equation 6. Therefore, the above algorithm is still valid.
Summary Statistics of Anthropometric Traits and

Individual-Level Genotype Data
The GIANT Consortium performed a GWAS meta-analysis by us-

ing the summary statistics from 79, 125, and 101 studies, consist-

ing of 253,288, 322,154, and 210,088 individuals of European

ancestry for adult height,6 BMI,7 and WHRadjBMI,8 respectively.

Meta-analysis was performed on �2.6 million SNPs for all the

three traits. After SNPs with MAF < 0.01 were excluded, �2.5

million SNPs remained. Considering the accuracy of the estimated

correlation between SNPs and traits, we excluded SNPs with sam-

ple size less than 2/3 of the maximum sample size but retained

�2.4 million, �2.2 million, and �1.7 million SNPs for height,

BMI, and WHRadjBMI, respectively. We also used the individual-

level genotype data of the TwinGene cohort, which is a popula-

tion-based Swedish study of twins born between 1911 and

1958.18 Genotyping was done with the Illumina OmniExpress

BeadChip. After the quality control, 644,556 SNPs and 9,617 indi-

viduals remained, including all available dizygotic twins and one

twin from each available monozygotic twin pair. Another source

of individual-level genotype data is the 503 European ancestry

samples in 1000 Genomes Project phase 3 data.19
UK Biobank Data
TheUKBiobank recruited500,000people aged40–69 years between

2006and2010 fromacross the country.Here, awave 1public release

in June2015 isused.Among individualswhosephenotypic informa-

tion was available, 152,732 had been genotyped on an Affymetrix

chip that included about 800,000 variants. Millions of further vari-

ants were imputed. Among the genotyped individuals, 120,286

were identified as genetically British by the UK Biobank. These indi-

viduals were taken forward for analysis in this paper. In the predic-

tion performance analyses, height, BMI, and WHRadjBMI in UKB

were adjusted for age and sex before being standardized to z-scores.
Application of SOJO at Established Genome-wide

Significant Loci
For each trait, first we took all loci with genome-wide significant

SNPs reported in GIANT results. There were 423, 77, and 49 loci

for height, BMI, and WHRadjBMI, respectively. For each of these

loci, we set a 1Mbwindow centered at themost significant variant

as the genomic locus to be analyzed. We performed SOJO to select

the associated variants for each locus by using the following steps:

1. We took the intersection of available variants in GIANT and

TwinGene.

2. We estimated LD correlations by using individual-level geno-

type data in TwinGene.

3. We filtered the variants according to the LD correlation ma-

trix. If the LD r2 between a pair of variants was larger than 0.9,
Journal of Human Genetics 101, 903–912, December 7, 2017 905



only the more significant one in GWAS meta-analysis was kept for

further analysis.

4. We ran the summary-level LASSO algorithm by using sum-

mary statistics from GIANT and the filtered estimated LD correla-

tions in step 3.

5. Along the LASSO path, the SNPs were included or removed

from the model one by one as l decreased. For each point, when

the active-variant set changed, we computed the out-of-sample

R2 on the basis of the current active-variant set and coefficients.

6. We reported the variants that maximized the out-of-sample

R2 and their penalized effects.

In step 3, we removed one SNP from each pair of extremely

correlated variants because (1) including both of them didn’t

significantly increase the amount of information gained, and (2)

including both might have generated numerical errors when the

tuning parameter went to zero and the model approached the

standard multiple regression.

Adjust Model Degrees of Freedom for Comparison
For the comparison between SOJO and GCTA-COJO to be fair, the

twomust be under the same level of model complexity. Degrees of

freedom is often used as a measurement of model complexity.

When comparing two linear models, both with p predictors, one

can say their model complexity is the same because their degrees

of freedom are both equal to p. However, when it comes to evalu-

ating two complex variable selection procedures, especially when

comparisons or shrinkage is involved, the degrees of freedom or

the complexity of themodelmight no longer be equal to the num-

ber of variables selected by the model.20 Suppose we have observa-

tions y˛Rn where

y ¼ mþ e; with EðeÞ ¼ 0; CovðeÞ ¼ s2I: (Equation 19)

For a function f : Rn/Rn producing fitted values f ðyÞ based on

y, the value of the generalized degrees of freedom (GDF)21 is

defined as:

dfðf Þ ¼ 1

s2

Xn
i¼1

Cov
�
fiðyÞ; yi

�
: (Equation 20)

Estimating GDF for GCTA-COJO and SOJO with a Monte

Carlomethod20 requires individual-level data.WithoutGIANT indi-

vidual-level data, we could not directly estimate the GDF when

GIANT was the discovery sample. Instead, we saw GDF as a piece-

wise function of the number of selected variables, and we estimated

the function by using the UKB data. First, we estimated the GDF for

GCTA-COJO and SOJO locus by locus for each trait by using UKB

data. We performed the estimation by using multiple p value

thresholds for GCTA-COJO and different tuning parameters for

LASSO. In this way, we obtained an estimate of the function map-

ping the number of selected variables to GDF. Then, for each vari-

able selection result based on GIANT and TwinGene, we could esti-

mate the GDF by using the function. According to our result, if we

include k variables in ourmodel, SOJO costs exactly kGDF, which is

consistent with theoretical results, whereas GCTA-COJO usually

costs more than k GDF.22 An example is given in Figure S1.

Results

LASSO from Summary-Level Data Approximates That

from Individual-Level Data

We can approximate the LASSO result at any tuning

parameter by using (1) the covariance structure between
906 The American Journal of Human Genetics 101, 903–912, Decem
variants and the trait and (2) the LD structure between var-

iants. The former covariance structure can be estimated

from GWAS meta-analysis summary-level data, and the

LD structure can be estimated from a reference sample,

such as a subcohort of the GWAS meta-analysis. Figure 1

shows the similarity of LASSO results under six different

scenarios. In each plot, each line shows how the coefficient

estimates vary under different tuning parameters. Theoret-

ically, when the effects of single variants are all small and

the whole cohort is taken as reference sample, the sum-

mary-level LASSO estimates are the same as those based

on individual-level LASSO results (Figures 1A and 1B). A

real scenario can be more complicated in two ways: (1) in-

dividual-level data are available only for a subset of the

cohort, which affects the estimation of LD correlation be-

tween variants, and (2) the sample sizes are usually

different for different variants because of, e.g., imputation

failures in the studies involved. However, as shown in Fig-

ures 1C and 1D, when a relatively large subsample is used

as the reference sample and the number ofmissing individ-

uals for each variant is not substantial, the summary-level

LASSO results are close to individual-level LASSO results.

When the representative reference samples are outside of

the discovery population, the summary-level LASSO re-

sults are still similar (Figures 1E and 1F). Our simulation

shows that the out-of-sample prediction performance is

also similar for these scenarios (Figure S2).

SOJO Shows High Sensitivity in Most Types of LD

Structure

We simulated a model of two correlated causal variants in

order to compare SOJO and GCTA-COJO in terms of sensi-

tivity and specificity. The area under the curve (AUC) of

SOJO is larger than that of GCTA-COJO in most cases

(Figure 2). The only exception is when the directions of

the two genetic effects do not agree with the sign of the

LD correlation between these two variants, yet the LD is

strong. Namely, b1 3 b2 3 rLD < 0 and, at the same time,

rLD is large (Figure 2, bottom-left panel). The exception is

relatively unlikely in practice. This can be verified by 147

loci withmore than one height-associated variant reported

in the GCTA-COJO analysis of GIANT data. If we focus on

the first two significant height-associated variants, the top

two variants for 24 out of the 147 loci have an absolute

value of correlation larger than 0.2. Among these 24 loci,

only seven have a discrepancy between the sign of the

LD correlation and the directions of the two genetic effects.

Therefore, in this case the exception rate is 7/147.

Analysis of Three Anthropometric Traits

In this study, we took a subcohort of GIANT: the Swedish

Twin Registry (TwinGene, n ¼ 9,617) as our reference sam-

ple and focused on the 644,556 chip variants in TwinGene.

Using GIANT summary statistics for height, BMI, and

WHRadjBMI of 253,288, 322,154, and 210,088 individ-

uals, and data for 120,286 individuals from UKB as a vali-

dation sample, we prioritized 8,470, 1,026, and 522 jointly
ber 7, 2017
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D E F

Figure 1. An Example Showing the Approximation of Summary-Level LASSO to Individual-Level LASSO
The phenotype and genotype data are from 120,086 individuals in the UK Biobank. GWAS was performed on height. The curves repre-
sent regularization paths of Lasso coefficients. The six plots show LASSO results in six different scenarios of data: (A) LASSO based on
individual level data. (B) LASSO based on GWAS summary statistics and LD correlations estimated from the whole cohort. (C) LASSO
based onGWAS summary statistics and LD correlations estimated from a subcohort where n¼ 10,000. (D) LASSO based on unequal sam-
ple sizes, GWAS summary statistics, and LD correlations estimated from a subcohort where n¼ 10,000. The subcohorts in (C) and (D) are
randomly sampled from the whole cohort. In (D), for each variant, a subset of individuals with random sample size between 110,000 and
120,086 was taken. Then, GWAS summary statistics were computed on the basis of the data from the unequal sample sizes. (E) The
GWAS summary statistics are the same as in (D), but LD correlations are estimated from 9,617 TwinGene samples. (F) The GWAS sum-
mary statistics are the same as in (D), but LD correlations are estimated from 503 European ancestry samples in 1000 Genomes.
associated variants by implementing SOJO on 423, 77,

and 49 established loci for the three traits, respectively

(Table S1). On average, 20, 13, and 11 variants were

selected in each locus for height, BMI, and WHRadjBMI,

respectively. In each locus, we performed summary-level

LASSO and reported variants and their penalized effects

when out-of-sample prediction R2 was maximized in a

validation sample.

To assess the performance of SOJO and GCTA-COJO, we

used R2 for cumulative out-of-sample prediction as a crite-

rion, where GIANT and TwinGene were used for discovery

and UKB for validation. For each method, we first set a

universal threshold for selection: a p value cut-off for

GCTA-COJO, and the number of top variants for SOJO.

We then implemented themethod on each trait-associated

locus reported by GIANT. For each locus, given the univer-

sal threshold, a set of candidate variants and their effects

were computed. Using genotypes and estimated effects of

these variants, we built a polygenic score and computed

the proportion of predictable variance from the regional

polygenic score in UKB. We then obtained cumulative

out-of-sample prediction R2 by summing all regional pro-
The American
portions of explained variance (Figure 3). By setting a fixed

number of selected variants for all regions, SOJO still out-

performs COJO in terms of prediction performance for

all three traits. SOJO achieves maximum R2 of 23.29%,

2.39%, and 2.18% for cumulative out-of-sample prediction

when the regional degrees of freedom (described in theMa-

terial and Methods) are 29, 21, and 13 for height, BMI, and

WHRadjBMI, respectively. The prediction performance of

SOJO starts dropping after the regional degrees of freedom

increases to 21 and 13 for BMI and WHRadjBMI, but does

not drop for height even when the regional degrees of

freedom increase to 25. This indicates that the allelic het-

erogeneity of height is the highest and that it is followed

by BMI and WHRadjBMI for their established loci. This

ranking is the same as the ranking of the estimated herita-

bility23,24 and the ranking of the number of loci detected in

GIANT papers for the three traits.6–8 The same analysis was

also performed with LD correlations estimated from the

503 European-ancestry samples in the 1000 Genomes Proj-

ect phase 3 data, and the results are consistent (Figure 3).

When the variable selection thresholds were chosen as

those maximizing locus-specific out-of-sample prediction
Journal of Human Genetics 101, 903–912, December 7, 2017 907



Figure 2. Receiver-Operating-Characteristic Curves Comparing the Performance of SOJO and GCTA-COJO for Correlated Causal-
Variant Identification on Simulated Data
Datasets were simulated for 100,000 individuals with 20 variants, where corðXi;XjÞ ¼ 0:8ji�j j . The allele frequencies are all equal to 0.5.
To simplify the model, assuming genotype columns are demeaned, the trait y ¼ b1Xc1 þ b2Xc2 þ e, whereXc1;Xc2 are causal variants and
e � Nð0;s2Þ. In all simulations, b1 ¼ 5 and s2 ¼ 50. rLD ¼ corðXc1;Xc2Þ varies from 0.8 to 0.5 and 0.2. b2 is either 1 or �1. For both SOJO
and GCTA-COJO, the whole sample was taken as the reference sample. For each case, 200 datasets were generated. Solid curves represent
SOJO, and dashed curves represent GCTA-COJO.
R2, SOJO again achieved larger out-of-sample prediction R2

than top-SNPs-only prediction and GCTA-COJO (Table 1).

If we take height as an example, the maximum proportion

of phenotypic variance captured by the 423 locus-specific

polygenic scores is 22.7% for SOJO and 21.4% for opti-

mized GCTA-COJO. Compared to 13.8% achieved by the

use of top variants only, the amount achieved by SOJO rep-

resents an increase of 65% over the out-of-sample predic-

tion R2. The amount of phenotypic variance captured by

polygenic scores is consistent with the maximum cumula-

tive out-of-sample prediction R2, which indicates that

these polygenic scores are almost independent.

SOJO Reveals Allelic Heterogeneity of Height

There are a number of reasons SOJO might achieve better

prediction than GCTA-COJO. First, SOJO detects more

underlying causal variants, whereas GCTA-COJO missed

these causal variants because of the lower sensitivity under

LD. Second, both methods detect variants tagging the

same set of causal variants at a locus, but SOJO detects

more variants capturing the information in these causal

variants. Third, SOJO produces better effect estimates for

prediction by using shrinkage estimators. In terms of

biology, the first case is the most interesting. Therefore,
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we did a subsequent analysis to test the existence of the

first scenario, i.e., that SOJO detected signals from addi-

tional causal variants. We performed this analysis on the

423 height loci by using individual-level data in UKB.

In principle, if GCTA-COJO does not miss any causal

variant, and if we perform LASSO for each locus by using

cross-validation and set a fixed p value threshold, e.g.,

5310�8 for GCTA-COJO, the ratio of the number of

selected variants obtained with LASSO to that obtained

with GCTA-COJO should not be affected by the allelic het-

erogeneity of the loci. However, higher allelic heterogene-

ity would lead to a larger possibility of the existence of

correlated causal variants. If LASSO has a greater ability

to detect causal variants in LD than GCTA-COJO, the ratio

of the number of selected variants, i.e., the number of var-

iants selected by LASSO/the number of variants selected by

GCTA-COJO per locus, should increase with allelic hetero-

geneity. Because the allelic heterogeneity of each genetic

locus is unknown and the genetic effects across the

genome are very small, we used regional heritability ðh2Þ
as a proxy of allelic heterogeneity. The reasonability of h2

as a proxy of allelic heterogeneity can be validated statisti-

cally: regional h2 is significantly correlated with both the

number of variants selected by LASSO and the number
ber 7, 2017



Figure 3. Out-of-Sample Prediction Performance Comparison
of SOJO and GCTA-COJO in Terms of Height, BMI, and
WHRadjBMI
Solid curves represent SOJO, and dashed curves represent GCTA-
COJO. The vertical dashed lines represent the average regional
degrees of freedom when cumulative out-of-sample R2 starts
dropping. The x axis represents the average regional degrees of
freedom, which is an estimate of the effective number of parame-
ters in a model. For GCTA-COJO, the regional degrees of freedom
are usually larger than the number of selected variants. But for
SOJO, the regional degrees of freedom is equal to the number of
selected variants (see Material and Methods).
selected by GCTA-COJO (when 5310�5 is taken as

threshold for GCTA-COJO). The correlation coefficients

are 0.61 (p ¼ 1.8 3 10�43) and 0.62 (p ¼ 2.3 3 10�44). In

terms of choosing a proper threshold for GCTA-COJO, a

strict threshold will make LASSO results dominate the ra-

tio, whereas a loose threshold will generate lots of noise

(Figure S3). In our analysis, because there are 165

variants in each region on average, we chose 5310�5 as

the cut-off, which is loose but still stricter than a

5% significance threshold after Bonferroni correction

ð0:05=165 ¼ 3310�4Þ. The logarithm of the ratio increases

significantly with regional h2 (Figure 4) (slope of the regres-

sion ¼ 1.21, p ¼ 4.7 3 10�4), i.e., for a locus that has 0.1%

more regional h2 than another, the ratio is 1.13 times

as large. This significantly positive slope suggests that

GCTA-COJO missed some causal variants but that SOJO
The American
detected them or additional variants tagging them, and

the amount is likely to be bigger when the allelic heteroge-

neity of the locus is larger. Therefore, the number of

variants selected by SOJO is thus a better indicator of

the locus-specific allelic heterogeneity. The same analysis

was also done for BMI andWHRadjBMI. However, because

the numbers of established loci are limited for these

two traits, randomness dominated the correlation signal

between the number of additional SOJO variants and

regional h2 (Figures S4 and S5).
Discussion

We introduced a selection operator, SOJO, that analyzes

multi-variant summary association statistics and is based

on approximate LASSO shrinkage estimators. SOJO is

more powerful than conditional and joint analysis in

GCTA in terms of both discovery and prediction. SOJO is

computationally fast because it is based on GWAS meta-

analysis summary statistics and LD structure estimated

from a reference cohort (Table S2). The small effects of ge-

netic variants on complex traits imply that using estimates

based on large-scale GWAS meta-analysis can substantially

improve the precision of SOJO estimates, which provides a

powerful tool for improving variant detection and better

estimating genetic effects, especially in loci with LD. In

future studies, SOJO might be useful for detecting more

associated variants per locus in large-scale GWAS meta-

analysis, providing better prediction based on detected

loci, and suggesting allelic heterogeneity of complex traits.

As in GCTA-COJO, the reference sample is assumed to be

from the same population where the meta-analysis sample

is from. Therefore, a subcohort involved in the meta-anal-

ysis is usually valid as a reference sample. However, an

outside sample can also be a reference sample if it well rep-

resents the population of interest. The sample size of the

reference sample should be large enough so that the LD

correlations can be estimated accurately. According to a

simulation result by Yang et al.,4 a reference sample with

more than 5,000 individuals is sufficient for achieving

good accuracy. However, we were careful when using the

estimated LD structure to get LASSO results: even though

it is possible to implement SOJO on all the variants across

the genome, we only applied it regionally. One main

reason was that LASSO is more sensitive to the correlations

between variants than COJO is, which is also why LASSO

achieves better sensitivity and specificity when LD exists.

Because of this characteristic, although the LASSO model

can stably add top variants at the beginning of the selec-

tion procedure, as more and more variants are included,

accumulated errors start disturbing the estimates. If SOJO

is applied regionally, a relatively small publicly accessible

sample such as 1000 Genomes can still be valid as a refer-

ence sample.

In many regions, SOJO top variants were also selected

by GCTA-COJO (Table S1). This is expected because both
Journal of Human Genetics 101, 903–912, December 7, 2017 909



Table 1. Maximum Phenotypic Variance Explained by Optimized Polygenic Scores and the Maximum Cumulative Out-of-Sample
Prediction R2 for SOJO and GCTA-COJO in UKB

Cumulative Prediction R2 (%) R2 Explained by Polygenic Scores (%)

Trait Top Variant Standard COJO Optimized COJO SOJO Top Variant Standard COJO Optimized COJO SOJO

Height 14.35 17.38 23.42 24.52 13.76 16.71 21.42 22.70

BMI 1.88 1.99 2.42 2.52 1.84 1.94 2.35 2.46

WHRadjBMI 1.62 1.78 2.18 2.32 1.58 1.76 2.07 2.28

The R2 for cumulative out-of-sample prediction was computed from a summation of all regional prediction R2. R2 explained by polygenic scores were the amount
of phenotypic variance that could be explained by all regional polygenic scores.
Top variant: only the top variant was selected. Standard COJO: variants selected by COJO with 5310�8 as the threshold. Optimized COJO: variants selected by
COJO with threshold maximizing regional prediction R2. Coefficients of variants in each polygenic score were estimated by joint multiple regression in COJO.
SOJO: variants selected by LASSO with tuning parameter maximizing regional prediction R2. Coefficients of variants in each polygenic score were determined
by the LASSO result at the tuning parameter.
perform variable selection based on partial correlations.

However, it is hard for GCTA-COJO to include more infor-

mative variants in its model, especially when the p value

threshold is less stringent. The first problem is specificity.

As we lower the threshold (and increase the p value

threshold), COJO includes more noise than signals.

Overfitting is the consequent second problem. Without

shrinkage, noise degrades the prediction. But for LASSO,

because of shrinkage estimation, both problems are less

serious, so LASSO can utilize more information in a

genomic locus to obtain better prediction performance as

a reward of avoiding overfitting. When the underlying

causal variant is multi-allelic (such as with a short-tan-

dem-repeat variation) instead of biallelic, SOJO tends

to select multiple tagging SNPs for the causal variant.

By doing this, it can better tag the latent multi-allelic

causal variant and improve the prediction performance

(Figure S6).

Evidence shows that jointly analyzingmultiple correlated

traits can improve both discovery power25,26 and prediction

performance.27 The possibility of extending LASSO to the

multivariate context has been discussed in previous litera-

ture.28,29 It is noteworthy that these multivariate LASSO

methods, when applied on GWAS data, asymptotically

only depend on (1) the LD correlationmatrix, (2) the covari-

ance structure between the phenotypes and genotypes, and

(3) the covariance structure among the traits. These can all

be estimated fromsummary association statistics anda refer-

ence cohort. Therefore, it is possible to extend SOJO to a

multivariate framework in further studies.

Here, we use UKB, an independent individual-level data

sample, as the validation sample to determine a proper

amount of regularization or a reasonable number of

variants selected for each locus. If there is no available

independent sample, we suggest the use of the reference

sample as the validation sample. Although the reference

sample is used for estimating LD structure and was

included in the GWAS meta-analysis where the summary

statistics were from, it can still function as a validation

sample because it usually contributes only a little to the

estimation of genetic effects. Our method can also be

used directly with individual-level data where the refer-
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ence sample is the whole cohort. In this case, SOJO is

equivalent to standard LASSO that is based on individ-

ual-level data. If the summary statistics and LD structure

have been computed and stored beforehand, SOJO is

computationally faster than standard LASSO. Another

benefit of SOJO is its ability to handle variants with un-

equal sample size. This means that when individuals or

individual cohorts have missing genotype data, SOJO is

able to take this into account to estimate correlations

between the variants and the trait instead of removing

valuable individuals because of missing data.

According to our empirical results, human height not

only is a highly polygenic trait but also has high allelic

heterogeneity. This interesting coincidence might be due

to assortative mating; i.e., individuals prefer partners

with similar phenotypes.30 Assortative mating will in-

crease the proportion of homozygous progeny and prevent

the alleles of trait-associated variants from drifting away.

A recent study inferred a correlation between trait-associ-

ated loci for height (0.200, 0.004 SE), BMI (0.143, 0.007

SE), and waist-to-hip ratio (0.101, 0.041 SE) in partners.31

This ranking is consistent with the ranking of allelic het-

erogeneity levels in our results for the three traits.

The tuning parameter in LASSO is usually chosen by

cross-validation, which is impossible for SOJO because

the individual-level data of the GWAS meta-analysis are

absent. Variant selection based on one validation sample

might be less stable than standard cross-validation. Hence,

SOJO could be improved by using the validation sample

more thoroughly via splitting or bootstrapping. If one

would like to avoid using the validation sample, but use

only GWAS summary statistics and the reference sample,

some additional methods are worthy of investigation.

Although the individual-level data of the GWAS meta-

analysis is absent, making it impossible to bootstrap the

individuals, one could perform a parametric Monte Carlo

simulation on the estimated genetic effects, given that

their point estimates and standard errors are available

from summary association statistics and their correlations

can be estimated from the reference sample. With Monte

Carlo simulation results, we can improve the variant

detection and phenotypic prediction of SOJO further by
ber 7, 2017
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Figure 4. The Ratio of the Number of Variants Selected by SOJO
to That Selected by GCTA-COJO in Terms of Height in UKB Tends
to Increase as Regional h2 Increases
The plot is in logarithmic scale, and the y axis is labeled in the
original scale. Regional h2 is the multivariate regression R2 when
all variants at the locus are used. Each dot represents a locus.
The red solid line represents the regression line in logarithmic
scale. The gray shade denotes the 95% confidence interval for
predicted mean values.
implementing bootstrap-based methods such as stability

selection32 or Bolasso.33 These methods might also be

helpful for determining the LASSO tuning parameter

when the validation sample is unavailable.
Supplemental Data

Supplemental Data include six figures and two tables and can be

found with this article online at https://doi.org/10.1016/j.ajhg.

2017.09.027.
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