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Abstract

Background: Microarray technology applied to microRNA (miRNA) profiling is a promising tool in many research fields;
nevertheless, independent studies characterizing the same pathology have often reported poorly overlapping results.
miRNA analysis methods have only recently been systematically compared but only in few cases using clinical samples.

Methodology/Principal Findings: We investigated the inter-platform reproducibility of four miRNA microarray platforms
(Agilent, Exiqon, Illumina, and Miltenyi), comparing nine paired tumor/normal colon tissues. The most concordant and
selected discordant miRNAs were further studied by quantitative RT-PCR. Globally, a poor overlap among differentially
expressed miRNAs identified by each platform was found. Nevertheless, for eight miRNAs high agreement in differential
expression among the four platforms and comparability to qRT-PCR was observed. Furthermore, most of the miRNA sets
identified by each platform are coherently enriched in data from the other platforms and the great majority of colon cancer
associated miRNA sets derived from the literature were validated in our data, independently from the platform.
Computational integration of miRNA and gene expression profiles suggested that anti-correlated predicted target genes of
differentially expressed miRNAs are commonly enriched in cancer-related pathways and in genes involved in glycolysis and
nutrient transport.

Conclusions: Technical and analytical challenges in measuring miRNAs still remain and further research is required in order
to increase consistency between different microarray-based methodologies. However, a better inter-platform agreement
was found by looking at miRNA sets instead of single miRNAs and through a miRNAs – gene expression integration
approach.
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Introduction

microRNAs (miRNAs) are small non-coding RNA molecules of

18–24 nucleotides in length that are widely conserved in all

eukaryotic organisms and serve as regulators of gene expression.

miRNAs are involved in all major cellular processes and are

implicated in a large number of human diseases including cancer

[1–3].

Over the past decade, DNA microarray technology has become

an increasingly cost-effective methodology that is able to quickly

generate high-throughput data, paving the way to genome-wide

(GW) analysis of gene-expression, genomic copy number varia-

tions, SNPs, and epigenetic alterations. Microarray-based tech-

niques have been extensively used in several areas of research and

molecular assays using patterns of gene expression and predeter-

mined mathematical algorithms, such as MammaprintH) [4], are

currently under validation by prospective multicentric clinical

studies in breast cancer.

More recently, microarray technology has been applied to

miRNA profiling and is becoming a promising technique in many

research fields, such as translational research in oncology, and can

provide useful information on the role of miRNAs in both

tumorigenesis and progression of cancer [2]. Nevertheless,

independent studies characterizing the same pathology have often

poorly overlapping results. This could be due to small sample size,

high tumor variability and heterogeneity but also to technical

reasons. A major advantage of the microarray approach consists

on the high-throughput simultaneous screening of up to thousands

molecules in a single assay, but this requires hybridization

conditions to be the same for all probes on the array. This is not

trivial for miRNA microarrays because the GC content of
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miRNAs is highly variable and the options for probe design are

more limited than for mRNA due to their short length. For a

complete review of general concepts and special challenges that

are relevant to miRNA profiling refers to Pritchard et al [5]. A

multitude of platforms for miRNA profiling are commercially

available, and each manufacturer has developed its own technical

procedures to maximize sensitivity and specificity in measuring

miRNA expression levels. As a result, probe signals are expected to

largely differ among platforms, and a direct comparison is not

possible. In spite of this, the general patterns of differentially

expressed (DE) miRNAs should be coherently detected by all

platforms. Only recently the comparison of intra- and inter-

platform reproducibility of miRNA microarrays has been analyzed

in more than three different platforms (see Table S1 for details) [6–

11]. Taken together, these studies provide evidence that miRNA

microarray platforms show excellent intra-platform reproducibil-

ity, but limited inter-platform concordance. Indeed, comparing

miRNAs identified as DE within each platform, a significant

variation in the total number as well as in the fold-change of

miRNAs has been noted. Three of these studies [6;8;9] based their

conclusions on the comparison of tissues or pools of tissues of

completely different origin. Sah et al. analyzed the expression of

seven synthetic miRNAs spiked in known concentration into a

RNA from placental tissue and hybridized on five platforms [11].

To be nearer to a miRNA microarray application in cancer

research, Git et al. analyzed a pool of normal breast tissues and

two breast cancer cell lines [7] and Dreher et al. compared

untrasfected and HPV-transfected human keratinocytes [10].

Even if, the former four comparisons represent a useful system

to address technical issues, and the later two studies are

undoubtedly more realistic, the issue of concordance of different

platforms, when clinically specimens are used, has not been yet

addressed.

In the present study, we compared the miRNA expression

profiles of nine colorectal cancer and normal colon mucosa

samples from the same patients using four different commercial

platforms (Agilent, Exiqon, Illumina and Miltenyi). The expression

of the most concordant and selected discordant miRNAs among

platforms was then evaluated with quantitative real time PCR

(qRT-PCR). Finally, integrative analyses of miRNAs in the

context of gene expression and literature data were performed as

a proof of principle of the validity of microarray miRNA analysis

in gaining insight into the biological role of these miRNAs.

Results

Experimental Setting
To highlight the influence of the sample origin and the study

design on the obtained results, we made a computational

comparison of expression data from four microarray studies. We

selected the data obtained on a common miRNA platform, i.e

Agilent, from the two miRNA platform comparison studies (details

in Table S1) whose expression data on human samples are publicly

available (GSE13860 [6] and E-MTAB-96 [7]) and from two

studies chosen as examples of experimental applications in a

clinical setting, i.e. profiles associated with tumorigenesis of

prostate [12] and gastric [13] cancer (GSE21036 and

GSE28700, respectively; details in Fig.S1 legend). As shown in

Figure S1, the number of DE miRNAs and the associated fold

changes are considerably higher in the cross-platform analysis than

in profiles looking at tumorigenesis. Imposing a uniform and

arbitrary threshold (|log2 fold change|.1), 88.5% (GSE13860)

and 25.9% (E-MTAB-96) of miRNAs present in the arrays were

differentially expressed in the cross-platform datasets; on the other

hand, only 6.9% (GSE21036) and 6.7% (GSE28700) of miRNAs

were identified as DE at same threshold in the clinical datasets.

With these premises, we decided to evaluate the inter-platforms

reproducibility in a clinical setting by assessing the tumor and the

normal counterpart miRNA profiles in samples collected from

nine patients who underwent surgical resection for colon cancer

(see Table S2 for clinical and pathological characteristics). RNA

aliquots from these samples were hybridized on four microarray

platforms: Agilent SurePrint G3 human miRNA Microarray,

Exiqon miRCURY LNA microRNA Array, Illumina Human_v2

microRNA expression Beadchips, and Miltenyi miRXplore

Microarray. Main features of the four platforms are described in

Table 1.

It should be noted that the platform from Illumina was

withdrawn since March 2010; however, we decided to include it

in our comparison due to its extensive use in laboratories

worldwide, including those in our Institute. Accordingly, the

issues addressed in the present investigation can be of interest to

users of the Illumina platform to better interpret their results and

to enable a more rationale switch to a different platform.

The Agilent, Exiqon, and Illumina arrays were carried out in

one-color. Miltenyi was hybridized in two colors: tissue samples

were labeled with Hy5, and a synthetic reference purchased by

Miltenyi with Hy3. Since the synthetic reference was designed on

miRBase 9.2 and covered only a portion of the miRNAs present

on the arrays designed on miRBase 14.0, only the Hy5 data were

considered and used for normalization in order to enable a more

direct comparison with the other three platforms.

The Agilent, Exiqon, and Illumina platforms contained probes

designed either on viral miRNA sequences or on putative miRNAs

not yet annotated in miRBase, derived from literature and Next-

Generation Sequencing studies. Since these sequences are present

only in one platform, they were excluded from our analyses.

miRBase database is the primary repository for all miRNA

sequences and annotations used by all manufacturers for the

design of the probes. However, the frequent update of miRBase

results in annotation problems. To avoid possible bias, we selected

arrays designed on close miRBase versions and the probes of the

four tested platforms were designed on either v12.0 or v14.0

miRBase. We verified that the names and sequences of miRNAs

present in v12.0 did not change in the newer miRBase version,

while a set of new miRNAs was added. The difference in the total

number of miRBase annotated miRNAs in the four platforms was

relatively small (6%).

Evaluation of Data Distribution and Detection Rate
Non-normalized signal intensities showed a platform dependent

distribution reflecting the unique methods developed by manu-

facturers for labeling, hybridization stringency and data acquisi-

tion (Fig. 1A). For all platforms, the signals covered most of the

dynamic range available for 16-bit scanners; Agilent, Exiqon, and

Miltenyi signal distributions tended to have positive skewness (a

right side long tail) and differed from Illumina distributions where

many more probes showed intermediate to high expression levels.

For the Agilent and Illumina platforms, we followed the

detection call criteria recommended by the manufacturers.

Illumina’s software provides a detection P-value that estimates to

what extent a signal is greater than the noise represented by

negative controls; similarly, Agilent’s software provides a flag

(gIsPosAndSignif) that estimates if the feature signal is positive and

significant compared to the background. In contrast, for the

Exiqon and Miltenyi platforms a detection call criteria was not

defined; for these platforms, we established a threshold percentage

of pixels for every spot in the array whose intensity was lower than

miRNA Platform Comparison in a Clinical Setting
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background. Taking into account these filtering procedures, 675

(78% of miRBase annotated miRNAs present on the array), 775

(87%), 808 (94%), and 376 (41%) unique miRNAs were detectable

in at least one of the samples in the Agilent, Exiqon, Illumina, and

Miltenyi platforms, respectively (Fig. 1B). There were 233

miRNAs that were shared by all platforms, being strongly limited

by the low detection rate in the Miltenyi platform.

In order to estimate to what extent the GC content impacted

the detection call of each platform, we calculated the GC

percentage of the miRNAs assayed and compared, for each

platform, the GC content between detected and undetected

miRNAs. Despite each manufacturer has adjusted probe design

and hybridization procedures to overcome discrepancies in the

thermodynamic stability of probe/target recognition, the GC

content was significantly higher in the detected than in the

undetected miRNAs in all platforms, and this difference was

particularly evident for the Miltenyi platform (Fig. 1C).

Normalization and Class Comparison Results
Several normalization and data processing procedures are

available, most translated by gene-expression studies and with little

consensus among laboratories. Considering the unique character-

istics of each platform, it is unlikely that the same normalization

procedure could perform equally in all platforms to correct

systematic differences.

In order to choose the best normalization for each platform, we

evaluated the ability of the four different methods (loess, quantile,

rank invariant, and Robust Spline Normalization) to reduce the

intra-class variability in normal and tumor samples through the

use of Relative Log Expression (RLE) (see Fig. S2). Moreover, we

expected that the best normalization method should increase the

fold changes and the number of differentially expressed miRNAs

between tumor and normal tissue. According to these criteria, we

chose RSN for Illumina and Agilent, loess for Exiqon and quantile

for Miltenyi.

In Figure S3 the tumor/normal class comparisons in the 4

platforms, expressed as histograms of log P-value and FDR, are

reported. The comparison identified, at a threshold P,0.005,

29 miRNAs that were modulated on Agilent, 4 on Exiqon, 42

on Illumina, and 3 on the Miltenyi platform, corresponding to

4.3%, 0.5%, 5.2%, and 0.8% of miRNAs detected, respectively.

Inter-platform Agreement of Class Comparison Results
To assess inter-platform concordance, we examined the

miRNAs that were DE at P,0.005 in at least one platform; by

combining these miRNAs, a consensus list of 68 miRNAs was

generated. To highlight concordance among the four platforms,

the P-values and fold-changes of the consensus list miRNAs are

shown in a colorimetric scale in Figure 2A and B respectively.

Imposing a P,0.005 on all four platforms, no miRNAs were

commonly DE. At P,0.05, hsa-miR-378, hsa-miR-375, hsa-

miR21*, hsa-miR-145 were detected as DE by all platforms and a

further 4 miRNAs (hsa-miR-96, hsa-miR21, hsa-miR147b, and

hsa-miR-143) were DE on all but one platform; in fact, on the

Miltenyi platform, hsa-miR-96 and hsa-miR-147b were not

detected, while hsa-miR-21 and hsa-miR-143 did not reach a

significant threshold. Twelve, 2, and 25 miRNAs were found to be

exclusively DE on the Agilent, Exiqon, and Illumina platforms,

respectively. The remaining 29 miRNAs were DE in at least two

platforms. The fold changes are concordant across platforms with

the only exception of two miRNAs (hsa-miR-218 and hsa-miR-

302a) that were DE at P,0.05 in Illumina and Exiqon, but with

discordant fold-changes (Fig. 2B).

In order to verify that the limited number of commonly DE

miRNAs was not a result of the normalization methods, we

calculated the number of differentially expressed miRNAs in each

platform and for each of the four normalization methods. For the

256 ( = 44) possible combinations, we identified a list of shared DE

miRNAs. The union of all these lists gathered four miRNAs (hsa-

miR-378, hsa-miR-375, hsa-miR-145, hsa-miR-21*), suggesting

that different normalization methods can be worse than or, at best,

equal to our choice (Fig. S4A). Noteworthy, among the 4 common

miRNAs the hsa-miR-378 was identified in all the possible

combinations (Fig. S4B).

The overall platform comparability in terms of accuracy and

ability to identify DE miRNAs was evaluated focusing respectively

on fold changes and t-values obtained in the tumor/normal

comparison for the 233 miRNAs commonly detected by the 4

platforms. After clustering analysis, the best correlation among

log2 fold changes were observed between Agilent and Exiqon

(Pearson’s correlation = 0.63), whereas Illumina showed the most

different pattern and wider fold changes (Fig. 3A and Fig. S5A). In

the same way, only a partial similarity in t-values (Pearson’s

correlation; range = 0.28–0.48; average = 0.40) is present among

Table 1. Platform description.

Agilent Exiqon Illumina Miltenyi

Array version Human miRNA V3 miRCURY LNA microRNA Array Human miRNA_V2 miRXplore microarray V5

Array per slide 8 1 12 1

Channels Single Single Single Dual

Input total RNA 100 ng 300 ng 600 ng 1200 ng

Labeling Cy3 Hy3 Cy3 Hy3/Hy5

Labeling process Alkaline phosphatase and 39

ligation
Alkaline phosphatase and
39 ligation

Polyadenylation, RT, MSO1

pool annealing, PCR
Alkaline phosphatase and
39 ligation

miRBase version miRBase V12.0 miRBase V14.0 miRBase V12.0 miRBase V14.0

Nu hsa-miR 866 891 858 911

Nu probes/miR 2 1 1 1

Nu replicates/probe 4–8 4 370 (average) 4

1MSO = miRNA specific oligo.
doi:10.1371/journal.pone.0045105.t001

miRNA Platform Comparison in a Clinical Setting

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e45105



Figure 1. Comparison of microarray platform performance. (A) Global non-normalized intensity distribution. (B) Graphical representation of
miRNA detection; blue = detected, yellow = undetected, gray = not present. (C) Box-plot of the percentage of GC content in mature miRNA sequences;
blue = detected, yellow = undetected. P-values were calculated by Student’s t test.
doi:10.1371/journal.pone.0045105.g001
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Figure 2. Cross-platform comparison of the consensus list of DE miRNAs at P,0.005 in at least one platform. (A) P-values of the tumor/
normal class comparison visualized in a blue-white heat map; see scale in the figure. (B) Log2 fold changes in the tumor/normal class comparison
visualized in a red-green heat map; red = up-regulated; green = down-regulated in tumors.
doi:10.1371/journal.pone.0045105.g002
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the 4 platforms, but this time Miltenyi showed the most divergent

behavior (Fig. 3B and Fig. S5B).

Inter-platform Agreement using miRNA Sets
Previous studies comparing the performance of gene expression

microarray platforms suggested that, despite a relatively low

overlap among lists of DE genes was obtained with different

platforms, a good agreement was found when looking at

biologically related gene sets instead of single genes [14]. To test

whether similar conclusions can be drawn for miRNA microarray

platforms, we performed a miRNA set enrichment analysis on our

data testing two series of miRNA sets: 1) the DE miRNAs

identified by each platform in our study, to evaluate their

enrichment among up or down-regulated miRNAs on the other

platforms; 2) miRNAs identified as up- or down- regulated

between colon cancer and normal mucosa in other microarray

based studies from the literature (Table S3). Most of the miRNA

sets identified by each platform are coherently enriched in data

from the other platforms, with the Miltenyi miRNA set showing

the lower enrichments (Fig. 4A). Moreover, the great majority of

colon cancer associated miRNA sets derived from the literature

were also validated in our data and, at least in part, independently

of the tested platform (Fig. 4B).

Comparison with qRT-PCR Data
Microarray data are regularly validated by qRT-PCR. Different

systems are commercially available and, as pointed out for the

microarray platforms, qRT-PCR manufacturers also have to deal

with the continuous update of miRBase annotations. As a

validation method, depending on the availability of selected

miRNA assays at the time the experiments were performed, SYBR

Green LNA assays from Exiqon or Applied Biosystem Taqman

assays were used.

We focused our validation analysis on 18 miRNAs that

summarize different situations found in the platform comparison

(Table 2). The 8 DE miRNAs in at least 3 of 4 array platforms

were validated as significantly DE by qRT-PCR. For these 8

miRNAs, high correlations between qRT-PCR and array expres-

sion values and in pair-wise contrasts of array data were observed

(Table 3 and File S1) with two exceptions; in the case of hsa-miR-

21*, although qRT-PCR data confirmed the differential expres-

sion found in all array platforms, its correlation with array data

was limited (R coefficient’s range 0.27–0.44); for hsa-miR-21, the

values on Illumina did not correlate with any other values

obtained on arrays or by qRT-PCR. This latter discrepancy is

likely attributable to the miR-21 expression values on Illumina that

are near to saturation in all samples and, for this reason,

concentrated in a limited range.

To better understand the basis of the poor overlap of class

comparison results in the four platforms, we measured the

expression of 10 further miRNAs (Table 3 and File S1).

Six of them (hsa-miR-136, hsa-miR-139-5p, hsa-miR-182, hsa-

miR-30a, hsa-miR-497, and hsa-miR-93) were selected among the

14 DE miRNAs (P,0.05) according to both Agilent and Illumina.

We validated the array data by qRT-PCR for 5 of these 6

miRNAs, with the relevant exception of hsa-miR-93. Correlation

coefficients between qRT-PCR and either Agilent or Illumina data

ranged from 0.65 to 0.87 for hsa-miR-136, hsa-miR-139-5p, hsa-

miR-30a, and hsa-miR-497; for hsa-miR-182, whose probe

intensities on Illumina were at intermediate levels and DE at

P,0.005 and on Agilent were near to the background and DE at

P,0.05, were 0.86 and 0.48, respectively.

Two other miRNAs, hsa-miR-886-5p and hsa-miR-886-3p,

selected for qRT-PCR validation were concordant in 2 of the four

platforms. The differential expression of hsa-miR-886-5p, DE on

Illumina and Miltenyi platforms, was confirmed by RT-qPCR,

while, that of hsa-miR-886-3p, DE on Miltenyi and Agilent

platforms, did not appear to be DE by qRT-PCR.

Finally, we selected two miRNAs (hsa-miR-218 and hsa-miR-

302a) that were DE on Exiqon and Illumina platforms but with

opposite fold changes. hsa-miR-218 reduced expression in tumors

on Illumina was confirmed by qRT-PCR while that of hsa-miR-

302a was not validated using qRT-PCR.

Real time PCR data are generally used to determine the

sensitivity and specificity of data obtained with microarrays. To

this aim, we compared our results to those obtained in an

independent published qRT-PCR study, in which 70 of 665

unique miRNAs tested were found differentially expressed in 40

paired normal-colon cancer samples [15]. For each platform we

selected miRNAs present in the qPCR dataset (527 for Agilent,

596 for Illumina, 545 for Exiqon and 278 for Miltenyi) and

computed ROC curves using different thresholds of P-value.

Figure 3. Clustering analysis of log2 fold changes and t-values.
Hierarchical clustering (distance = Pearson correlation; linkage = aver-
age) of log2 fold changes (A) and t-values (B) obtained for each
platform by comparing tumor and normal samples in the subgroup of
commonly detected miRNAs. t-values were calculated using a t-test
with random variance model.
doi:10.1371/journal.pone.0045105.g003

miRNA Platform Comparison in a Clinical Setting
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(Fig. 5). The values of Area Under the ROC Curve (AUC) showed

that Agilent and Illumina are very similar and are the most

accurate platforms while Miltenyi is the less performing.

Biological Insight
When the 68 miRNAs DE at P,0.005 in at least one of the four

platforms were compared with literature data, we found that 25%

of them were concordantly described in literature as deregulated in

colorectal cancer in comparison to the non tumor counterpart

(Table S4). Furthermore, we found that 12 miRNAs belong to

known co-expressed family clusters. The main biological data

associated to the four miRNA clusters are reported in table 4.

Looking at their expression we observed that: for miR 25–106b

cluster, only hsa-miR-25 and hsa-miR-93 are present in the list of

68 miRNAs at the thresholds we applied; the miR 182-96 cluster is

particularly evident in Illumina where hsa-miR-182, 2182*,

2183, and 296 are among the most up-regulated miRNAs in

this platform (fold changes tumor vs normal ranging from 4.42 to

2.65); the miRNA cluster 143–145 is coherently deregulated in all

the four platforms of our study, being hsa-miR-143 the most

down-regulated miRNA in tumor tissues on Exiqon platform (fold

change tumor vs normal tumor = 0.30; p = 0.036) and hsa-miR-

145 the most down-regulated in Agilent and Miltenyi (fold change

tumor vs normal = 0.30 and 0.35; p = 0.0027 and 0.018 respec-

tively).

Gene expression profiles of the same samples analyzed by

miRNA expression arrays were available. Thus, we considered an

integration approach to evaluate whether similar biological

information could be retrieved from the four platforms, irrespec-

tively of the overlap in DE miRNAs. To this aim, using the

MAGIA tool, negatively correlated putative target genes of DE

miRNAs were identified in each platform (File S2) and an

enrichment analysis was performed by IPA software. To highlight

the concordance among the four platforms, enrichment P-values

for all the cancer-related pathways significantly enriched in at least

one platform are shown in a colorimetric scale in Figure 6A.

Pathways related to cell cycle regulation and PTEN signalling

were concordantly identified. When we looked at validated targets

by TarBase software, the number of miRNA-mRNA interactions

negatively correlated at p,0.05 was very limited (Agilent = 35,

Exiqon = 2, Illumina = 45 and Miltenyi = 0) precluding a compar-

ison across the four platforms.

Furthermore, by considering the qRT-PCR data of the 8 most

concordant miRNAs and the gene expression profiles, the same

integration approach identified a total of 803 miRNA-negatively

correlated gene (predicted as miRNA targets) interactions (File S2).

The graphical representation of the top 250 interactions

highlighted that many genes that were up-regulated in tumors

are predicted targets of two or more down-regulated miRNAs

(Fig. 6B). In detail, there are 70 genes co-targeted by at least two

miRNAs and 84% of them are regulated by miR 143–145 cluster

(Table S5). Among these genes those related to glycolysis and

nutrient transport pathways seemed over-represented.

Figure 4. miRNA set enrichment analysis. Summary of miRNA set
enrichment analysis performed using GSEA. Using the expression data
obtained with the 4 different platforms, we tested the enrichment of
miRNAs DE (when comparing colorectal cancer and normal mucosa) in
our study (A) or reported in the literature (B). miRNAs up- or down-
regulated were tested separately. For the literature-derived miRNA sets,
the firs author and the platform used were indicated (see also Table S3).
False Discovery Rates less than 5% or 10% were considered significant
or marginally significant respectively.
doi:10.1371/journal.pone.0045105.g004

miRNA Platform Comparison in a Clinical Setting
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Discussion

Despite their relatively recent discovery, there is a rapidly

growing interest in the study of the role of miRNAs in many

pathological processes including cancer. Accordingly, high

throughput technologies, initially developed for GW gene expres-

sion evaluation, were rapidly adapted to GW measurement of

miRNAs. However, as highlighted in recent reviews [5;16;17],

several factors, including short miRNA length, high degree of

homology in miRNA families, the high rate of new miRNA

identification (the actual number of miRNAs in miRBase 18,

released in November 2011 is approaching two thousands) and the

relatively high percent (about 10%) of artefactual miRNAs not

confirmed by resequencing experiments, significantly complicate

their analysis. The impact of these factors on the different

methodologies applied by manufacturers of different available

platforms must be considered in inter-platform comparison

studies.

The issues of intra- and inter- microarray platform reproduc-

ibility have been mainly addressed using experimental settings

where tissues or cell lines of different origin are compared, with the

assumption that, due to the wide range of expected expression

modulations by such comparison, technical noise can become

negligible. This type of approach mirrored the one followed in its

first phase study by the MicroArray Quality Control (MAQC)

consortium, aiming to assess the inter-platform and inter-

laboratory reproducibility of gene-expression microarray data

using two different RNAs (human brain and a universal human

reference) [18]. This approach was strongly questioned in 2007 for

its lack of consistency with real research settings [19]. However, in

the majority of miRNA inter-platform comparison studies, quoted

in Aldridge & Hadfield [16] and reported in Table S1, the

experimental design was biased toward the use of samples with

strong difference in origin. Noteworthy, only two studies [7;10]

compared the miRNA profile of biological meaningful samples on,

at least, three different platforms, but even in these cases the

samples are cell lines. Thus, our study represents the first attempt

to compare miRNA platform performance in a clinical setting,

where the inter-sample variability within the same class is expected

to be higher than in cell lines.

The majority of profiling studies using clinical samples aimed at

revealing even subtle differences in expression but which are

associated to a specific clinical context. In these settings, technical

replicates are frequently not feasible due to RNA quantity and

economical considerations. Thus, in the present study we

addressed the issue of inter-platform comparison using samples

belonging to two classes (paired tumor and normal colon tissues)

which could theoretically lead to new insights in tumor biology

and clinical applications. Our data, generated by profiling the

same tissue-derived total RNAs using four different miRNA array

platforms, showed little overlap between platforms except for a

limited number of miRNAs for which very high correlations were

observed. These data are essentially in agreement with those

obtained using cell lines since also in these studies only few

miRNAs were shared among all platforms [7;10].

The first issue we considered was the global distribution of the

hybridization intensities. The Illumina platform showed the most

Table 2. miRNA arrays and qRT-PCR class comparison.

Class comparison tumor/normal

qPCR Agilent Exiqon Illumina Miltenyi

miRNA FC p-val FC p-val FC p-val FC p-val FC p-val

Differentially
expressed in at
least 3/4 platforms

Concordant hsa-miR-378 0.18 0.0000 0.49 0.0002 0.40 0.0000 0.40 0.0003 0.67 0.0130

hsa-miR-375 0.14 0.0009 0.40 0.0005 0.70 0.0055 0.55 0.0441 0.57 0.0337

hsa-miR-21* 1.54 0.0254 1.64 0.0460 1.32 0.0009 1.82 0.0009 1.47 0.0086

hsa-miR-145 0.10 0.0065 0.30 0.0027 0.49 0.0456 0.68 0.0019 0.35 0.0184

hsa-miR-96 3.73 0.0008 1.77 0.0050 1.18 0.0428 4.43 0.0024

hsa-miR-21 1.86 0.0118 2.47 0.0033 2.11 0.0159 1.11 0.0081 1.42 0.1709

hsa-miR-147b 0.12 0.0015 0.83 0.0000 0.81 0.0170 0.39 0.0005

hsa-miR-143 0.17 0.0118 0.42 0.0437 0.30 0.0364 0.69 0.0018 0.47 0.1252

Differentially
expressed in at
least 2/4 platforms

Concordant hsa-miR-93 0.84 0.4667 1.61 0.0202 1.17 0.0790 1.36 0.0050 1.20 0.2097

hsa-miR-886-5p 2.41 0.0130 1.02 0.3686 1.73 0.0189 1.48 0.0002

hsa-miR-886-3p 0.93 0.7370 1.09 0.0004 1.25 0.0956 1.88 0.0002

hsa-miR-497 0.28 0.0051 0.61 0.0008 0.35 0.0060 0.81 0.1473

hsa-miR-30a 0.27 0.0016 0.46 0.0002 1.32 0.2676 0.50 0.0015

hsa-miR-182 3.60 0.0012 1.04 0.0256 1.10 0.4681 2.65 0.0000

hsa-miR-139-5p 0.10 0.0010 0.79 0.0025 0.76 0.0664 0.17 0.0023 0.77 0.2078

hsa-miR-136 0.23 0.0153 0.69 0.0037 0.98 0.7852 0.48 0.0176

Discordant hsa-miR-218 0.19 0.0410 0.96 0.3632 1.22 0.0363 0.34 0.0020

hsa-miR-302a 0.95 0.8335 1.02 0.3413 1.20 0.0247 0.54 0.0020

FC = fold change.
doi:10.1371/journal.pone.0045105.t002
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diverging behavior in global distribution of intensities compared to

the other three platforms. An explanation could be the amplifi-

cation step of the starting material, according to the Illumina

protocol, while for the other platforms direct labeling of the

starting material is performed. The amplification step allows the

detection of a higher number of miRNAs expressed at low levels

(e.g. hsa-miR-182), but with the drawback that it can lead to

saturation of signals for more abundant miRNAs such as hsa-miR-

21, which is expected to be both biologically and clinically relevant

in many cancer types including colorectal cancer [20]. Due to the

withdrawal of the platform, the saturation of signals remains a note

of caution for former Illumina users.

The short length of miRNAs, their variable GC content, and

the existence of families of miRNAs differing in one or only few

nucleotides pose a set of technical challenges that each manufac-

turer has attempted to overcome through ad-hoc approaches. An

evaluation of the GC content of detected and undetected probes in

each platform confirmed the relevance of this parameter in

determining the detection performance of all of them, but also

highlighted that the Miltenyi platform is exceedingly sensitive to

GC content, partially explaining its low detection rate.

In class comparison analysis between tumor and normal

samples, much more modulated miRNAs were identified on

Agilent and Illumina platforms compared to the few identified on

the Exiqon and Miltenyi platforms. In Exiqon data, most of

miRNAs modulated in Agilent and Illumina were detectable,

although they did not reach statistical significance; on the other

hand, the same miRNAs were frequently undetected on the

Miltenyi platform. Focusing on the 233 commonly detected

miRNAs, Miltenyi clustered separately from the other three

platforms considering t-values, while Illumina shows the worst

correlations with the others three platforms when considering fold-

changes. qRT-PCR is frequently used as a ‘‘gold standard’’ to

corroborate data using microarrays, but, as previously reported by

others [7;17], qRT-PCR might also perform poorly in measuring

some miRNAs, thus challenging its role as a ‘‘gold standard’’.

Moreover, the validity of qRT-PCR as a reference technique

requires the application of superior standards to ensure its validity

and the adherence to MIQE, i.e. the specific guidelines for

minimum information for publication of quantitative real time

PCR experiments [21]. Thus, in our analysis, we decided to use

this technique, as generally done in a clinical setting, selecting only

a small subset of miRNAs. It is worthwhile noting that all the 8

miRNAs concordantly DE on at least 3 of the 4 platforms were

confirmed as DE by qRT-PCR, while in regard to the other 10

miRNAs assessed by qRT-PCR, 7 were validated.

Furthermore, since previous studies suggested that, despite a

relatively low overlap among lists of DE genes obtained with

different platforms, a higher agreement could be obtained looking

at biologically related gene sets instead of single genes [14], we

performed a miRNA set enrichment analysis on our data. In this

Figure 5. Performance assessment of the platforms. Considering
as gold standard the miRNAs identified as differentially expressed in a
qPCR study on 40 paired tumor-normal samples, we evaluated the
performance of each platform calculating sensitivity and specificity at
different thresholds of P-value and plotting the resulting values in the
ROC space.
doi:10.1371/journal.pone.0045105.g005

Table 4. Role in colon cancer of miRNA clusters DE in our study.

miRNA cluster members
Chromosome
location Role in colon cancer Reference

miR 195–497 hsa-miR-195
hsa-miR-497

17p13.1 Chromosomal region frequently deleted in
colorectal cancer.
hsa-miR-195 is associated to lymph node
metastasis, advanced tumor stage, and poor
overall survival.

[35]
[36]

miR 25–106b hsa-miR-25
hsa-miR-93
hsa-miR-106b

7q22.1 hsa-miR-25 is associated with lymphatic and
venous invasion,a more aggressive tumor
phenotype.
This cluster is closely related
with oncomir1.

[37]

miR 182-96 hsa-miR-182 hsa-miR-182*
hsa-miR-183 hsa-miR-183*
hsa-miR-96

7q32.2 intergenic
region

Not reported; in medulloblastoma this cluster
promotes tumorigenesis regulating cellular
migration.

[38]

miR 143–145 hsa-miR-143 hsa-miR-145 5q32 Altered expression is reported.
This cluster is associated with negative
regulation on cell proliferation

[39]

doi:10.1371/journal.pone.0045105.t004
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case, we were able to appreciate a better inter-platform agreement

compared to an approach based on single miRNA. In addition, a

coherent enrichment was found for miRNA sets obtained from

literature even using platforms different from the four analyzed in

our study.

Undoubtedly, technical and analytical challenges in measuring

miRNAs still remain and further research is required in order to

increase consistency between different microarray-based method-

ologies. Overall, the poor inter-platform comparability seems to be

reasonably due to a high false negative rate, with some probes

performing poorly; among the four tested platforms, Illumina and

Agilent, due to their high throughput performance, to the good

concordance with qRT-PCR for the most DE miRNAs, and to the

good sensitivity/specificity by ROC curves, resulted adequate for

miRNA GW evaluation of clinical specimens. Finally, comparison

studies could be relevant to other researchers not only in making

the proper decision regarding the best platform to use in their

projects but also for a better interpretation of their results.

Looking at literature data we found that some miRNAs,

identified as DE in our study, have been already implicated in

colon cancer development and progression (see also comments and

references in Table 4 and Table S4). Noteworthy the miRNA

more up-regulated in tumor samples in two platforms (Agilent and

Exiqon; fold change tumor vs normal = 2.47 and 2.1; p = 0.0033

and 0.0159 respectively) is hsa-miR-21, that represents a well-

established pro-oncogenic miRNA in many tumors including

colorectal cancer [22]. In addition, hsa-miR-378 was identified in

other screenings investigating the differential miRNA expression

in normal and neoplastic colon tissues [23], and it is worth to note

that in our qRT-PCR data its expression levels in normal and

tumor samples were not overlapping (File S1) making it a

promising candidate as diagnostic marker.

miRNAs regulate gene expression by triggering either repres-

sion of translation or mRNA degradation [24;25]. An integrated

approach to better understand the relationship between miRNA

and mRNA is often used in order to gain insight into miRNA

function. Following this approach, we evaluated the biological

information provided by each platform through the integration

with the gene expression profile available for the same samples. As

proof of principle, target genes, negatively correlated to the

miRNAs modulated according to each platform, were commonly

enriched in cancer related pathways. In principle, such analysis

restricted to the validated targets could be more informative.

However, at present, the number of validated targets is quite small

compared to that of predicted ones, not only due to the intrinsic

limits of the applied algorithms but also for the experimental

complexity of the validation process. In our datasets the number of

validated targets is low and the models in which the predictions

were validated are far from the clinical context of our interest. All

together these limitations precluded further analyses. Noteworthy,

some genes were co-targeted by two or more miRNAs and among

them we noticed the presence of genes related to glycolysis and

nutrient transport pathways. As a matter of fact, the gene-miRNA

pair predictions point out that expression of both hsa-miR-143

and hsa-miR-145 inhibits Hexokinase 2 (HK2) expression. HK2 is

the first rate-limiting enzyme of glycolysis, conferring to the tumor

an increased proliferation capacity and invasiveness when

expressed at elevated levels [26;27]. In this context, we found

other predicted target genes negatively correlated with members of

miRNA 143–145 cluster as involved in glycolysis nutrient

transport pathways, such as GLUT1/SLC2A1, a key gene

required for glucose uptake with an important role in carcino-

genesis [28] and HCP1/SLC46A1, a proton-coupled folate

transporter, important in intestinal folate absorption [29]. In

addition, three members of solute carrier family 7, a family of

amino acid transporters, SLC7A1, SLC7A11 and SLC7A6,

negatively correlated with miRNA 143–145 cluster, are reported

as up-regulated in tumor cells due to the demand for increased

amino acid transport during cancer progression [30;31].

In conclusion, our study does not aim at advertising any

platform, since each has inherent upsides and downsides. Despite

the identified limits, our analysis allowed the identification of a

concordantly set of miRNA clusters deregulated between tumor

and normal colorectal tissues and through an integrative miRNA-

gene expression analysis and the support of available literature, we

were able to shed light on the biological role of these miRNAs and

on their involvement in colorectal tumorigenesis.

Finally, the ever-increasing improvement in microarray and

NGS designs and technologies are hopefully expected to allow a

robust identification and validation of miRNAs as biomarkers.

Materials and Methods

Ethics Statement
All patients whose biological samples were included in the study

signed an informed consent, approved by the Independent Ethical

Committee of the Fondazione IRCCS Istituto Nazionale dei

Tumori Milano (INT-MI), to donate to INT-MI the leftover tissue

specimens after completing diagnostic procedures for research

purposes. The Independent Ethical Committee of INT-MI

approved the use of the samples for this specific study in the

framework of a project in biobanking quality control.

Tumor Samples and RNA Extraction
Tumor and normal matched samples were prospectively

collected from 9 patients who underwent surgical resection at

INT-MI. Histological and clinical characteristics of samples are

listed in Table S2. Neoplastic samples were obtained from the

central area of the tumor, avoiding necrotic material or transition

zones with healthy mucosa. Samples of colonic healthy mucosa

were collected at least 20 cm from the tumor and distant from

surgical resection margins. Tissue samples were collected within 20

minutes after surgical resection and were stored at 280uC until

RNA extraction in the frozen INT-MI Tissue Bank. Total RNA

was extracted from 10–20 mg of tumor samples and from 30–

40 mg of normal tissues. Samples were mechanically disrupted

and simultaneously homogenized in the presence of QIAzol Lysis

reagent (Qiagen, Valencia, CA, USA), using a Mikrodismem-

brator (Braun Biotech International, Melsungen, Germany). RNA

was extracted using the miRNeasy Mini kit (Qiagen) according to

manufacturer’s instructions. RNA concentrations were measured

with the NanoDrop ND-100 Spectrophotometer (NanoDrop

Technologies, Wilmington, DE), while RNA quality was assessed

with the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo

Alto, CA) using the RNA 6000 Nano kit (Agilent Technologies).

Figure 6. Computational integration of miRNA and gene expression profiles of the paired tumor/normal colon samples. (A) Pathway
enrichment analysis of anti-correlated predicted target genes of differentially expressed miRNAs according to each microarray platform. (B) Network
between the top 8 differentially expressed miRNAs and their anti-correlated target genes. The 250 top interactions were used to generate the
network using MAGIA tool.
doi:10.1371/journal.pone.0045105.g006
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Samples included in the present analysis had a RIN score greater

than 5 and a 28S:18S rRNA ratio close to 2:1.

miRNA Expression Profiling
The amount of input RNA, labeling, and hybridization

conditions were chosen following the recommendations of each

manufacturer. The experimental work was performed over a

period of six weeks to minimize biases caused by environmental

ozone levels.

Each manufacturer developed its procedures that involved

dedicated protocols for labeling, equipment for hybridization and

scanning, and software for data acquisition. Illumina chips were

processed by the Functional Genomic core facility of INT-MI

Department of Experimental Oncology and Molecular Medicine,

whereas Agilent hybridizations were carried out at Fondazione

Edo ed Elvo Tempia’s Cancer Genomics laboratory. In both

cases, experiments were performed by qualified and trained

personnel. Exiqon and Miltenyi slides were processed under

specialist supervision from both companies by the INT-MI

Functional Genomic core facility.

Agilent arrays. Agilent miRNA array analysis was carried

out at Fondazione Edo ed Elvo Tempia Foundation according to

the manufacture’s instructions. One hundred ng total RNA was

dephosphorylated at 37uC for 30 min with calf intestinal

phosphatase and denatured using 100% DMSO at 100uC for

5 min. Samples were labeled with pCp-Cy3 using T4 ligase by

incubation at 16uC for 1 hour and hybridized on a 8_x_15K

format Agilent human miRNA array. Arrays were washed

according to manufacturer’s instructions and scanned at a

resolution of 5 mm using an Agilent 4000B scanner. Data were

acquired using Agilent Feature Extraction software version 9.5.3.1.

Illumina arrays. Mature miRNAs were amplified with the

Illumina human_v2 MicroRNA expression profiling kit based on

the DASL (cDNA-mediated Annealing, Selection, Extension, and

Ligation) assay, according to the manufacturer’s instructions.

Briefly, 600 ng total RNA was converted to cDNA and annealed

to a miRNA-specific oligonucleotide pool consisting of three parts:

a universal PCR priming site at the 59 end, an address sequence

complementary to a capture sequence on the BeadArray, and a

miRNA-specific sequence at the 39 end. After PCR amplification

and fluorescent labeling, the probes were hybridized on Illumina

miRNA BeadChips. After hybridization and washing, fluorescent

signals were detected by the Illumina BeadArrayTM Reader.

Primary data were collected using V3.1.3.0 software.

Exiqon arrays. miRNA expression profiling was conducted

with the use of 0.3 mgtotal RNA that were labeled with Cy3

fluorescent dye, using the miRNA/LNA labeling kit (Exiqon,

Vedbæk, Denmark). The fluorescently labeled samples were

hybridized to a miRNA microarray using a GeneTac hybridiza-

tion station. The microarray slides were scanned with GenePix

4100 scanner (Axon Instruments, Union City, CA) and raw data

were collected with GenePix 6.0.

Miltenyi arrays. Labeling and hybridization were performed

according to user manuals of the miRXploreTM instrument

(Miltenyi Biotec, Bergisch-Gladbach, Germany). In brief,

1.2 mg/sample total RNA was labeled with the red fluorescent

Hy5 using the miRNA/LNA labeling Exiqon kit. A pool of

synthetic miRNAs in equimolar concentrations was designed by

Miltenyi based on sequences of miRBase 9.2 and were labeled

with Hy3. Subsequently, the labeled material was hybridized

overnight to miRXploreTMMicroarrays using the a-HybTM

Hybridization Station (Miltenyi Biotec, Bergisch-Gladbach, Ger-

many). Fluorescence signals of the hybridized miRXploreTM

Microarrays were detected using GenePix 4100 scanner and raw

data were acquired with GenePix 6.0.

miRNA Microarrays Data Processing and Statistical
Analysis

Both Agilent and Illumina provide proprietary instruments for

scanning the arrays (Illumina’s BeadArray Reader and Agilent

Microarray Scanner) and software to assess the signal values, and

define a qualitative detection call for each probe. Exiqon and

Miltenyi are more flexible since their slides can be adapted to

different scanners. Miltenyi and Exiqon image acquisition was

carried out using a GenePix Axon scanner.

Images were visually inspected to remove artifacts. Raw data

were corrected for background noise using the backgroundCorrect

module present in limma R package, and spots with lower 30% of

pixels with intensities more than one standard deviation above the

background intensity were flagged. Agilent and Miltenyi data

required an additional adjustment using ComBat [32] to correct a

slight batch effect due to the day processing of the slides (Fig. S6).

Four different normalization procedures (loess, quantile, rank

invariant, and RSN) were tested using the corresponding functions

from the lumi R package [33].

All microarray data are MIAME compliant and the raw data

were deposited into the NCBI’s Gene Expression Omnibus (GEO)

database (http://www.ncbi.nmlm.nih.gov/projects/geo/) with the

following accession numbers: Agilent GSE33124, Exiqon

GSE33122, Illumina GSE33125, Miltenyi GSE33123.

mRNA Expression Profiling and Normalization
RNA samples were processed for mRNA microarray hybrid-

ization by the INT-MI Functional Genomics core facility. Briefly,

800 ng of total RNA was reverse transcribed, labeled with biotin

and amplified overnight (14 hours) using the Illumina RNA

TotalPrep Amplification kit (Ambion, Austin, Texas, USA)

according to manufacturer’s protocol. One mg of the biotinylated

cRNA sample was mixed with the Hyb E1 hybridization buffer

containing 37.5% (w/w) formamide and then hybridized to a

Sentrix Bead Chip HumanHT12_v3 (Illumina, Inc., San Diego,

CA) at 58uC overnight (18 hours). The array represents over

48,000 bead types, each with a unique sequence derived from

human genes in the National Centre for Biotechnology Informa-

tion Reference Sequence or UniGene database. Array chips were

washed with the manufacturer’s E1BC solution, stained with

1 mg/ml Cy3-streptavidine (Amersham Biosciences; GE Health-

care, Piscataway, NJ, USA) and eventually scanned with an

Illumina BeadArray Reader. We collected primary data using the

supplied scanner software and subsequent analyses were per-

formed using the BeadStudio Version 3.1.3.0 software package.

Intensity values of each hybridization were quality checked and

the dataset was quantile normalized.

All microarray data are MIAME compliant and the raw data

were deposited into the NCBI’s Gene Expression Omnibus (GEO)

database (http://www.ncbi.nmlm.nih.gov/projects/geo/) with ac-

cession number GSE33126.

miRNA Set Enrichment Analysis
Enrichment analysis in miRNA expression data was performed

using GSEA (v. 2.0) [14]. miRNAs DE between colorectal cancer

and normal mucosa in our data or in other microarray-based

studies (Table S3) composed the miRNA sets we tested. Separate

miRNA sets were generated for up- or down- regulated genes and

a minimum of 5 miRNAs present in the data was required to

perform the enrichment test. miRNA sets with a FDR,5% and
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,10% were considered significantly enriched and marginally

enriched respectively.

Real-Time Quantitative PCR
Primers were obtained from Exiqon (Vedbæk, Denmark) if

available. Otherwise, assays were purchased from Applied

Biosystems (Foster City, CA, USA).

qRT-PCR microRNA assays specific for hsa-miR-21* (Assay ID

204302), hsa-miR-30a (Assay ID 204791), hsa-miR-93 (Assay ID

204715), hsa-miR-96 (Assay ID 204417), hsa-miR-136 (Assay ID

204779), hsa-miR-139-5p (Assay ID 204037), hsa-miR-143 (Assay

ID 204190), hsa-miR-145 (Assay ID 204483), hsa-miR-147b

(Assay ID 204368), hsa-miR-375 (Assay ID 204362), hsa-miR-378

(Assay ID 204179), were purchased from Exiqon. qRT-PCR was

performed using the miRCURY LNATM Universal RT micro-

RNA PCR system (Exiqon) and following the manufacturer’s

instructions. Twenty ng total RNA were polyadenylated and

reverse transcribed at 42uC (60 min) followed by heat-inactivation

at 85uC (5 min) using a poly-T primer containing a 59 universal

tag. The resulting cDNA was diluted 80-fold and 8 ml used in 20 ml

PCR amplification reactions as follows: 95uC for 10 min and then

40 cycles of 95uC for 10 sec, and 60uC for 60 sec. Normalization

was performed with snord48 (Assay ID:203903).

Applied Biosystem’s TaqMan microRNA assays specific for hsa-

miR-21 (Assay ID 397), hsa-miR-182 (Assay ID 2334), hsa-miR-

218 (Assay ID 521), hsa-miR-302a (Assay ID 529), hsa-miR-497

(Assay ID 1043), hsa-miR-886-3p (Assay ID 2194), hsa-miR-886-

5p (Assay ID 2193), were used to detect and quantify mature

microRNAs on Applied Biosystems real-time PCR instruments in

accordance with the manufacturer’s instructions. Starting from 4

ngtotal RNA first strand cDNA was synthesized using miR-specific

stem-loop primers and the High-Capacity cDNA Reverse

Transcription Kit (Applied Biosystems), reactions were run in a

GeneAmp PCR 9700 thermocycler (Applied Biosystems) at 16uC
for 30 min, 42uC for 30 min, and 85uC for 5 min. The RT

products, PCR master mix containing TaqMan 26 Universal

PCR Master Mix (No Amperase UNG), and 106TaqMan assay

in 20 mL were amplified as follows: 95uC for 10 min, 40 cycles of

95uC for 15 sec, and 60uC for 60 sec. Normalization was

performed with the small nuclear RNA, RNU48 (Assay ID:1006).

miRNA expression levels were quantified using a sequence

detection system (ABI Prism 7900HT; AppliedBiosystems) in

duplicate, and threshold cycle (Ct) for each sample was

determined. ABI SDS 2.4 software was used to recover the data

and relative expression (referred to small nuclear RNA48) was

calculated using the comparative DCt method.

Class Comparison
Differentially expressed miRNAs between tumor and normal

colon tissues were identified using a two-sample paired t-test with

random variance model at nominal significance level of 0.005,

unless otherwise specified as implemented in the Biometric

Research Branch (BRB) ArrayTools (Version 3.8) developed by

Dr. Richard Simon and the BRB-ArrayTools development team.

The random variance t-test was selected to allow displaying

differentially expressed miRNAs without assuming that all probes

possess the same variance.

Integration of miRNA and mRNA Expression Data
Integration of miRNA and mRNA data was performed using

the freely available tool MAGIA [34]. The first step is the

prediction of targets for the submitted miRNAs. In our analysis

these were identified according to the TargetScan algorithm. Next,

the correlation between each miRNA and its predicted targets was

computed. All predicted targets with a correlation ,20.4 (File S2)

were submitted to enrichment analysis using the Ingenuity

Pathway Analysis software, and cancer-related canonical pathways

with Fisher’s exact test P,0.05 in at least one platform were

selected.

Supporting Information

Figure S1 Distribution of differential expression of
miRNAs (log2 fold changes) dependent on the origin of
analyzed samples. Four publicly available datasets, obtained on

Agilent platform were used for distribution comparison: GSE13860

and E-MTAB-96 datasets belonging to miRNA cross-platform

comparison studies (Table S1); GSE21036 dataset, 28 paired primary

prostate tumors and normal matched tissues profiled on Agilent v2.0

arrays, designed on miRBase release 10.1 [12]; GSE28700 dataset,

22 paired gastric cancers and normal matched tissues profiled on

Agilent v1.0 arrays, designed on miRBase 10.1 [13].

(PDF)

Figure S2 RLE plots. For each platform, RLE plots were

generated separately for normal (green) and tumor (red) samples

before and after normalization with one of the four methods taken

in account. To evaluate the similarity of RLE values distribution

we compared the standard deviations of the median, 25- and 75-

percentile.

(PDF)

Figure S3 Comparison of differentially expressed miR-
NAs dependent on platform used. The histograms of log P-

value and FDR frequency of the differentially expressed miRNAs

in tumor/normal class comparisons are reported.

(PDF)

Figure S4 Impact of normalization on differential
analysis. The four platforms were normalized using four

different methods (Loess, Quantile, Rank Invariant, RSN). For

each of the 256 possible combinations, the number of commonly

differentially expressed miRNAs was computed and reported in

(A). For microRNAs commonly detected as DE in at least one of

the 256 combinations, the number of times they were selected is

plotted in (B).

(PDF)

Figure S5 Common miRNA correlation. Pairwise correla-

tion of log2 fold changes (A) and t-values (B) of the 233 miRNAs

commonly detected by all platforms. Pearson correlation (R) and

the slope (m) estimated by linear regression are shown.

(PDF)

Figure S6 Batch effect correction. Moderated F-test

(LIMMA package) was performed among classes defined by

batches and F value distributions are plotted before and after

applying the ComBat method [32] to both Agilent and Myltenyi

expression data. The F threshold corresponding to a P,0.01 is

plotted. After the correction, the number of miRNAs with a

significant F values was reduced.

(PDF)

Table S1 Summary of cross-platform studies comparing more

than three different platforms.

(DOCX)

Table S2 Clinical and pathological characteristics of patients.

(DOCX)

Table S3 miRNA sets of DE miTNAs between colorectal cancer

andnormal mucosa available from literature.

(DOCX)
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Table S4 miRNA chromosome location, relative expression and

comparison with literature data.

(DOCX)

Table S5 List of the genes co-targeted by at least two miRNAs.

(DOCX)

File S1 Pearson correlations between arrays and qPCR data for

18 selected miRNAs.

(PDF)

File S2 Anti-correlated miRNA targets (R,20.4) identified

using the MAGIA tool for each of the 4 miRNA platforms and for

qRT-PCR data.

(XLSX)
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