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With the breakthrough of AlphaFold2 on monomers, the research focus of structure prediction has shifted to
protein complexes, driving the continued development of new methods for multimer structure prediction.
Therefore, it is crucial to accurately estimate quality scores for the multimer model independent of the used
prediction methods. In this work, we propose a physical-aware deep learning method, DeepUMQA-PA, to
evaluate the residue-wise quality of protein complex models. Given the input protein complex model, the
residue-based contact area and orientation features were first constructed using Voronoi tessellation, repre-
senting the potential physical interactions and hydrophobic properties. Then, the relationship between local
residues and the overall complex topology as well as the inter-residue evolutionary information are characterized
by geometry-based features, protein language model embedding representation, and knowledge-based statistical
potential features. Finally, these features are fed into a fused network architecture employing equivalent graph
neural network and ResNet network to estimate residue-wise model accuracy. Experimental results on the
CASP15 test set demonstrate that our method outperforms the state-of-the-art method DeepUMQA3 by 3.69 %
and 3.49% on Pearson and Spearman, respectively. Notably, our method achieved 16.8% and 15.5%
improvement in Pearson and Spearman, respectively, for the evaluation of nanobody-antigens. In addition,
DeepUMQA-PA achieved better MAE scores than AlphaFold-Multimer and AlphaFold3 self-assessment methods
on 43 % and 50 % of the targets, respectively. All these results suggest that physical-aware information based on
the area and orientation of atom-atom and atom-solvent contacts has the potential to capture sequence-structure-
quality relationships of proteins, especially in the case of flexible proteins. The DeepUMQA-PA server is freely
available at http://zhanglab-bioinf.com/DeepUMQA-PA/.

1. Introduction

Protein-protein complexes are central in many crucial biological and
cellular processes, which makes their structural elucidation important.
With the significant progress made by AlphaFold2 [1] in single-chain
structure prediction, the prediction of structures for protein multimers
has become the focus of research in the field. Since the structure of
protein complexes is the key to understanding its function, methods such
as AlphaFold-Multimer [2], DMFold-Multimer [3], AFsample [4],
trRosettaX2 [5], and the recently released AlphaFold3[6] have been
actively developed to predict the structure of multimers. Nonetheless,
challenges remain in predicting structures with weak evolutionary sig-
nals, such as nanobody-antigen and antibody-antigen complexes [7].
The CASP15 results show that most successful prediction methods for
protein multimers used modifications of the standard AlphaFold,
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including extensive sampling through variations on MSA construction,
the use of multiple seeds, an increased number of recycles and extensive
network dropout [7]. It also shows that, at least for now, scoring and
ranking the accurate models from many decoys has become a funda-
mental strategy for improving the accuracy of protein multimers struc-
ture prediction. Not surprisingly, estimation of model accuracy (EMA) of
multimeric structures has recently received much attention in the field
and has been introduced into CASP15 as a new prediction category [8].

Generally, the EMA methods of complexes are divided into two
categories: multi-model methods and single-model methods. Multi-
model methods require multiple models as input and then evaluate
the quality of the models using structural alignments and strategies,
such as MULTICOM_ga [9], ModFOLDdock [10] and VoroIF-jury [11].
Single-model methods require only a single protein complex structure as
input, and do not require additional information to predict model
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quality, such as VoroIF-GNN [12], DeepUMQA3 [13], et.al. Multi-model
methods have significant advantages in specific scenarios such as Crit-
ical Assessment of Techniques for Protein Structure Prediction (CASP).
However, they rely heavily on the quality of the model pool, which is
closely related to the accuracy of structure prediction. By contrast,
single-model EMA methods are not restricted by the model pool and can
score as well as select models lightly and efficiently. We have observed
that the single-model EMA methods outperform the multi-model
method, and even the CASP-specific consensus method, on the accu-
racy estimation track of complex interface contact residues of CASP15 in
2022 [14]. In addition, the single-model EMA method can not only
evaluate the accuracy independently of structure prediction methods,
but also can be a key component of multi-model methods. Naturally, it
has become a frontier and research hotspot in the field of protein
structure model quality assessment.

Most single-model EMA methods mainly consider the geometric and
evolutionary factors of protein structure models and utilize the deep
learning network to reveal the relationship between structure features
and model quality. In recent two years, our in-house developed Deep-
UMQAS3 [13] extracts feature from three levels of overall geometric
topology, intra-chain and inter-chain, and use the improved deep re-
sidual neural network to predict the accuracy of interface residues.
DeepUMOQAS3 extends the USR feature of the DeepUMQA series to pro-
tein complexes. The overall USR and inter-monomer USR of the com-
plexes are used to capture the topological relationships between the
global and local structure, as well as the topological relationships of the
interchain. In addition, a residual neural network coupled with triangle
update and axial attention is employed to predict the IDDT (local dis-
tance difference test) of each residue and the accuracy of interface res-
idues. AlphaFold-Multimer uses the Evoformer module to encode
multiple sequence alignment and template information to reflect
evolutionary information and decodes the structural coordinates and
quality scores in the Structure module [2]. However, it is challenging for
the above methods to characterize the solvent effects of the surrounding
environment of the protein surface, which is a crucial driver for the
protein folding problem [15] and protein-protein interactions [16]. It is
worth noting that VoroIF-GNN predicts the contact area accuracy for the
complex interface by building a graph to represent the local contact and
solvent surface based on Voronoi tessellation [12,17,18]. Inspired by
concepts of atom-atom and atom-solvent contact areas, given the strong
correlation between surface areas and physical interactions [19], it is
reasonable to assume that the orientation characteristics of the contact
surface may contain the crucial information of the native structure
interface. This hypothesis suggests that, based on geometric and
evolutionary features, further considering physical-aware information
(e.g., the solvent energy characterized by contact surface area and
orientation) may reveal more intrinsic relationships between protein
structure and model accuracy.

Based on our previously developed DeepUMQAS3 protocol, this work
proposes a single-model method, DeepUMQA-PA, which is used for
model scoring and ranking of multimeric protein structure. We design
physical-aware features based on residue contacts to capture the rela-
tionship of hydrophobicity and orientation of the interface, while
combining topological and protein sequence embedding to describe
geometric and evolutionary features. These representations are fed into
an equivalent graph neural network (EGNN) [20] coupled with the
invariant point attention mechanism (IPA) [1] and a ResNet network to
predict the per-residue accuracy estimation for protein multimers. The
test results show that the physical-aware, geometric topological, and
evolutionary features are complementary, and the use of these features
can significantly improve the performance of accuracy estimation for
protein complexes.

2. Methods

DeepUMQA-PA is a single-model protein complex EMA method,
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which includes four main parts: data preparation, feature extraction,
network architecture, and residue-wise pIDDT scores [21]. The sche-
matic diagram of the designed pipeline is illustrated in Fig. 1, and each
part of the pipeline will be described in detail below.

2.1. Feature extraction

We extract four classes of features from an input protein complex
structure: physical-aware contact features (i.e., contact surface area and
contact surface-based orientation features), geometry-based features (i.
e., ultrafast shape recognition and voxelization features), embedding
features (i.e., sequence and structure embedding features), and
knowledge-based statistical potential energy features (i.e., Rosetta en-
ergy), as shown in Fig. 1B. Details of all these features are available in
Table S1 in the supplementary material.

2.1.1. Physical-aware contact area feature

In existing literature, most protein complex EMA methods use a
distance threshold, such as 5 A or 8 A, between specific atoms (e.g., Cg
and C,) to define the concept of contact[22,23]. Although this way can
effectively characterize the spatial relationships between atoms, it
cannot fully reflect the solvent effects of the environment around the
protein surface, which are closely related to the atom-atom interactions.
Inspired by the concepts of atom-atom and atom-solvent contact area
[12,16-18], we use residue-level contact areas and contact
surface-based orientation features to represent the strength of physical
interactions between protein surface regions and their surrounding
solvents, which may provide a new perspective and effective way to
evaluate the accuracy of complex structure models.

Given an input complex structure, we first calculate the interatomic
contact surface based on the Voronoi tessellation algorithm [17,18]. The
formula is defined as follows:

Vic—x)? + y=y)* + z—2)) —n
~J(x=eP+ -yl + -2 -r

€8]

where r; and r; represent the van der Waals radius of atom q; and atom a;
respectively, and the point (x, y, z) lies on the contact surface equidistant
from the van der Waals spheres of the two atoms (Fig. 2a).

For any contact pair formed by atoms g; and aj, the contact area can
be calculated by using the triangulation algorithm [24] and Voronota
software (version: 1.27.3834) [12]. Furthermore, we computed
residue-level contact area (RCA) by adding the relevant atom-level
contact areas (ACA). Specifically, we masked the contacts between
atoms within residues and accumulated the contact areas between atoms
of different residues to obtain the contact area feature matrix (L* L*1),
where L is the number of residues in the complex. In fact, the contact
area matrix between residues is a sparse matrix which is not conducive
to the training of neural networks. Therefore, we further merged the
contact areas between residues into the feature of the total contact area
of a residue with all the surrounding contact residues (L*1). The contact
area feature between residues and solvent (L*1) was obtained by accu-
mulating the atomic-level solvent-accessible areas. Formally, the for-
mula is defined as follows:

L

——
ACA(yq) = ‘okpk x @k‘ / 2 o)
k=1
N
RCA(,) = > ACAT, ) 3)
m=1

where ACA g, o) represents the contact area between atom q; and atom a;.
O, Pk, Qi are the vertices of the kth triangle of the contact surface ob-
tained by triangulation, L represents the total number of triangles.
RCA(, ,, represents the contact area between residue ro and rp. m denotes
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Fig. 1. The pipeline of DeepUMQA-PA. a) Data preparation. Protein complex structure and sequences were taken as input. b) Features extraction. Physical-aware
contact features, geometry-based features, embedding features, and knowledge-based statistical energy features of given protein complex structure are extracted from
the input structural and sequence information. ¢) Network architecture. The graph neural network was fused with ResNet network with attention mechanisms to

estimate residue-wise prediction accuracy.

a \

Fig. 2. a) Schematic diagram of atomic contact between atom q; (red) and atom g; (purple). r; and r, are the van der Waals radius of atom q; and atom a;, d is the
distance between atoms, and p is a point on the Voronoi surface, where the surface distances from p to atom q; and atom g; are both ¢. b) Schematic diagram of the
residue-level contact surface orientation for homodimer 1B5D. The blue arrow represents the contact surface orientation of surface residues, and the yellow arrow

represents the contact surface orientation of internal residues.

480



H. Wang et al.

the mth atom-level contact area. N represents the total number of atom-
level contact between residue rg and r. The schematic diagrams of the
residue contact surface and residue-solvent contact surface are shown in
Fig. 3. The Voronota software (version: 1.27.3834) [12] and PyMOL
(Version: 2.6.0a0) [25] were used for drawing Fig. 2 and Fig. 3.

2.1.2. Physical-aware contact orientation feature

To characterize the relationship between protein surface residues
and internal residues, we designed residue-level contact surface orien-
tation features, which is the sum of vectors of the contact orientation
between a residue and all surrounding contact residues. First, for any
two contact atoms a; (x1, y1, 21) and a; (x2, y2, 22) in a protein, we obtain
the contact surface between atoms according to Voronoi tessellation
[17]. The formula (1) in 2.1.1 can be simplified as follows:

() el s)

dz — Ar? 4
where/\ris the difference in van der Waals radius between atom a; and
atom aj, d is the distance between atoms.
Next, the contact surface S between atom g; and atom g; intersects the
connecting line of the two atoms to obtain the reference point V

4

— .

(Fig. 2a). We use the support vector N gyface vertex(a; )@t point V as the

orientation of the interatomic contact surface. For two residues r, and rp,
. . L= .

the residue-level contact surface orientation N gyrface—vertex(ron;)iS OD-

tained by summing the support vectors of the relevant atom-level con-
tact surface (Fig. 2b). Formally, the calculation formula is as follows:
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where (xivj, yg, zg) is the coordinate of reference point V, n represents the
total number of atom-level contact surface  between

=
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residuesr,andry, /\riis the van der Waals radius difference of the m-th
atom-level contact surface. More calculation formulas are listed in Text
S1 in the supplementary material.

2.1.3. Geometry-based Voxelization and Ultrafast Shape Recognition
(USR) features

For a protein complex, small conformational changes in local resi-
dues could cause a significant impact on inter-chain interactions and the
overall structure. The voxelization features project the protein structure
into voxelized grids to describe the local structural information of resi-
dues [26,27] while USR [13,28-31] can quickly capture the topological
information of protein structures by using three sets of interatomic
distances. Thereby, we use voxelization and overall USR to comple-
mentarily characterize the geometric topological relationship between
local residues and the overall structure.

2.1.4. Embedding features and statistical potential features

Large Language Models (LLM) capture the evolutionary conservation
information of proteins and have been widely used in protein structure
prediction, design and function research [32]. The protein language
model ESM can quickly and accurately obtain embedding information
for structure and sequence [33]. Thereby, we use the high-dimensional
embedding of protein structure of backbone atoms in ESM-IF1 [34]
(1*L*512) and the high-dimensional embedding of sequence in ESM2
[35] (1*L*1280) to establish the connection between evolutionary
conservation information and structural accuracy. In addition, Rosetta
energy [36-38] features are also an important part of the input features,
using the one-body-terms, the two-body energy terms and the presence
of backbone-to-backbone hydrogen bonds features. All these features
are normalized and fed to the deep learning neural network.

2.2. Network architecture

In this study, we designed a fusion network architecture, where each
part is drawn from an equivariant graph neural network (EGNN) [20]
coupled with invariant point attention (IPA) [1] and a ResNet network
[39] with attention mechanism. The purpose of introducing EGNN
network is to process the input structural coordinates, so that we can
obtain a structure embedding representation that is closer to the native

O

1\@ ¢

v
&Y

Homodimer 1B5D

e EER

Intrachain residues contact surface

Fig. 3. a) Homodimer 1B5D. b) Interchain residues contact surface. Random color patches represent the contact surface of different contact residues from interchain.
¢) Intrachain residues contact surface. Random color patches represent the residue contact surface between the pink residue and the other contact residues (purple).

Light pink patches represent the residue-solvent surface.
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structure of protein. In this way, by combining feature embeddings from
fully connected layers and input into the ResNet network as previously
used in DeepUMQAS3, we can make more accurate predictions on the
distance contact (i.e., Mask) map and the distance error (i.e., Estogram)
maps, and finally improve the performance of residue-wise accuracy
estimation. The fusion network architecture is shown in Fig. 1C.

For a given protein complex structure model, we first extract four
classes of protein features, which were physical-aware contact features,
geometry-based features, embedding features, and knowledge-based
statistical potential features. These features are firstly input into the
fully connected layer [40] to generate a 1*L*128 protein complex
embedding, which is combined with the coordinates of complex model
and input into the EGNN network coupled with IPA module. EGNN
network is used to iteratively update the protein atomic coordinates to
better approximate the native structure. Then, output of EGNN (i.e.,
structure embedding) is recombined with the protein complex embed-
ding and input into the residual network with attention mechanism
[41], which consists of a main residual block and two branch residual
blocks. Each residual block contains three 2D convolutional layers with
different dilation rates [13], normalization layers and GELU activation
function [42]. Finally, we get the mask map thresholded at 15 A and
estogram map with Cp distance deviations to calculate the residue-wise
pIDDT score by different branch residual blocks.

2.3. Training

We used a non-redundant protein complex data set from the Deep-
UMQAB3 as the training and validation data (before January 1, 2022) and
all the CASP15 data (as test data) we use are after May 2022. In this way,
it can be ensured that there is no overlap between the training set and
the test set and this allows for an objective and fair comparison with
DeepUMQAS3. The training and validation datasets contain a total of
7590 targets, each generating approximately 240 models. The ratio of
the number of targets in the training and validation datasets is 9:1. Our
best network model took 125 h to train on a single A100. The network
Adam optimizer [43] with a learning rate of 0.01 is used, which decays
at a rate of 0.05 %. During the training process of the network, the
performance of the model is optimized by minimizing loss functions.
Specifically, the cross-entropy loss function is used to evaluate the
estogram map loss; the binary cross entropy loss function is used to
evaluate the mask map loss; the root mean square deviation[44] is used
to evaluate the coordinate loss and residue-wise pIDDT score loss. Loss
function is defined as follows:

Loss = W(Lmas + Lest) + Leoor +Lplddt @
where w is the weight that is equal to 0.1, Ly,is the mask map loss, Lesis
the estogram map loss, Lyqq:is the residue-wise pIDDT score loss, Leooris
the square value of the difference between the predicted and true pro-
tein structure coordinates during training. Specifically, during the
training, the model coordinates and protein complex embedding fea-
tures are input as node features and edge features into the EGNN
network coupled with the IPA module to predict the true structure.
Then, the square of the distance errors between the true structure co-
ordinates and the predicted coordinates is used as the coordinate loss,
which can obtain an embedding that approximates the true structure to
guide the improvement of the model accuracy estimation. IDDT is used
to analyze the stability of local regions of proteins. The calculation
formula of IDDT is as follows [21]:

Nop._
prass =42 e 105,1,2,4) ®
(py<15)
IDDT; _D1+D2+Ps+Ps )

4po
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whereDijrepresents the distance between residue i and residue j in the
reference structure, dijrepresents the distance between residue i and
residue j in the prediction model. N(p, 4,/<»represents the number of
residues with the predicted distance error less than the threshold t A, t €
{0.5,1, 2,4}. The distance error of residues is defined by the distance
error of Cyp.Np,<15)represents the number of residues that are within
15 A from the reference structure.p;,ps,ps, parespectively represent the
probability of residues for which the absolute value of [Dy; — dj| < tA, t €
{0.5,1,2,4}. porepresents the probability of residues within 15 A of the
residue i in the reference structure. The value range of IDDT is from 0 to
1. The closer the score is to 1, the closer the prediction model is to the
reference structure.

3. Results and discussions

In this study, four statistical metrics are used to objectively and fairly
analyze the reliability of predictions in complex interface residues.
Specifically, we use Pearson[45] and Spearman [46] metrics to measure
the correlation between the predicted IDDT score of interface residues
and the true IDDT, focusing on evaluating the accuracy of the methods in
ranking the models. ROC (AUC) [47] is used to evaluate the ability of the
method to distinguish between high-quality and low-quality models.
Regarding the definition of high-quality and low-quality models, we use
the same definition as the official CASP definition [14]. Specifically, for
all models of the same protein target, the models whose true quality is in
the top 25 % are defined as high-quality models, and the other models
are defined as low-quality models. The mean absolute error (MAE)
quantifies the deviation between the predicted IDDT scores and the
actual values.

3.1. Results on the CASP15 test set

We test the performance of DeepUMQA-PA in evaluating the accu-
racy of interface residues on the CASP15 test set. We used the interface
threshold defined by the CASP specification, i.e, interface residues for
protein complexes are defined as those with a Cs—Cp distance< 8 A be-
tween any two chains (or Ca in the case of glycine) [14]. Due to hard-
ware resource limitations, we compare the performance of the
state-of-the-art methods for evaluating local interface accuracy on
7875 models of 30 targets. We find that DeepUMQA-PA has advantages
in the reliability of protein complex model scoring and ranking (Fig. 4).
The detailed evaluation results are listed in Table S2 of the supple-
mentary material. On average, DeepUMQA-PA outperforms other
methods and improves over the top-performing method DeepUMQA3 by
3.69 %, 3.49 % and 0.48 % on Pearson, Spearman and ROC (AUC) of
IDDT, respectively (Table 1). In particular, for the five
nanobody-antigens targets (H1140-H1144), DeepUMOQA-PA signifi-
cantly improved by 16.8 %, 15.5 % and 5.1 % compared with Deep-
UMQAS in the three statistical metrics of Pearson, Spearman and ROC
(AUC) based on IDDT, respectively (Table 2). The interaction between
antibody and antigen is formed through spatial structural complemen-
tarity. The smaller the distance between the two, the greater the inter-
action force (such as van der Waals force) [48,49]. This suggests that
DeepUMQA-PA may have the potential to accurately assess the local
geometry of protein binding sites [50]. This may be attributed to the fact
that the introduction of physical-aware features enhances the ability of
network to learn specific protein-protein interaction patterns.

3.2. Ablation studies

In the ablation study, we investigate the impact of physical-aware
contact features on the performance of DeepUMQA-PA (Fig. 5). Specif-
ically, we use the same training process to train multiple neural network
models with different physical-aware features (i.e., physical-aware
orientation, residue-residue contact area and residue-solvent contact
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Fig. 4. a The results of DeepUMQA-PA and other servers on CASP15 test set. b The results of DeepUMQA-PA and other servers on CASP15 nanobody-antigens

test set.

Table 1
Comparison of the evaluation results of Pearson, Spearman, ROC (AUC) on the
CASP15 test set with other methods.

methods Pearson Spearman ROC (AUC)
DeepUMQA-PA 0.608 0.574 0.765
DeepUMQA3 0.587 0.554 0.761
ModFOLDdockR 0.476 0.440 0.686
ModFOLDdockS 0.425 0.393 0.663
Venclovas 0.311 0.311 0.645
VorolF 0.311 0.311 0.645
FoldEver 0.294 0.288 0.631
ModFOLDdock 0.245 0.218 0.598
Manifold 0.130 0.115 0.546

area) on the DeepUMQAS3 data set, and use 29 protein complex targets
from CASP15 as the test set. When the physical-aware contact orienta-
tion feature is removed from the baseline model DeepUMQA-PA (the full
information is used), the Pearson and Spearman of IDDT decrease by
2.66 % and 1.80 %, respectively. In particular, for the five nanobody-
antigen complexes, the Spearman and ROC (AUC) of IDDT decrease by
1.99 % and 1.46 %, respectively. The difference implies that the intro-
duction of orientation information between residues enables
DeepUMQA-PA to consider protein-protein docking and physical inter-
action mechanisms, which is crucial for identifying binding sites.
When the physical-aware residue-residue contact area feature is
removed from the baseline model DeepUMQA-PA (the full information
is used), the results show that the performance of DeepUMQA-PA
significantly decreases by 9.72 %, 10.03 % and 3.29 % on the Pearson,
Spearman and ROC (AUC) of IDDT respectively. This suggests that the
residue-residue contact area feature may play a crucial role in charac-
terizing the physical interactions between interface residues. When the
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residue-solvent contact area is not used, the performance of the model
decreases most significantly, with the Pearson correlation decreasing
from 0.61 to 0.52 and the Spearman correlation decreasing from 0.57 to
0.47. We also conduct tests on five nanobody-antigen complexes.
Notably, the removal of the residue-solvent contact area feature results
in a more obvious performance decrease (Pearson: 0.57-0.42,
Spearman: 0.56-0.39, ROC AUC: 0.75-0.67). This is mainly because the
distribution of solvent molecules near the antibody-antigen binding site
affects the energy state of binding, and the residue-solvent contact area
can reflect the solvent effects of the environment around the protein
surface. In conclusion, the introduction of physical-aware contact fea-
tures helps DeepUMQA-PA to accurately predict the quality of interface
residues.

3.3. Comparison with AlphaFold-Multimer and AlphaFold3 self-
estimation methods

AlphaFold-Multimer (AFM) and AlphaFold3 (AF3) can not only

Table 2
Comparison of the evaluation results of Pearson, Spearman, ROC (AUC) on the
nanobody-antigen test set with other methods.

methods Pearson Spearman ROC (AUCQ)
DeepUMQA-PA 0.576 0.565 0.760
DeepUMQA3 0.493 0.489 0.723
ModFOLDdockR 0.377 0.330 0.619
ModFOLDdockS 0.267 0.231 0.581
FoldEver 0.206 0.210 0.595
ModFOLDdock 0.154 0.150 0.586
Venclovas 0.080 0.078 0.549
VorolF 0.080 0.078 0.549
Manifold —0.152 —0.153 0.528
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Fig. 5. a, c, e) Supplementary ablation studies of interface residue assessment accuracy on the CASP15 test set. b, d, f) Supplementary ablation studies of interface
residue assessment accuracy on CASP15 nanobody-antigens test set. DeepUMQA-PA is the baseline model that uses all information. DeepUMQA-PA! denotes a
version of DeepUMQA-PA without the physical-aware contact orientation feature. DeepUMQA-PA? denotes a version of DeepUMQA-PA without the physical-aware
residue-residue contact area feature. DeepUMQA-PA® denotes a version of DeepUMQA-PA without the physical-aware residue-solvent contact area feature.

predict high-precision models but also provide reliable residue-wise
confidence estimates. However, for the AF (i.e., AFM and AF3) model,
there is still room for improvement in the accuracy of local evaluation.
To analyze whether DeepUMQA-PA has the potential to improve eval-
uation accuracy for AF models with low self-assessment accuracy, we
download the AFM prediction models provided by CASP15 and use the
AF3 server to generate five models for each target. On average, AFM
achieves essentially the same prediction as DeepUMQA-PA on MAE of
IDDT for 30 targets (Table S3a). Fig. 6a shows the evaluation error
comparison between DeepUMQA-PA and AFM on each target.
DeepUMOQA-PA achieves lower MAE scores than AFM on 43 % targets.
We further find that DeepUMQA-PA improves more obviously on targets
with a higher average MAE predicted by AFM. Especially for the target
with MAE > 0.1 between AFM pIDDT scores and the true values, the
average MAE of DeepUMQA-PA is significantly lower than that of AFM,
with the average decrease from 0.169 to 0.140. Similarly, DeepUMQA-
PA outperforms AF3 on 50 % targets, and improves by 15.17 % on these
targets (Fig. 6b). These results highlight the synergic intersection be-
tween DeepUMQA-PA and AF in assessing local structural accuracy.
DeepUMQA-PA provides complementary assessments in region with
high uncertainty in AF predictions, which helps to accurately identify
low-confidence regions of the prediction model to guide model
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refinement.

3.4. Differences in quality estimation accuracy according to residue
location

We divide the protein complex model into core, interface, and sur-
face residues, and observe differences in quality estimation accuracy
according to residue location. The classification criteria for residue po-
sitions in the complex are as follows: (1) interface residues: Cy distance
between chains< 8 A (Ca for glycine), (2)core residues: relative solvent-
accessible surface area (SASA)< 0.25, (3)surface residues: relative SASA
>0.25.

We present the accuracy errors of core, surface, and interface resi-
dues predicted by DeepUMQA-PA in Fig. 7. On average, the evaluation
accuracy of core residues is 24.79 %, 29.33 % higher than that of surface
and interface residues, respectively (Table S4). Especially for the
nanobody antigens (H1140-H1144), the gap in the MAE of IDDT be-
tween interface and core residues is even more obvious (core:0.074,
surface:0.108, interface:0.174). This may be attributed to the fact that
core residues are mainly used to maintain the overall stability of the
protein, and their structural patterns are relatively simple and easy to
evaluate. In contrast, the structures corresponding to surface and
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interface residues may undergo conformational changes due to the in-
fluence of the surrounding environment or ligands, making the evalua-
tion of these residues more challenging.

4. Conclusion

We developed a single-model EMA method for protein complex
called DeepUMQA-PA. Based on DeepUMQA3, we further used physical-
aware contact surface features (i.e. contact surface area and contact
surface-based orientation features) and a fusion network architecture to
evaluate the residue-wise model quality. Experimental results demon-
strate that our method outperforms state-of-the-art EMA methods,
including DeepUMQA3, ModFOLDdockR, ModFOLDdockS, VorolF,
Venclovas, FoldEver, ModFOLDdock and Manifold on 30 protein com-
plex targets in CASP15. Ablation results demonstrate that physical-
aware contact surface features can improve the performance of model
quality assessment methods. In addition, for the MAE metric, our
method is complementary to AlphaFold-Multimer and AlphaFold 3 in
terms of local assessment accuracy and has an advantage over it in
evaluating low-accuracy models. We further find that it is more chal-
lenging for DeepUMQA-PA to evaluate interface residues than core
residues and surface residues. With the rapid development of complex
structure prediction, model evaluation of protein binding to DNA, RNA
and small molecules may be a research hotspot in the future.
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