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A B S T R A C T   

Background and purpose: Volume regression during radiotherapy can indicate patient-specific treatment response. 
We aimed to identify pre-treatment multimodality imaging (MMI) metrics from positron emission tomography 
(PET), magnetic resonance imaging (MRI), and computed tomography (CT) that predict rapid tumor regression 
during radiotherapy in human papilloma virus (HPV) associated oropharyngeal carcinoma. 
Materials and methods: Pre-treatment FDG PET-CT, diffusion-weighted MRI (DW-MRI), and intra-treatment (at 1, 
2, and 3 weeks) MRI were acquired in 72 patients undergoing chemoradiation therapy for HPV+ oropharyngeal 
carcinoma. Nodal gross tumor volumes were delineated on longitudinal images to measure intra-treatment 
volume changes. Pre-treatment PET standardized uptake value (SUV), CT Hounsfield Unit (HU), and non- 
gaussian intravoxel incoherent motion DW-MRI metrics were computed and correlated with volume changes. 
Intercorrelations between MMI metrics were also assessed using network analysis. Validation was carried out on 
a separate cohort (N = 64) for FDG PET-CT. 
Results: Significant correlations with volume loss were observed for baseline FDG SUVmean (Spearman ρ = 0.46, p 
< 0.001), CT HUmean (ρ = 0.38, p = 0.001), and DW-MRI diffusion coefficient, Dmean (ρ = -0.39, p < 0.001). 
Network analysis revealed 41 intercorrelations between MMI and volume loss metrics, but SUVmean remained a 
statistically significant predictor of volume loss in multivariate linear regression (p = 0.01). Significant corre-
lations were also observed for SUVmean in the validation cohort in both primary (ρ = 0.30, p = 0.02) and nodal (ρ 
= 0.31, p = 0.02) tumors. 
Conclusions: Multiple pre-treatment imaging metrics were correlated with rapid nodal gross tumor volume loss 
during radiotherapy. FDG-PET SUV in particular exhibited significant correlations with volume regression across 
the two cohorts and in multivariate analysis.   

1. Introduction 

Radiotherapy concurrent with chemotherapy is an important treat-
ment modality for human papilloma virus (HPV) associated oropha-
ryngeal carcinoma and has contributed to excellent disease control and 
survival rates [1,2]. Despite its efficiacy, treatment toxicity remains a 
major challenge in all head and neck cancers (HNC) [3,4]. Targeted dose 
de-escalation strategies can limit treatment-related complications 
without compromising locoregional control [5,6], but increasingly 

personalized strategies require knowledge of what factors drive vari-
ability in treatment response. 

An important indicator of treatment reponse is how tumor volume 
evolves during therapy. Rapid volume reduction during radiotherapy is 
widely associated with positive outcomes in HNC [7,8]. However, just as 
overall response varies amongst patients, so do tumor regression rates 
[9] and the source of this variability is not currently well understood. 
Identifying characteristics that are associated with rapid intra-treatment 
volume regression would improve our understanding of what drives 
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variability in treatment response. 
Multimodality imaging (MMI) may help inform this variability. For 

example, 18F-fluorodeoxyglucose (FDG) positron emission tomography 
(PET), which measures local glucose metabolism, produces signals that 
have been linked with tumor characteristics such as proliferation 
[10–12], differentiation [11], and stem-ness [13] which are likely to 
contribute to an individual’s responsiveness to treatment. Diffusion 
weighted Magnetic Resonance Imaging (DW-MRI), which measures the 
Brownian motion of water molecules, captures metrics such as the 
apparent diffusion coefficient (ADC) which characterize tissue cellu-
larity [14]. Advanced DW-MRI data models such as the non-Gaussian 
intravoxel incoherent motion (NG-IVIM) method can additionally esti-
mate surrogates of tissue microstructure (K, kurtosis coefficient), 
cellularity (D, true diffusion coefficient) and microcapillary perfusion (f, 
perfusion fraction and D*, pseudo-diffusion coefficient) [15]. Impor-
tantly, DW-MRI and FDG-PET provide complementary information [16] 
and have both been associated with clinical outcomes with high FDG 
uptake [17–20] and high diffusivities [21–23] being linked with poorer 
treatment outcomes in HNC. 

We hypothesize that treatment response variability is related to 
characteristics of the phenotypic tumor microenvironment that can be 
measured using MMI. The purpose of this study was to identify the re-
lationships between pre-treatment MMI-derived markers and longitu-
dinal nodal gross tumor volume regression in patients with HPV+
oropharyngeal HNC. 

2. Materials and methods 

2.1. Patients 

This study includes patients from an institutional review board 
approved prospective protocol (NCT03323463, Cohort-A). Eligible pa-
tients had biopsy-proven, newly diagnosed HPV-associated oropharyn-
geal HNC. HPV status was determined by either positive p16 expression 
or in situ hybridization. All patients were treated with surgery of the 
primary tumor followed by conventionally fractionated, intensity- 
modulated radiotherapy with concurrent chemotherapy [5,6]. Written 
informed consent was obtained from all patients included in the study. 

Patients received baseline and longitudinal imaging as part of 
enrollment on the clinical trial. This included pre-treatment FDG PET- 
CT, DW-MRI, and T2-weighted MRI plus weekly MRI scans during 
treatment. Patients were included in the present study if all pre- 
treatment imaging information was available as well as weekly scans 
for at least 3 weeks after start of treatment. A total of 72 patients were 
included who were treated between November 2017 and January 2021. 
Seventy patients received a total radiation dose of 30 Gy to gross and 
subclinical disease over 3 weeks of treatment. The remaining 2 patients 
received a 20 fraction, 40 Gy sequential boost to gross disease (totaling 
7 weeks of treatment). All patients were treated using intensity modu-
lated radiation therapy (IMRT) with 2 Gy per fraction. Additional pa-
tient characteristics are provided in Table 1. The total imaging dataset 
included N = 72 pre-treatment FDG-PET scans and N = 288 MRI scans. 

2.2. Imaging and segmentation 

Patients underwent FDG PET-CT and MRI scans prior to treatment. 
FDG PET-CT imaging was performed with patients immobilized for 
radiotherapy treatment. 3.0 Tesla MRI scans were acquired with a 
protocol that included fat-suppressed T2-weighted imaging and multi-b- 
value DW-MRI (10 b-values, 0–2000 s/mm2). MRI were acquired in 
radiological positioning (without immobilization) and were repeated 
weekly over the course of radiotherapy. Additional imaging details are 
provided in the Supplement. 

Grossly involved lymph nodes were manually segmented on pre- 
treatment and weekly intra-treatment imaging by experienced radia-
tion oncologists (BD, JH). Contouring was performed on both T2- 

weighted and DW-MRI scans (on the non-diffusion weighted b = 0 s/ 
mm2 series) and included the single largest lymph node for each patient. 

2.3. Data collection and processing 

DW-MRI – multi-b-value DW-MRI data were analyzed using the MRI- 
QAMPER (Quantitative Analysis of Multi Parametric Evaluation Rou-
tines) software platform [24] which includes monoexponential and 
biexponential NG-IVIM models [15] and is approved by the National 
Cancer Institute (NCI)/Quantitative Imaging Network (QIN) for use in 
clinical trials. 

NG-IVIM model fits were computed to estimate true diffusion and 
pseudo-diffusion coefficients (D and D*), perfusion fraction (f), and 
Kurtosis coefficient (K) at each voxel. This method models the impact of 
both capillary perfusion and deviations from gaussian diffusivity (i.e. 
kurtosis) in highly restricted microenvironments which has been pre-
viously applied to HNC [15,25,26]. ADC maps were additionally 
generated using a monoexponential fit. Mean and standard deviation 
(SD) values of each parameter (Dmean, fmean, D*mean, Kmean, and ADC-
mean) were computed for each nodal delineation. 

PET/CT – To map lesion delineations to PET-CT scans, T2-weighted 
MRI scans were deformably registered to the CT using a deformable b- 
spline algorithm with a mutual information loss function (elastix.org 
[27]). To avoid mapping delineations to low-resolution FDG uptake 
maps, PET and CT images were mapped to the T2-weighted MRI ge-
ometry, and these coregistered maps were used for all subsequent 
analyses. 

CT Hounsfield Unit (HU) and FDG standardized uptake values (SUV) 
were then computed for each node. To avoid image artifacts (e.g., near 
dental implants), HU maps were masked to exclude regions outside the 
range of − 100 to + 200. FDG SUV maps were generated from attenua-
tion corrected dicom data using the “SUV Factor Calculator” 3D Slicer 
extension (slicer.org). CT HUmean, FDG SUVmean, SUVmax, and total 
lesion glycolysis (TLG) [28] were then computed across each lesion. 

Weekly Volume Loss – Tumor regression was quantified using the 

Table 1 
Patient characteristics for the primary and validation cohorts. Staging was done 
using the American Joint Committee on Cancer (AJCC) 7th edition tumor, node, 
metatstasis (TNM) system.    

Primary Validation  

Total 72 64 
Age [Years] Median [Range] 57 [41–80] 64 [42–80]  

Gender Male 67 59  
Female 5 5  

Primary Site BOT 20 25  
Tonsil 40 28  
Unknown/Unspecified 12 11  

T Stage T0 13 1  
T1 43 15  
T2 16 24  
T3 − 11  
T4 − 12  
T4a − 1  

N Stage N0 − 1  
N1 19 5  
N1b − 1  
N2 8 −

N2a 6 1  
N2b 37 31  
N2c 2 21  
N3 − 3  
N3b − 1  
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manual delineations defined on weekly T2-weighted MRI scans. Tumor 
volumes (in cubic centimeters, cc) were extracted from each delineation 
and normalized against the pre-treatment volume to determine the 
fractional volume loss (ΔVn = (Vinitial − Vweek-n)/Vinitial after n weeks of 
treatment, positive volume losses refering to tumor shrinkage). To cor-
rect for slight variations in scan timing and smooth week-to-week var-
iations, ΔV were smoothed over time using a low-pass filter and linearly 
interpolated to exactly 1, 2, and 3 weeks after the start of radiotherapy. 

Clinical Response Assessment – After the completion of treatment, 
clinical response was assessed monthly through follow-up FDG-PET or 
CT scans. At each follow-up it was determined whether or not loco- 
regional recurrence (LRR) was observed. 

2.4. Statistical analysis 

Correlations between pre-treatment imaging metrics (from DW-MRI, 
PET-CT) and weekly tumor regression (ΔV1, ΔV2, and ΔV3) were 
assessed using Spearman rank-order statistics. Significant correlations 
were determined using a P < 0.05 cutoff after post-hoc Bonferroni 
correction. 

When multiple significant correlates for ΔV were observed, pre-
dictors were fed into a multivariate linear regression model to identify 
independent predictors of ΔV. Only one predictor from each modality 
(the one with the highest correlation) was included. TLG was not used in 
multivariate analysis because it depends on both SUVmean and total 
volume. 

Correlations with clinical outcome were assessed using two-sample t- 
tests between LRR and no-LRR groups and Cox proportional hazard 
modelling. LRR analysis was only performed amongst patients treated 
with 30 Gy (70 out of 72) as all LRR were observed in this group. 

These statistical analyses were performed in MATLAB (version 
2022b, The Mathworks, Nattick, MA). 

2.5. Network analysis 

Inter-relationships between MMI and ΔV parameters were visualized 
using a graphical connectivity network wherein each metric defines a 
network node and connections between nodes represent strong inter- 
correlations. The presence of “communities” amongst parameters was 
further assessed using the “spin-glass” community detection algorithm 
(CDA). This approach treats each node as a “spin” and finds the best 
arrangement of spins, such that nodes within communities have dense 
coupling (i.e., strong positive or negative correlation) between them as 
described previously [29]. 

2.6. Validation cohort 

An additional group of patients was included retrospectively in an 
IRB approved analysis (#16-1648). For this validation cohort, we 
selected HPV+ oropharyngeal HNC patients treated between April 2018 
and June 2022 with standard-of-care conventionally-fractionated 
chemo-radiotherapy who received pre-treatment FDG PET-CT and 
weekly volumetric imaging throughout treatment (MRI or cone-beam 
CT, CBCT). All patients were treated using 2 Gy per fraction IMRT. 
Treatment was therefore equivalent to the primary cohort during the 
timepoints relevant to this study (the first 3 weeks of radiotherapy). 

Patients were included if they underwent prospective longitudinal 
target-volume tracking at the time of treatment [30,31]. In this process, 
clinical nodal and primary gross tumor volumes (GTVn and GTVp) 
which were manually delineated during treatment planning were 
deformably propagated to each weekly MRI/CBCT (see Supplementary 
Methods). Pre-treatment DW-MRI was not included in this cohort due to 
a lack of available data with a consistent protocol. 

The validation set included N = 64 patients and N = 119 GTVs 
(GTVn: N = 61, GTVp: N = 58). N = 42 were tracked using CBCT (66 %) 
and N = 22 with MRI (34 %). Correlations between baseline PET/CT 

parameters and weekly volume loss were computed in this cohort as in 
the primary analysis. 

3. Results 

Spearman correlations between pre-treatment imaging parameters 
and volume loss are shown in Fig. 1 and Table 2. Example imaging for 
two patients is shown in Fig. 2. Significant correlations were observed 
between all FDG SUV parameters (SUVmean, SUVmax, and TLG) and ΔV3 
(SUVmean/SUVmax/TLG: ρ = +0.46/0.34/0.48, p < 0.003). Significant 
correlations with ΔV3 were also observed for Dmean (ρ = − 0.39, p <
0.001), ADCmean (ρ = − 0.37, p = 0.001), and CT HUmean (ρ =+0.38, p =
0.001). 

When parameters from all three modalities (SUVmean, Dmean, and 
HUmean) were fed into a multivariate linear regression model, only 
SUVmean remained a statistically significant predictor of ΔV3 (p = 0.01, 
Table 2). 

Significant correlations were also observed with volume losses 
measured at earlier time points (ΔV1, ΔV2) for several FDG, DW-MRI, 
and CT parameters (Supplementary Table S1). While correlations 
decreased in strength for FDG and CT parameters with ΔV1 and ΔV2 (eg. 
SUVmean: ρ = 0.34 vs. 0.46 for ΔV1 vs. ΔV3), correlations were stable for 
DW-MRI (Dmean: ρ = − 0.38 vs. − 0.39 for ΔV1 vs. ΔV3). Fig. 1 (D–F) 
demonstrates the stability of these correlations over time in relative 
volume plots divided into three patient groups based on mean SUVmean, 
Dmean, and HUmean. 

3.1. Network analysis 

Several inter-correlations were observed between MMI parameters, 
which can be clearly seen in the network analysis plot shown in Fig. 3. 
CDA analysis revealed three distinct “communities” amongst the 12 
input parameters and a connectivity network with 41 edges (each edge 
representing a statistically significant inter-correlation). The three 
communities that were identified included: 1) all volume loss mea-
surements, ΔV1, ΔV2, ΔV3; 2) All DW-MRI parameters except D*mean; 
and 3) All PET-CT parameters plus Vinitial and D*mean. 

Full inter-correlation results are tabulated in Supplementary 
Table S2. Notably, SUVmean was correlated with Dmean, (ρ = -0.49), 
HUmean (ρ = +0.48), and D*mean (ρ = − 0.35). SUVmean (ρ = 0.31) and 
SUVmax (ρ = 0.48) correlated with Vinitial. Dmean was also correlated with 
HUmean (ρ = − 0.33). 

3.2. Treatment response assessment 

LRR was observed in 7/70 patients (10.0 %) treated with 30 Gy 
(average follow-up time: 39 ± 10 months). Patients with LRR exhibited 
lower ΔV3 (LRR: 9.5 ± 28.1 % vs. no-LRR: 38.4 ± 30.4 %, p = 0.02), 
larger Vweek-3 (LRR: 23.6 ± 11.4 cc vs. no-LRR: 9.8 ± 6.8 cc, p < 0.001), 
and larger Vinitial (LRR: 28.3 ± 17.5 cc vs. no-LRR: 17.5 ± 10.9 cc, p =
0.02). 

Cox modeling also showed significant relationships between LRR and 
ΔV3 (p = 0.03, hazard ratio, HR = 0.98, 95 % confidence interval [0.95, 
1.00]), Vweek-3 (p < 0.001, HR = 1.20 [1.09, 1.31]), and Vinitial (p = 0.02, 
HR = 1.07 [1.01,1.12]). Kaplan-Meier curves for LRR are shown in 
Supplementary Fig. S2. 

Significant relationships with LRR were not observed for DW-MRI or 
PET-CT parameters. 

3.3. Validation cohort 

Significant correlations were observed between FDG SUVmean and 
ΔV3 in the validation cohort (Table 3, Supplementary Fig. S3) for both 
primary (SUVmean, ρ = 0.31) and nodal GTVs (SUVmean, ρ = 0.30). 
HUmean exhibited a significant correlation with ΔV3 in the validation 
cohort for GTVn (ρ = 0.33), but not GTVp. 
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4. Discussion 

The main findings of this study were that (1) baseline FDG PET up-
take was positively correlated with volume loss during the first three 
weeks of radiotherapy; and (2) other MMI metrics including CT HU and 
DW-MRI diffusion coefficients were both inter-correlated and correlated 
with volume loss. 

The positive FDG-SUV correlation indicates that HPV+ oropharyn-
geal tumors with high baseline metabolic activity tended to regress 
faster during treatment than those with lower activity. In the primary 
cohort, this relationship was robust to FDG uptake metric (SUVmean, 
SUVmax, TLG) and to the timepoint of volume measurement (weeks 1, 2, 

and 3). In the validation cohort, significant correlations were observed 
for SUVmean in both primary and nodal GTV, but for TLG only in GTVp. 
In multivariate analysis, FDG uptake was significantly correlated with 
nodal volume loss in both cohorts, but not for primary tumor in the 
validation cohort. 

While we did not observe a correlation between FDG uptake and 
LRR, high FDG uptake has generally been associated with poor outcomes 
in HNC [17–20]. This would appear counter to our finding that high FDG 
uptake correlated with rapid regression, a characteristic associated with 
positive treatment outcomes in our data and elsewhere [7,8]. High FDG 
uptake has been associated with high density of proliferating cells across 
multiple cancer types [10–12] as well as a more stem-like transciptomic 
signature [13]. This may imply a growth-oriented and tumor-cell-dense 
phenotype, and may partially explain correlations that have been 
observed between high FDG uptake and hypoxia [32]. Tumors with high 
densities of cycling cells are logically more likely to regress rapidly 
during treatment, as has been demonstrated in radiobiological modeling 
studies [33,34] which may explain why high FDG uptake can relate to 
both poor treatment outcomes and rapid volume regression during 
radiotherapy. Increased proliferative activity may also bias high-FDG 
lesions to be larger in size at presentation (as observed in our data). 
Considering that absolute volumes (Vinitial and Vweek-3) were associated 
with LRR in our data, volume bias may also play a role. 

To our knowledge, the correlation between pre-treatment FDG PET 
uptake and volume regression has not been previously demonstrated in 
HNC. However, a similar finding was reported in cervical cancer by 
Capaldi et al. who observed high baseline FDG-uptake to be correlated 
with volume regression rates during chemo-radiotherapy [35]. 
Furthermore, a local correlation was observed in lung cancer between 
FDG uptake and tissue shrinkage post-treatment [36], which indicates 
that this relationship may not be limited to HPV+ oropharyngeal cancer. 

Fig. 1. Top row: plots of relative volume loss after three weeks in the primary cohort versus baseline pre-treatment imaging parameters (A–C). Bottom row: plots of 
relative tumor volume over time amongst all patients binned into tertiles according to baseline D) FDG SUVmean (cutoff values = 3.2, 5.5), E) Dmean (cutoff values =
0.7 × 10− 3, 0.9 × 10− 3), and F) HUmean (cutoff values = 42.6, 60.9). Error bars represent the standard deviation of relative volumes observed within in each tertile. 

Table 2 
Spearman rank-order correlations between pre-treatment parameters and 
measured volume loss after 3 weeks of RT. Bold values were statistically sig-
nificant after Bonferroni correction for multiple comparisons. NS = non-signif-
icant. Dashes indicate that a variable was not included in multivariate analysis.    

Correlation with volume loss 
[%] 

Multivariate Regression   

ρ p p 

FDG SUVmean  0.46 0.00005 0.01 
SUVmax  0.34 0.003 ¡

TLG  0.48 0.00003 ¡

DW-MRI ADCmean  ¡0.37 0.001 ¡

Dmean  ¡0.39 0.0007 NS 
fmean  0.15 NS ¡

D*mean  0.01 NS ¡

Kmean  − 0.08 NS ¡

CT HUmean  0.38 0.001 NS 
Volume Vinitial  0.24 NS ¡
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We also observed correlations between volume loss and both base-
line diffusivities (negative correlation) and CT HU values (positive 
correlation). Both low diffusivities and high HU values are indicative of 
dense tissue (though in contrast-enhanced CT, HU values are also 

affected by extracellular contrast), implying that dense tumors are more 
likely to exhibit rapid volume loss. This is consistent with previous 
studies which associated low pre-treatment diffusivities with superior 
outcomes in HNC [21–23]. Dmean and HUmean were also both signifi-
cantly correlated with SUVmean and neither Dmean nor HUmean were 
significant multivariate predictors of volume loss, which may indicate 
that high cell density is a consequence of the increased proliferation in 
high-FDG tumors. 

One potential application for these findings is in the growing field of 
“digital-twin” research wherein patient-specific treatment response is 
predicted and monitored with radiobiological models. Tumor volume 
regression serves as an important input and/or feedback mechanism in 
several published methods [33,37–39]. Knowledge of the relationships 
between intra-treatment regression and imaging characteristics may 
inform future strategies to initialize and update personalized models 
with MMI data. 

The CDA network analysis (Fig. 3) was largely consistent with 
analysis by Paudyal et al. who also reported significant correlations 
between FDG uptake and both D/ADC (negative correlations) and tumor 
volume (positive correlation) [29]. In the present study, three commu-
nities were identified amongst the MMI parameters and they were 
largely grouped within modalities. This indicates that intra-modality 
correlations were generally stronger than inter-modality (aside from 
D*, which was grouped with PET-CT parameters but is an exploratory, 
unvalidated parameter with known variability [40]). However, it is 
clear from the densely connected network graph that many connections 
exist between communities. 

One important variable not addressed in this study is the presence of 
cystic lymph nodes, which are most commonly observed in HPV+ can-
cers [41] and tend to exhibit both high diffusivity and low FDG uptake 
due to the high water content and lack of cancer cells in cystic regions. 
Because cystic tissue would also not be expected to regress quickly 
during radiotherapy, this may have contributed to the observed corre-
lations and is a limitation of our study. Furthermore, because grossly 
involved lymph nodes are not composed entirely of tumor cells, a 
decrease in nodal volume is not directly indicative of a decrease in tumor 

Fig. 2. Example pre-treatment and week-3 imaging for two patients in this study. The patient in panel A (male, age 56 years) showed high baseline FDG uptake 
(SUVmean = 8.3) and exhibited >75 % volume loss upon week-3 imaging. In contrast, the patient in panel B (Male, age 67 years) showed pre-treatment SUVmean =

2.15 and only 0.8 % volume loss at week-3 of treatment. 

Fig. 3. Intercorrelation network between MMI parameters generated from a 
community detection algorithm (CDA) based on the “spin-glass” model. 
Network nodes represent individual MMI parameters and connections between 
them represent correlations with P < 0.05. Line color indicates the spearman 
rank-order correlation coefficient (ρ) of that connection (blue lines indicate 
positive correlations and red lines indicate negative correlations). Node color 
indicates the three parameter “communities” determined by the CDA. Note that 
perfusion fraction (f) and pseudo-diffusion coefficient (D*) metrics are currently 
experimental and not yet validated clinically. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of 
this article.) 
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burden. Although the validation cohort did show a correlation between 
FDG uptake and volume loss in primary tumor, future analysis will aim 
to exclude cystic components from lesion delineations and limit analysis 
to regions of active tumor. 

This study had some additional limitations. Namely, it was a retro-
spective, single-center study which always carries some risk of bias. 
However, the primary cohort was a consecutive group of patients who 
had MMI acquired during a prospective trial (NCT03323463). We also 
hope to have mitigated this risk by replicating our main findings in a 
separate cohort. However, the validation cohort did differ from the 
primary group in the use of automatic propagation of clinical GTVs to 
compute volume trends and the inclusion of primary tumor, which may 
have affected the results. Another limitation was that the only marker of 
longitudinal treatment response that we evaluated was tumor volume. 
Changes in DW-MRI and/or PET-CT parameters may provide additional 
insight into how tumor composition changes throughout treatment. 
Furthermore, the low LRR rate (10 %) led to a small number of events 
observed. Additional parameters may have exhibited significant re-
lationships with outcome in a larger sample. Finally, volume changes 
were only assessed until week-3 of radiotherapy, although we expect 
treatment-induced changes to persist in subsequent weeks. However, 
because many of the patients only received three weeks of treatment, 
this was the latest time point in which all patients in both cohorts had 
received an equivalent dose. 

In conclusion, MMI parameters were associated with rapid volume 
regression during radiotherapy for HPV+ oropharyngeal cancer. Pre- 
treatment FDG uptake had the strongest correlation with volume loss 
in both uni- and multivariate analysis. 
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