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Abstract: Spinal cord stimulation (SCS) utilizes the delivery of mild electrical pulses via 
epidural electrodes placed on the dorsal side of the spinal cord, typically to treat chronic pain. 
The first clinical use of SCS involved the delivery of paresthesia inducing, low-frequency 
waveforms to the neural targets corresponding to the painful areas. Contemporary SCS 
therapies now leverage novel therapeutic pathways to limit paresthesia and deliver superior 
clinical outcomes. Historically, SCS has largely been delivered with fixed stimulation para-
meters. This approach, referred to as open-loop (OL) SCS, does not account for the fluctua-
tions in spacing—driven by postural changes and activity—between the electrodes and the 
cord. These fluctuations result in variability in the delivered dose and the volume of tissue 
activation (VTA) that manifests with each stimulation pulse. Inconsistent dosing may lead to 
suboptimal therapeutic efficacy and durability. To address this clinical need, closed-loop 
(CL) SCS systems have been developed to automatically adjust stimulation parameters to 
compensate for this variability. The evoked compound action potential (ECAP), 
a biopotential generated by the synchronous activation of dorsal column fibers, is indicative 
of the VTA resulting from the stimulation pulse. The ECAP may be utilized as a control 
signal in CL SCS systems to adjust stimulation parameters to reduce variability in the ECAP, 
and in turn, variability in the VTA. While investigational CL SCS systems with ECAP 
sensing have so far focused solely on managing paresthesia-based SCS, such systems must 
also incorporate the stimulation approaches that now define the contemporary clinical 
practice of SCS. Accordingly, we describe here a flexible, next-generation framework for 
neural responsive SCS that blends science-based methodologies for pain management with 
real-time CL control for biophysical variation. We conclude with a clinical example of such 
a system and the associated performance characteristics. 
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Spinal Cord Stimulation: Established Intervention 
and Emerging Innovations
Development of spinal cord stimulation (SCS) as a pain therapy over the last half- 
century has been characterized by dramatic innovative shifts. In its earliest iterations, 
SCS used one to four epidural electrodes1–3 and the implanted technology was powered 
by a bulky, externally worn radiofrequency controller.4 In the early 1980s, pulse gen-
erators became fully implantable with wireless handheld controllers.5 Improvements 
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such as rechargeable battery technology and computer- 
controlled programming soon followed,6,7 providing patients 
with previously impossible options for using high-energy 
stimulation programs and creating nuanced paresthesia cover-
age. As compared to open loop (OL) systems where the 
patient or clinician is responsible for all parameter changes, 
closed loop (CL) systems were introduced that automatically 
controlled stimulator settings based on sensor inputs.8,9 User 
acceptability grew and SCS established a position well within 
the mainstream options for chronic pain management.

From these foundations, SCS manufacturers expanded 
their treatment portfolios to include new waveforms, neuro-
logical targets, and device sizes and shapes.10–14 Knowledge 
about SCS mechanisms of action have now extended far 
beyond the traditional gate control theory15 to include an 
appreciation for incredibly complex control involving mole-
cular systems, cell types, metabolic/systemic processes, and 
neural pathway activation (eg,15–21). Contemporary therapy 
paradigms leverage a mechanistic understanding of these 
pathways and deliver multiple stimulation modalities to 
optimize clinical outcomes (eg, the concurrent application 
of multiple stimulation parameters within programs 

characterizing differential target multiplexed (DTM) SCS 
(Medtronic plc), depicted in Figure 1).22–24

As such, SCS is now situated at the confluence of both the 
technical and clinical advancements that have defined the 
field, particularly in the last decade. In this report, we provide 
perspective on a new direction for spinal cord stimulation that 
unites the latest therapeutic paradigms with one of the newer 
SCS technologies available—CL control using the spinal 
evoked compound action potential (ECAP) as a feedback 
control variable. We discuss exemplary data and potential 
performance measures for such systems and describe future 
opportunities as this field continues to evolve and expand.

The Evoked Compound Action 
Potential
ECAPs are the electrophysiological recordings of the collec-
tive voltage change in the extracellular matrix surrounding 
bundles of axons that are simultaneously activated by an 
electrical pulse delivered by an electrode. The recording 
electrodes used to detect ECAPs are typically stationary 
and located some distance from the stimulating electrodes; 
they detect the axons’ action potentials as they proceed 

Figure 1 An implanted spinal cord stimulation system with a lead positioned in the epidural space is used to deliver multiplexed stimulation patterns (a fixed amplitude, low 
frequency program and a variable amplitude, high frequency program) to differential targets (electrodes 2 and 4) on the dorsal columns of the spinal cord.
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either orthodromically or antidromically from the site of 
stimulation. Clinically, ECAP recordings have been made, 
among other locations, at muscles,25 peripheral nerves,26 

cochlear nerves,27 and the spinal cord.28

Displayed on an oscilloscope, the spinal ECAP has 
a typically triphasic shape, with an initial positive voltage 
peak (termed P1, occasionally observed) followed by 
a negative deflection (N1) and a second positive peak 
(P2) (Figure 2), and are strongly influenced by the con-
tribution of large-diameter fibers.29 The amplitude of the 
ECAP—defined here as the differential voltage between 
the N1 and P2 features of the ECAP—is indicative of the 
presumed spinal volume of tissue activation (VTA) elicited 
with the stimulation.29,30 Although a volumetric measure, 
VTA is often conceptualized in cross-section. The VTA in 
the dorsal columns contains ascending dorsal column 
fibers. A small VTA in the dorsal columns of the spinal 
cord would presumably be indicated by a small number of 

individual axons that are recruited to contribute to the 
small ECAP; conversely, a large VTA would be repre-
sented by a larger number of individual axons and 
a larger ECAP. While a large VTA elicited with dorsal 
column stimulation may directly result in nociceptive phe-
nomena such as lateral root stimulation, it is important to 
remember that the ECAP itself is not a biomarker of pain.

The recording electrodes also detect stimulation artifacts, 
observed as high-amplitude spikes caused by the stimulation 
pulses themselves. Stimulation artifacts occur at the same 
time as the onset of the ECAP but are only noise—not part of 
the ECAP itself. Depending on its magnitude (amplitude and 
duration), the artifact may obscure the relatively subtle 
ECAP signal. The effect of the artifact can be lessened by 
ensuring sufficient spacing between the stimulating and 
recording electrodes, so that—based on the conduction velo-
city of the recruited fibers—the ECAP arrives later than the 
artifact. Another way to limit contamination of the ECAP 
signal by stimulation artifact is via the use of relatively short- 
pulse widths that result in narrow artifacts.30

Additionally, stimulation artifact suppression schemes— 
such as high-pass filtering and template correlation approaches 
—have been developed to limit the extent of artifact contam-
ination on the ECAP estimate. This is a critically important 
step toward being able to interpret ECAPs and use them for 
neurophysiological applications. If artifact processing is inade-
quate, it could lead to the artifact being erroneously classified 
as “true” neural response. This may have clinically meaningful 
consequences for the follow-on functions that depend on accu-
rate ECAP measurement, such as CL SCS systems that use the 
ECAP as a feedback control variable to inform stimulation 
adjustments.31

Compensating for Motion: 
Closed-Loop Control 
Considerations for SCS
The clinical need for CL SCS is motivated by variability in 
the spacing between the spinal cord and the epidurally 
located SCS leads based on the patient’s position or move-
ment. For example, this spacing changes by 2.2 mm on 
average for supine vs prone positioning due to the effects 
of gravity on the spinal cord.32 Changes in posture for 
a person with an indwelling SCS system therefore result in 
changes in the effective distance between the leads and the 
target tissue. Assuming that the amplitude of stimulation is 
held constant, this results in a larger or smaller VTA in the 
dorsal spinal cord. All SCS therapies—regardless of the 

Figure 2 Segment of spinal cord with stimulation applied to the dorsal columns 
one end of a lead, with the resultant evoked compound action potential (ECAP) and 
associated artifact measured on the opposite end. N1 and P2 refer to the first 
trough and second peak, respectively, of the ECAP.
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specific therapeutic approach employed—are susceptible 
to this variability in VTA with lead motion. In conjunction 
with selecting the optimal dose, consistent dosing—that is, 
maintaining a consistent VTA throughout therapy—is cri-
tical to optimizing therapeutic outcomes.33

The complexity in treating ambulatory patients with 
SCS is illustrated by the fact that the amount of energy 
required to achieve comfortable SCS treatment while 
standing, sitting down, lying down, and walking is mark-
edly different.34,35 Other movements, such as bending at 
the waist, or stretching the limbs, may likewise initiate 
such changes in lead vs spinal cord positioning. Because 
changes in stimulation intensity can be uncomfortable, 
patients manually adjust the amplitude of their devices. 
This has long been a complaint for the SCS intervention.

Posture-responsive stimulation was the first robust tech-
nology to address this problem. An on-board accelerometer 
detected the patient’s position or movement and used CL 
feedback to automatically increase or decrease the amplitude 
of stimulation accordingly. When used in permanently 
implanted subjects in a 6-week crossover trial, subjects 
reported that PRS trended toward better pain relief than 
conventional SCS (in which all changes in amplitude were 
manual). With posture-responsive stimulation, subjects 
manually adjusted their stimulation an average of 18.2 times 
per day in addition to the automatic adjustments, which was 
41% fewer button-presses than when using conventional 
SCS.9 Similarly, better pain relief and higher satisfaction for 
posture-responsive stimulation compared to conventional 
SCS have been reported in large retrospective comparative 
trials after 3 months (n=96)36 and 24 months (n=187).37

Accelerometer-based CL feedback is a robust tool for 
automatically adjusting stimulation to compensate for 
changes in the spacing between SCS leads and the spinal 
cord based on body positions. In some instances, changes 
in this spacing may not be solely attributable to postural 
variation; for example, cord motion may occur with 
coughs/sneezes or in response to subtle but ongoing move-
ments like heartbeat or breathing. Posture-responsive sti-
mulation, then, may be insensitive to these factors. A more 
nuanced option may be needed.

The Spinal ECAP as a Closed-Loop, 
Feedback Control Variable
Recognizing the clinical benefits realized with posture- 
responsive stimulation, quantitative sensors for SCS have 
been extended from accelerometers in the implanted 

stimulator to allow CL control via electrical measurement 
from the spinal cord itself.38,39 Here, spinal ECAPs are 
measured with every stimulation pulse and subsequently 
processed by a sophisticated algorithm in the implanted 
stimulator. If stimulation is delivered at 50 Hz, for 
instance, ECAPs are measured every 20 msec; each mea-
sured ECAP provides quantitative insight into the degree 
and type of coupling between the stimulation signal and 
the spinal cord. SCS systems can leverage the rapid, 
repeated assessment of neural activation afforded by the 
ECAP as part of a highly responsive control system. CL 
SCS systems incorporating ECAPs as a feedback control 
variable offer a potential benefit over posture-responsive 
stimulation alone for conditions that result in an abrupt 
change in electrode-tissue spacing but no associated 
change in posture (such as a sneeze).

The interdependencies between lead motion, stimula-
tion amplitude, the ECAP, and the VTA for both OL and 
CL SCS while a patient coughs are illustrated in Figure 3. 
As shown in this figure, the change in intrathoracic pres-
sure resulting from the cough leads to a transient decrease 
in the spacing between the lead and the spinal cord. For 
the OL case (Figure 3A), the decreased spacing results in 
two effects. The first is an increase in the VTA, and 
the second is a spike in the ECAP amplitude as more 
signal generating fibers are activated by the stimulation. 
Patients may perceive this effect as an uncomfortable 
surge in stimulation intensity, or otherwise subopti-
mal SCS.

For the CL case (Figure 3B), the growing ECAP is 
sensed by the stimulator and interpreted as a control signal 
to decrease the stimulation amplitude. The decreased sti-
mulation amplitude compensates for the decreased spacing 
between the lead and the spinal cord, and results in 
a controlled VTA and ECAP amplitude. For the patient, 
this may be perceived as an even perception of stimulation 
(if applicable) with optimized delivery of the SCS dose.

Moving Beyond Controlled 
Paresthesia
The approach employed by some investigational CL SCS 
systems involves adapting the stimulation amplitude of 
a patient’s single, low-frequency program to maintain the 
ECAP within a paresthesia window.38 The lower bound of 
this window is the ECAP amplitude associated with the 
lowest stimulation amplitude that elicits perceptible par-
esthesia. The upper limit is the ECAP amplitude associated 
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with the highest stimulation the patient can maximally 
tolerate. This intervention necessitates the use of an SCS 
waveform that always incorporates perceptible paresthesia. 
Mechanistically, the neural circuits implicated with this 
approach are those of the well-known gate theory of pain, 
detailed over a half-century ago.15 As discussed in the 
Spinal Cord Stimulation: Established Intervention and 
Emerging Innovations section, however, the science of neu-
romodulation for pain control has advanced beyond the gate 
theory that simply provides paresthesia-heavy stimulation 
for the patient. In order to provide sophisticated CL SCS 
that is also clinically relevant, the ECAP as a feedback 
control variable must also be incorporated with the contem-
porary stimulation paradigms that are now foundational to 
the practice of SCS.

A framework that supports concurrent sensing of 
ECAPs and associated closed-loop control with modern 
neuromodulation paradigms is shown in Figure 4. This 
figure illustrates a next-generation approach to CL SCS 

using ECAPs, in which multiple signals comprised differ-
ent parameters or frequencies are delivered in a time- 
interleaved manner at different electrodes on the same 
lead. Potentially, more than two programs could be used.

Program #1 in Figure 4 is a low-frequency signal 
delivered by stimulating electrodes at one end of the 
lead. The ECAPs elicited by Program #1 are sensed by 
recording electrodes at the other end of the lead. This 
program is used as a “range-finder” to continuously assess 
the extent and type of neural activation via the ECAP. 
Additionally, Program #1 may also serve as an important 
component of the patient’s overall SCS therapy. 
Characteristics of the ECAP (such as the ECAP amplitude) 
are compared versus a target at every pulse. The difference 
between the ECAP and the target are used as part of 
a feedback loop to adjust subsequent stimulation pulses 
(Figure 4A). Changes can be made to a stimulation para-
meter (such as amplitude or frequency) to approximate 
a consistent VTA or consistent experience of therapy. In 

Figure 3 When the patient coughs, the spinal cord stimulation leads move closer to the spinal cord. This is detected by the spinal sensors as an increase in evoked 
compound action potential (ECAP) amplitude. In the open-loop configuration (A), the stimulation parameters are fixed; as such, the ECAP and volume of tissue activated 
(VTA, the blue area surrounding the electrodes) grows with the electrode-cord spacing decrease. In the closed-loop configuration (B), the system senses the increasing 
ECAP and automatically decreases the stimulation amplitude to maintain a constant VTA and ECAP amplitude.
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some instances, no ECAP may be the desired state, such as 
when sub-perception stimulation is the therapeutic 
intent.40 In that instance, the system can be configured to 
reduce stimulation amplitudes as soon as ECAPs corre-
sponding to the patient’s perceptual threshold are detected. 
Controlling stimulation in this manner lends itself to 
a system that does not rely on the continuous presence of 
ECAPs with associated paresthesia but rather on the pre-
vention of them to optimize the target subthreshold stimu-
lation parameters.

Program #2 in Figure 4 is delivered by different elec-
trodes than that used for Program #1 or used for recording 
ECAPs. Program #2 may also use different waveforms 

than Program #1. The stimuli of Program #2 are time- 
interleaved between the pulses of Program #1. The intent 
of Program #2 is to effect outcomes that are difficult or not 
possible with Program #1 alone, such as modulation of 
pain relevant biochemical pathways,17 neural inhibition 
with high-frequency stimulation,41 or bilateral delivery of 
the SCS.42

The neural response to Program #2 is not sensed; this is 
because the characteristics of Program #2 may be unsuited 
for eliciting an ECAP or recording an ECAP unencum-
bered by artifact. This is particularly true when high SCS 
frequencies, low amplitudes, or long pulse widths are used 
as applicable for optimal pain relief. Even so, Program #2 

Figure 4 Evoked compound action potential (ECAP) sensing in response to each pulse from Program #1 allows for closed-loop control of both Program #1 and #2, as 
governed by the feedback loop in (A). Multiple “therapy frames” (stimulation patterns with a common color) are shown in (B). The ECAP elicited from the pulse in Program 
#1 for one therapy frame informs the characteristics of the subsequent frame; this framework enables frame-by-frame volume of tissue activation control with multiple 
waveform patterns.
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parameters can still be under CL control by simply yoking 
them to the same ECAP-based feedback loop that adjusts 
Program #1. This way, where there is a detectable change 
in Program #1’s ECAPs, adjustments can be made in 
amplitude, frequency, or pulse width of both Program #1 
and Program #2. Adjustments can be scaled in 
a ratiometric fashion, depending on the relationship 
between the two programs. The combination of stimuli 
comprising Program #2 and preceding stimulus from 
Program #1 are referred to as a “therapy frame.”

As an example, we consider a Program #1 that consists of 
a 40 Hz, 200 µs pulse width, 4 mA waveform delivered to 
electrodes 0 and 1 (E0/E1). The ECAPs elicited from this 
waveform are measured antidromically on E6/E7. 
Concurrent Program #2 consists of a cluster of 5 pulses at 
500 Hz, 1 msec wide, and 2 mA in amplitude, delivered on 
E3/E4. This cluster, which is interleaved between the stimula-
tion pulses of Program #1, is delivered outside of the “sense 
window” in Figure 4 to not disrupt the ability to resolve the 
ECAPs elicited with Program #1. If the patient coughs, the 
system would detect that the ECAPs elicited with Program #1 
get larger. This means that the VTA is increasing because of 
a decrease in the electrode-tissue spacing. Without adjustment, 
the patient would experience this as a surge in stimulation 
intensity or otherwise sub-optimal therapy. Instead, the CL 
SCS compensates by reducing stimulation intensity. Because 
the stimulation amplitude ratio between Program #1 and 
Program #2 is 2:1 (4 mA vs 2 mA), Program #1 is decreased 
by 1 mA and Program #2 is decreased by 0.5 mA. If needed, 
adjustments can be made as frequently as pulses occur in 
Program #1, because the characteristics of the resultant 
ECAP informs the parameters for the next therapy frame. In 
concept, this approach could be applied to therapy frames that 
use multiple types of waveforms (eg, envelope-modulated, 
clustered, high-frequency), or that periodically switch between 
them.

Accelerometer- and ECAP-based CL control of SCS sys-
tems can be complementary and may be amenable to simulta-
neous deployment in the same device. As mentioned, ECAP 
sensing may provide nuanced or high-resolution control above 
and beyond that possible with accelerometer-based systems. 
Conversely, in some instances, it may not be possible to fully 
use ECAP control due to anatomy (eg, spinal canal size, CSF 
thickness) or lead placement. In these cases, accelerometer- 
based control would still be effective. Moreover, the two may 
work additively, for instance by scaling the ECAP target based 
on body position.43 Thus, the two approaches are not mutually 
exclusive but instead may readily integrate.

In the Clinic: Closed-Loop, 
Differential Target, Multiplexed SCS
Using CL DTM-SCS as a technical exemplar, the performance 
of the approach described above was evaluated in the clinic as 
part of the ECHO-MDT study.44 This study was 
a nonsignificant risk feasibility trial assessing the effects of 
stimulation parameters, electrode choice, activity, and proces-
sing methods on CL SCS control. All human clinical work for 
this multi-site, US-based study was approved by Western 
Institutional Review Board (WIRB #20192532) and was con-
ducted in accordance with the Declaration of Helsinki. We 
obtained written informed consent from each subject.

In this study, we tested ambulatory human subjects with 
a custom, investigational research system capable of delivering 
SCS, recording ECAPs, and adapting stimulation parameters 
on a frame-by-frame basis. The subjects were already under-
going commercial SCS trialing according to approved label-
ling; at the end of the commercial trial and prior to trial lead 
removal, we connected the subjects’ 8-contact percutaneous 
leads (model 977D260, Medtronic plc) to the research system. 
For each subject, we personalized the research system’s control 
parameters and stimulation intensity (charge per phase, or Q/ 
ph) of Program #1 (Figure 4A) to optimize comfort and miti-
gate variability in the presumptive VTA over a range of com-
mon motions of daily living, such as back arches, torso twists, 
and coughs. Here, the role of Program #1 is two-fold—both as 
the 50 Hz, “base” therapeutic component of DTM, as well as 
the SCS signal that elicits an ECAP. The stimulation intensity 
of Program #2 (Figure 4A), which serves as the higher- 
frequency multiplexed “priming” component of DTM, was 
set relative to Program #1. ECAPs were then measured while 
subjects performed motions of daily living while the research 
system was operated in both OL and CL modes.

In an exemplary subject, we delivered Program #1 at 
a nominal intensity of 0.54 µC/ph to electrodes 0 and 1. 
Program #2 was delivered at a nominal amplitude of 
0.15 µC/ph to electrodes 2 and 4 (a ratio of 3.6:1). The 
ECAP elicited with Program #1 was sensed on electrodes 6 
and 7; this measurement occurred every 20 msec following 
each pulse from Program #1. The CL controller was configured 
to rapidly reduce stimulation intensity ratiometrically for both 
programs when the sensed ECAP amplitude exceeds 20 µV, 
a value approximating the subject’s perceptual threshold. The 
system gradually raises stimulation intensity up to their nom-
inal settings when the measured ECAP is below this threshold.

Depicted in Figure 5 is the CL DTM-SCS system per-
formance; here, the subject is asked to perform motions of 
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daily living in both the OL (Figure 5, left) and CL (Figure 5, 
right) configurations. The top and bottom plots present 
ECAP amplitudes and the Program #1/Program #2 stimula-
tion intensity (expressed as Q/ph), respectively, as a function 
of time. For the OL case (Figure 5, left), the ECAP ampli-
tude (average ± S.D.) across the recording window is 15.5 
µV ± 10.7 µV. For the CL case (Figure 5, right), ECAP 
amplitudes are 9.8 µV ± 6.3 µV; by controlling stimulation 
intensity, ECAP variability is suppressed by 42% from 10.7 
µV to 6.3 µV. Mean ECAP amplitudes are suppressed in the 
CL case as the system actively reduces stimulation intensity 
when the sensed ECAP exceeds the programmed target. 
Both of these effects are illustrated further in Figure 6.

The approach described above highlights the utility of 
ECAP variability as a quantitative measure to compare, 
contrast, and optimize CL SCS systems. Clinicians using 
these systems can first select the stimulation targets and 
therapy waveforms best suited for their patients, and then 
assess ECAP variability in both OL and CL configurations 
to ensure the system is providing optimal dose control across 
motions of daily living. Employed in this fashion, the ECAP 
enables direct electrophysiologic insight and automatic con-
trol for all manner of contemporary SCS therapies.

Conclusion
The past decade has been marked by substantial advances in 
both SCS therapies and technologies. CL SCS with the 
ECAP as a feedback control variable holds promise as 
a critical technology for providing optimized dosing of 
these new therapies, personalized for each patient’s unique 
and ever-changing physiology. By providing a technological 

framework for incorporating ECAP-based control with the 
latest in SCS therapies, we anticipate the new direction for 
CL SCS elaborated in this report will define the standard of 
care for the SCS patients.
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