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Abstract

Human Immunodeficiency Virus 1 uses for entry into host cells a receptor (CD4) and one of two co-receptors (CCR5 or
CXCR4). Recently, a new class of antiretroviral drugs has entered clinical practice that specifically bind to the co-receptor
CCR5, and thus inhibit virus entry. Accurate prediction of the co-receptor used by the virus in the patient is important as it
allows for personalized selection of effective drugs and prognosis of disease progression. We have investigated whether it is
possible to predict co-receptor usage accurately by analyzing the amino acid sequence of the main determinant of co-
receptor usage, i.e., the third variable loop V3 of the gp120 protein. We developed a two-level machine learning approach
that in the first level considers two different properties important for protein-protein binding derived from structural
models of V3 and V3 sequences. The second level combines the two predictions of the first level. The two-level method
predicts usage of CXCR4 co-receptor for new V3 sequences within seconds, with an area under the ROC curve of
0.93760.004. Moreover, it is relatively robust against insertions and deletions, which frequently occur in V3. The approach
could help clinicians to find optimal personalized treatments, and it offers new insights into the molecular basis of co-
receptor usage. For instance, it quantifies the importance for co-receptor usage of a pocket that probably is responsible for
binding sulfated tyrosine.
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Introduction

Specific protein interactions are central to biological processes,

and the infection of cells with viruses is no exception there. In the

case of pathogenic viruses, such protein interactions are potential

targets for medical intervention. An example of particularly high

relevance is Human Immunodeficiency Virus 1 (HIV-1). HIV-1

enters human cells in a process that comprises several steps,

including the binding of the viral gp120 protein to the cellular

receptor protein CD4 and a co-receptor protein, usually one of the

two chemokine receptors CCR5 and CXCR4 [1]. The type of co-

receptor used by the virus, the so-called co-receptor tropism, has a

prognostic value, since patients with a CXCR4-tropic virus (‘‘X4

virus’’) progress faster to Acquired Immunodeficiency Syndrome

(AIDS) compared to patients with a CCR5-tropic virus (‘‘R5

virus’’) [2]. In addition to the purely X4- and R5-tropic viruses,

there are also ‘‘dual-tropic’’ strains, able to use both co-receptors

(‘‘R5X4 virus’’). Recently, the first drug (Maraviroc [3]) that binds

to CCR5, and thus inhibits productive binding of gp120, has been

approved by regulatory authorities in several countries. This has

made the determination of co-receptor tropism directly relevant to

anti-retroviral treatment, as CCR5-inhibitors are of course

inactive against X4 virus.

The standard way of determining co-receptor tropism is by cell-

based assays [4,5]. The main drawbacks of these assays are that

they are currently only carried out by a handful of specialized

laboratories worldwide, and that the overall procedure typically

takes several weeks. These impediments to the wide application of

entry inhibitors could be overcome by an approach similar to

genotypic drug resistance testing [6], where drug resistance of a

viral strain is inferred from comparison of mutational patterns

obtained from sequencing parts of the genome of that strain with

patterns of validated resistance mutations. This is a relatively fast

and cheap standard procedure established in many clinics.

At first glance, genotypic testing for co-receptor tropism seems

to be possible since the main molecular determinant of tropism is

known to be the third variable loop (V3) of the viral glycoprotein

gp120 [7], a peptide stretch of about 35 amino-acids with a

disulfide bridge connecting the terminal cysteins. Unfortunately, as

suggested by its name, V3 is notorious for its high sequence

variability [8] including also some variability in length, and this

has made it difficult to use it as a basis for genotypic co-receptor

tropism testing. Nevertheless, the relevance of the quest has

prompted many groups to develop models that link properties of

V3 to co-receptor tropism. The importance of electrostatics for co-

receptor tropism has been recognized early on, and the best-

known model, the so-called 11/25-rule, refers to charges of V3-

residues 11 and 25: if one of these is positive, then the virus is

CXCR4-tropic [9,10]. This rule has a specificity of more than 0.9

(few false positives), but only a low to moderate sensitivity (many

false negatives) of about 0.4–0.6, depending on the test data, which

is not satisfactory for routine clinical application. To improve

predictions from sequence, several groups have applied machine

learning methods, such as artificial neural networks [11], position

specific scoring matrices [12], decision trees, or support vector

machines [13]. Still, prediction accuracies fall short of what seems
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reasonable for regular clinical use [14]. It is unclear whether the

limited accuracies are the footprint of tropism-determinants

outside V3, or the consequence of model imperfections.

A milestone for the understanding of co-receptor tropism was

the X-ray structure of gp120 with the V3 loop in a biological

context [15]. This paved the way for the development of

prediction methods that use, in addition to V3 sequence, structural

information. To our knowledge, the first of these methods has

been that of Sander et al. [16], which was mainly based on

geometric distances of amino-acid pairs within the structure of V3.

Although our method, detailed in the following, relies on the same

experimental structure by Huang et al. [15], it differs from that of

Sander et al. in several respects, e.g. it deals with indels, and,

perhaps most crucially, it uses as descriptors properties that

directly determine interaction of V3 with the co-receptors. By the

latter we consider a seemingly trivial but fundamental fact that so

far has not been thoroughly exploited: although V3 is highly

variable, all X4-tropic V3 loops share one property, namely, they

preferentially have a physical binding interaction with CXCR4,

while R5-tropic V3 loops preferably interacts with CCR5. The

accuracy of the method makes it attractive as clinical tool for

patient tailored decisions on treatment with entry inhibitors, and it

suggests that co-receptor tropism can be explained almost

exclusively based on V3.

Results/Discussion

Overall Approach
We aim at a computational method that for a given amino acid

sequence of V3 predicts the tropism class ‘‘X4’’ (including dual-

tropics), or ‘‘R5’’. Predictions by the method should have an

accuracy close to 100%, and be robust against the high diversity of

V3, both in terms of sequence and length.

In agreement with experimental data, we based the method on

the assumption that the co-receptor tropism of HIV-1 is

determined by a preferential physical interaction between a V3

loop and one of the co-receptors. We further assumed that both

molecules interact while taking specific conformations. While little

is known about the conformations of the extracellular parts of the

co-receptors, there is a crystal structure available for a CCR5-

tropic V3 loop [15]. In the first step of our approach we therefore

modeled the conformations of V3 sequences of known tropism

using this crystal structure as a template (see Materials and

Methods). The modeled conformations enable the estimation of

spatially distributed physical quantities that contribute to differ-

ential interactions of the V3 loops with the respective co-receptor,

namely the values of the electrostatic potential wi(r),i~1, . . . ,n
around each V3 loop i (‘‘electrostatics hull’’). Using these sets of

wi(r) and the corresponding tropism ‘‘X4’’ and ‘‘R5’’, respectively,

we trained a first random forest [17] classifier. Tropism

classification of unseen V3 sequences is performed by automated

modeling of the new V3 conformation, computation of w(r), and

application of the previously trained random forest. The output is

a probability for the given V3 sequence to belong to the X4 class

(and not to the R5 class).

Although the first step explicitly takes into account conforma-

tion dependent physical properties that are of direct relevance to

the differential interaction with the two co-receptors, we do not

expect a perfect classifier from this first step for a number of

reasons. For example, it is unclear whether the crystal structure is

an appropriate template for all V3 sequences. In fact, V3 is known

to be flexible [18], and there may even be a conformational switch

between X4- and R5-tropic V3 loops [19]. Hence, we trained in a

second step another random forest classifier solely on V3

sequences and with the hydrophobicity scale of Kyte and Doolittle

[20] as descriptor. This descriptor has been derived by

amalgamating several properties of amino-acids into a single

scale, notably experimental results on solubility; it happens also to

map amino-acids of opposite electrical charges to different scale

values. Thus, this second classifier probably captures aspects of the

relation between sequence and tropism that are at least partially

complementary to those considered by the first classifier.

In the final step of our approach, we trained a third random

forest classifier with the two tropism class probabilities obtained

from the previous two steps as input. Thus, application of the

whole approach to an unseen V3 sequence includes application of

a first level set of two random forests considering conformational

and sequence properties, and a second level random forest using

the outcomes of the first level for the final classification.

Application of the classifier to a new V3 sequence to predict its

co-receptor tropism takes a few seconds on a state-of-the-art CPU

core. In the cross-validation, X4 sequences were detected with a

sensitivity of 0:81+0:01 (at a specificity of 0.97), and the area

under the ROC curve (AUC) was 0:937+0:004 (full set of

sequence and tropism data used for training and cross-validation is

provided as Supporting Information). The method is described in

greater detail in the following sections.

Electrostatics Hull
The findings outlined in the introduction are compatible with a

direct physical interaction between V3 and the respective co-

receptor. Specifically, the 11/25 rule and the association of V3 net

charge with tropism [9,10] point to the impact of electrostatics on

co-receptor tropism. In previous work, electrostatics has been

considered in several ways, including the mentioned 11/25 rule,

both alone and in combination with overall net charge [11], and

also more complex relations such as an 11/24/25 rule [21].

Although these phenomenological rules have been helpful in

guiding research, they are too simple to accurately capture the

underlying molecular process, which limits their predictive power.

To develop a more accurate model, we therefore first considered

the one conserved feature that defines each of the tropism classes,

Author Summary

Human Immunodeficiency Virus is the pathogen causing
the disease AIDS. A precondition for virus entry into
human cells is the contact of its glycoprotein gp120 with
two cellular proteins, a receptor and a co-receptor.
Depending on the viral strain, one specific co-receptor is
used. The type of co-receptor used is crucial for the
aggressiveness of the viral strain and the available
treatment options. Hence, it is important to identify which
co-receptor is used by the virus in an individual patient.
Since the genome of the virus in the patient can be readily
sequenced, and thus the composition of the viral proteins
be determined, it could be possible to predict co-receptor
usage from the viral genome sequences. To this end, we
developed a method that is motivated by the insight that
physical properties of gp120 will determine its specificity
for a co-receptor. The method learns a computational
model from structures and sequences of a crucial part of
gp120, and the corresponding experimentally measured
co-receptor usage. It then employs the model to predict
co-receptor usage for new sequences. The high accuracy
of the method could make it helpful for diagnosis and
suggests that the model captures the determinants of co-
receptor usage.

HIV Co-Receptor Tropism
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namely the preferential interaction of V3 with one of the co-receptors,

in particular their electrostatic interaction. Unfortunately, it is

currently not possible to compute electrostatic energies of

complexes of V3 and co-receptors since this necessitates

availability of the structures of these complexes, which are

unknown as yet. Thus, we resorted to the electrostatic potential

w(r) around the V3 loops as alternative descriptor. Fulfillment of

the following three assumptions is sufficient, though not necessary,

to justify the choice of w(r) as descriptor: first, electrostatics is

crucial for preferential interaction; second, the X-ray structure of

the V3 loop from Huang et al. [15] represents the typical

conformation of V3 loops, and conformations of all V3 loops can

be derived as homology models from this X-ray structure; third,

V3 loops bind to the co-receptors in the same binding mode. If

these conditions are satisfied, preferential interactions of V3 loops

with co-receptors can be mapped on differences in w(r), essentially

because different w(r) will in general lead to different interaction

energies
Ð

w(r)r(r)dr with unknown but constant co-receptor

charge densities r(r).

Technically, we restricted computation of w(r) to an ‘‘electro-

statics hull’’, a discretized surface of nhull~642 points in space

around the template V3 structure of Huang et al. [15]. The hull

should be, on one hand, wide enough to enclose all superimposed

V3 loops with a certain safety margin, and, on the other hand,

tight enough to reflect the differences of w(r) from different V3

loops. We obtained good results with a hull in a distance of 0.6 nm

to the solvent accessible surface of the template V3 structure.

Electrostatics-Based Classification
For each V3 sequence i~1, . . . ,nseq of known co-receptor

tropism in the training set, a homology model was generated based

on the template X-ray structure. Then the electrostatic potential

wi(rj) at the points rj of the electrostatics hull was computed by

solving the Poisson-Boltzmann Equation [22]. A random forest

[17] was trained using vectors wi(r1), . . . ,wi(rnhull
)ð Þ of length

nhull~642 as input, and as responses the corresponding measured

tropisms ti [ X4,R5f g, with i~1, . . . ,nseq. Using the leave-one-

patient-out scheme for cross-validation (see ‘‘Materials and

Methods’’) we arrived for this classifier at an AUC of

0:934+0:001 (‘‘ESP’’ in Fig. 1).

The analysis based on the electrostatics hull opens the possibility

of deriving a co-receptor specific pharmacophore pattern of V3

loops. Fig. 2 shows points of the electrostatics hull that are of

highest importance for the classification by the random forest, with

importance here defined as percentage decrease in accuracy in

classification if, for the respective point r of the electrostatics hull,

descriptor values wi(r) are randomly permuted [17]. As could be

expected, some important points cluster in the region around

residues 11, 24, and 25, though their dispersion makes it difficult to

associate them with single residues. The majority of these points

are located on the side to which most of the amino-acid side-chains

point in the crystal structure (see also Supporting Information file

Text S1). Interestingly, there is another important region on the

opposite side of the loop between residues 6 and 30 that may be

involved in the binding of sulfated tyrosines in the N-terminal

region of CCR5 [23].

In Fig. 2 important positions are colored according to average

electrostatic potential SwT in the R5, R5X4, and X4 classes. The

potential around R5-tropic V3 is generally lower as compared to

X4-tropic V3, in particular around residues 24 (in agreement with

the 11/24/25 rule) and 30. The coloring shows that R5X4-tropic

V3 usually have SwT values between those of R5 and X4, while at

a few patches they are chimeras of the mono-tropic classes. The

latter is true between residues 6 and 30 and close to residue 25

where R5X4 on average resembles R5, and around residue 11 and

close to residue 24 where R5X4 is more similar to X4.

Hydrophobicity-Based Classification
The classification based on the values of w on the electrostatics

hull may fail in some cases, e.g. because some V3 sequences could

prefer conformations not adequately represented by the X-ray

structure of Huang et al. [15] that forms the basis of the

electrostatics hull computation. We have therefore trained a

second random forest, basically using as input the Kyte-Doolittle

hydrophobicity values [20] of the residues along the V3 sequences,

and as response again the measured tropisms. The hydrophobicity

scale seemed suitable as it also captures physically motivated

properties that are relevant for binding.

An obstacle to sequence based learning was the high

sequence diversity in our dataset so that standard multiple

sequence alignment methods did not return clear profiles. This

may have been the reason why other groups used for

preparation of sequence data e.g. pairwise alignments to a

reference sequence [11], manual alignments [24], or combi-

nations of computational and manual multiple sequence

alignments [12]; in these methods insertions and deletions

were usually treated ad hoc, e.g. by removing insertions beyond

a sequence length of 35. We have sought a simple algorithm

that considers all sequences in a systematic and automated way

irrespective of sequence length.

This algorithm essentially leads to ‘‘normalized sequences’’ of

uniform length with interpolated hydrophobicity values as

descriptors. In detail, we normalized all sequences to the

maximum length of Nmax~38 occurring in the dataset. In the

normalization procedure each sequence of NƒNmax residues is

first arranged along a continuous pseudo-sequence axis with equal

distances of Nmax{1ð Þ= N{1ð Þ between all neighbor residues. If

the first residue is placed at pseudo-sequence position 1, this

equidistant arrangement brings the Nth residue to pseudo-

sequence position Nmax, while the residues in-between are in

general at non-integer positions. In the second step of the

normalization procedure, hydrophobicity values at the integer

positions 1, . . . ,Nmax of the normalized sequence are linearly

interpolated from the neighboring positions of the previously

determined pseudo-sequence and their respective Kyte-Doolittle

values, i.e. if the normalized sequence position i has two neighbors

in the pseudo-sequence at i{d{ and izdz with Kyte-Doolittle

values k{ and kz, respectively, then the hydrophobicity

descriptor value at normalized sequence position i is

k{zd{
: kz{k{ð Þ= dzzd{ð Þ. This normalization leads to

uniform sequence lengths with a consistent and automated

treatment of insertions and deletions.

Random forests trained on normalized sequences with interpo-

lated Kyte-Doolittle descriptors had an AUC of 0:930+0:001,

and thus about the same prediction performance in cross-

validation as that trained on the electrostatics hull (see Fig. 1).

Fig. 3 shows the distribution of the importance for the random

forest error of the normalized sequence positions 1 to 38, with

importance here defined as percentage decrease in accuracy in

classification if, at the respective normalized sequence position,

descriptor values are randomly permuted [17]. The highest peak

is in the vicinity of position 11, in agreement with the 11/25 rule

(note that in the sequence normalization procedure described

above most sequences are stretched towards the maximum

length of 38, and this stretch shifts position 11 of the amino-acid

sequence towards position 12 of the normalized sequence).

Position 25 does not stick out prominently; in fact, at position 25

of the normalized sequence there is a dip in a broad hill.

HIV Co-Receptor Tropism
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However, positions 22, 23, 24 and 27 in the normalized

sequence have sizable importance values. The next highest

peaks are around positions 8 and 29. These two positions are

close in space but on opposite sides of the V3 loop in the so-

called stem region (the central bulge of the V3 structure). As

mentioned above, there is evidence [23] that in R5 tropic virus

this region is involved in the binding of sulfated tyrosins near the

N-terminus of CCR5, and that X4 and R5 tropic viruses

interact differentially with these sulfated tyrosins [25].

Second-Level Classification
In Fig. 4 the class probabilities according to the two previously

described random forests are plotted for all V3 sequences in the

dataset. The figure suggests that the two computational models are

in part complementary, as the distribution of both tropism classes

extends into the upper left and lower right quarters. More

importantly for classification, the two sets of R5 and X4/R5X4

seem to be rather well separable in Fig. 4. Hence, in the spirit of

‘‘stacking’’ [26], we have trained another random forest for

Figure 1. Receiver Operating Characteristic (ROC) curves of the two-level random-forest classification approach. Solid curves:
averaged over ten-fold leave-one-patient-out cross-validation with random forests trained on interpolated Kyte-Doolittle hydrophobicity along
normalized sequences (green), on electrostatics hull (red), and on probability outputs of the two previous random forests, i.e. second-level
classification (blue); error-bars mark 95% confidence. Dashed curve: averages over ten out-of-bag predictions of second-level random forests on the
full training set of sequences, disregarding that several sequences may originate from same patient.
doi:10.1371/journal.pcbi.1000743.g001

HIV Co-Receptor Tropism

PLoS Computational Biology | www.ploscompbiol.org 4 April 2010 | Volume 6 | Issue 4 | e1000743



classification using the output probabilities of the electrostatics and

hydrophobicity random forests as inputs and again the measured

tropism classes as response.

This second-level classifier performed well (‘‘Combined’’ in

Fig. 1), with an AUC of 0:937+0:004 in leave-one-patient-out

cross-validation. The ROC curves in Fig. 4 have several

remarkable features. First, there is a striking difference between

the ROC curve from sequence-wise cross-validation (dashed) and

leave-one-patient-out cross-validation, with the first procedure

having a clearly higher performance (AUC~0:965+0:001). This

suggests that the algorithm perceptibly takes advantage of

similarities of sequences originating from the same patient.

Focusing therefore on the more conservatively estimated ROC

curve from patient-wise cross-validation, and on the region of low

false positive rates of, say, 0.1 and less, we find that both first-level

classifiers perform similarly well, and that in this region we also

have the strongest added value of the second-level classification of

the order of 10% in sensitivity.

The dataset used for training and cross-validation is composed

of sequences from several subtypes, and we could therefore study

the dependence of prediction performance of subtype. To this end

we set up a contingency table of subtypes (B, C, D, other) as rows,

and correct (T) and false (F) predictions in the cross-validation as

columns (for example see Supporting Information file Text S1).

We then carried out a x2-test with the null hypothesis of subtype-

independence of performance, as given by the Ts and Fs. This was

done for probability cutoffs between 0 and 1 in steps of 0.01 for the

assignment of a sequence to the tropism class X4. It turned out

that the p-value in all cases remained below 0:05, so that we

should accept at this significance level the alternative hypothesis:

performance depends on subtype. Specifically, the two-level

random forest performs somewhat better on subtypes C and D

than on subtype B (see also Supporting Information file Text S1).

Finally, one may ask whether classification with a single joint

descriptor set, encompassing both electrostatics and hydrophobic-

ity variables, could perform better than the two-level classification.

Theoretical and empirical results from other groups [27,28]

suggest that second-level learning on ensembles of classifiers

trained on different descriptor sets improves accuracy compared to

single-level learning. A possible advantage of single-level learning

with a joint descriptor set could be a consistent importance

analysis across all descriptors. However, it has recently been shown

that such an importance analysis in such a joint feature space is

biased, and thus may be difficult to interpret [29]. Despite these

caveats we tested classification with a single-level random forest

with joint descriptor set, and found a performance that was good,

but lower than that of the two-level approach; e.g. using the

sequence-wise cross-validation the two-level approach had an

AUC of 0:965+0:001, while the single-level random forest

achieved an AUC of 0:960+0:002, which is significantly lower

(p-value of 2:10{8 according to Wilcoxon test).

Comparison with other Methods
For comparison with other methods we compiled an

independent test set of recently published data comprising 74

sequences of various subtypes as described in the last section of

‘‘Materials and Methods’’. These data are disjunct to the training

set of the two-level classifier. As the data are recent, it is plausible

that they were also not included in the training sets of the other

machine-learning methods, though we cannot rule out this

inclusion.

Apart from our two-level method, we selected for comparison

the following methods: 11/25 [9,10], 11/24/25 [21], geno2pheno

[30], and wetcat [13], i.e. two simple rule-based and two machine-

learning methods, the latter two via their respective web-interfaces.

Since wetcat did not allow for cutoff changes, we took the

specificity of 0.98, resulting from the application of wetcat to the

independent test set, as reference specificity. We computed the

sensitivity of the two-level approach at this specificity. Choosing a

false positive rate of 1% as input parameter for geno2pheno

fortunately resulted also in a specificity of 0.98, so that the

sensitivities of all three machine learning methods could be

compared at the same specificity. Tab. 1 shows that the two-level

approach gives a higher sensitivity at this specificity than

geno2pheno and wetcat. For comparison with the two rule-based

methods we computed the sensitivities of the two-level approach at

the specificities of these methods. Tab. 1 shows that the two-level

approach has a higher sensitivity than the rule-based methods at

Figure 2. 5% most important positions on electrostatics hull for tropism classification by electrostatics based random forest. The
backbone of the template V3 conformation [15] is shown as tube with Ca atoms marked by small beads and some residues numbered for orientation,
starting with the N-terminal Cys as residue 1. Points are colored according to the mean electrostatic potential SwT (unit kB

:300K=e) in the respective
tropism class (red, SwTƒ{2:5; light red, {2:5vSwTƒ{0:5; white, {0:5vSwTƒ0:5; light blue, 0:5vSwTƒ2:5; blue, 2:5vSwT).
doi:10.1371/journal.pcbi.1000743.g002

HIV Co-Receptor Tropism
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their respective specificity, though the two simple rules do

surprisingly well.

The numbers in Tab. 1 should not be over-interpreted as the

size of the test dataset is rather limited. For instance, on the much

larger dataset used for patient-wise cross-validation of the two-level

approach (provided as Supporting Information), the sensitivity of

that approach was 0.762 at a specificity of 0.98, compared to the

sensitivity of 0.68 on the test dataset reported in Tab.1.

Conversely, the sensitivity of the 11/25 rule decreases as we go

from the smaller test set to the larger set from 0.71 (specificity 0.95)

to 0.53 (specificity 0.97).

Conclusions and Outlook
The high prediction performance suggests that tropism of the

investigated sequences can be attributed almost exclusively to

properties of V3, and that determinants outside V3 [31,32] may

be rare. Still, there remain a few instances of V3 sequences that

were misclassified after second-level learning. For instance, there

Figure 3. Importance of positions of normalized V3 sequence in random forest classification with Kyte-Doolittle descriptor [20]. The
higher the peak at the respective position, the more important this position for correct classification of sequences with respect to co-receptor
tropism. The most important region is around normalized sequence position 12, in agreement with the 11/25 rule. The second most important region
around position 8 could be involved in binding of sulfated tyrosine on CCR5 [23]. Along the top axis, reference sequence HXB2 before normalization
is given for orientation.
doi:10.1371/journal.pcbi.1000743.g003

HIV Co-Receptor Tropism
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are X4 and R5X4 tropic sequences in the lower left corner of

Fig. 4, i.e. both first-level classifiers, and therefore also the second-

level classifier, are almost certain to see a R5 sequence, while the

experimentally determined class is X4/R5X4. It is unclear

whether these remaining discrepancies are due to deficiencies of

our approach, tropism determinants outside the V3 loop, or

experimental errors.

Further points have to be considered in view of a clinical

application. First, most data for genotypic testing currently comes

from bulk sequencing of blood samples that in general can contain

mixtures of X4 and R5 virus. Since our method in its described

form is intended for clonal sequences, the predictive performance

on bulk sequencing data will be lower. Fortunately, due to the

current development of ‘‘deep’’ sequencing [33], more and more

clonal data will become available. Second, although sequences

from several subtypes were present in the training set, and a first

analysis of the influence of subtype was encouraging, it cannot be

excluded that the performance will drop if the method is applied to

subtypes that were not present in the learning set. In such cases,

the method should possibly be re-trained and tested anew. Third,

we have already mentioned above the occurrence of non-V3

determinants of co-receptor tropism as a possible source of errors.

Figure 4. X4 class probabilities for sequences as predicted by the two first-level random forests. Vertical and horizontal axis give
probabilities from electrostatics and hydrophobicity based random forests, respectively. These data points are the input for the second-level learning.
Note that the sets of R5-tropic sequences (circles) and X4/R5X4-tropic (crosses) can be separated quite well in the plane spanned by the two
descriptors.
doi:10.1371/journal.pcbi.1000743.g004
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The frequency of such non-V3 determinants is not known, and it

could be even imagined that this frequency may change over time

due to a wider administration of entry inhibitors.

The presented method is based on training data comprising

sequences, protein structures, and outcomes of assays. This

mixture of data is available also for other cases of biological or

medical interest. For instance, it would be interesting to apply the

method to influenza, where structures and sequences of hemag-

glutinin and neuraminidase proteins responsible for contacts with

host cells are available, as well as many data from immunological

assays. An interesting question corresponding to prediction of co-

receptor tropism in HIV could be: Is an influenza virus with a

given set of protein sequences likely to infect bird, swine, or

human?

Materials and Methods

Sequences
For training and cross-validation all V3 sequences with tropism

information available from the Los Alamos HIV sequence

database (http://www.hiv.lanl.gov/) were retrieved. Sequences

were excluded from the analysis if they occurred with contradic-

tory tropism annotation in the database, if they contained non-

canonical amino-acid symbols, or if sequences were shorter than

30 residues. Duplicated sequences were included only once. R5X4

tropic viruses of non-clonal nature were excluded to avoid possible

discordance between genotyped sequence and sequence effectively

used in the phenotypical assay. These criteria led to 1151 R5

sequences, 166 X4 sequences, and 34 R5X4 sequences. 284 of

these sequences contained indels (17% of R5, 51% of X4, 10% of

R5X4). Most of the sequences came from subtypes B (619 R5, 81

X4/R5X4), C (218 R5, 14 X4/R5X4), and D (75 R5, 51 X4/

R5X4), with the rest (239 R5, 54 X4/R5X4) spread over many

different subtypes. In training and cross-validation, R5X4

sequences were assigned to the X4 class. All sequences used for

training and cross-validation are provided as Supporting Infor-

mation files Dataset S1 (R5), Dataset S2 (X4), and Dataset S3

(R5X4). For comparison with other methods an independent test

set was collected (see below ‘‘Comparison with other methods’’).

Structures and electrostatics
V3 structures were modeled using Modeller [34], version 9.6.

First, V3 sequences were subjected to pairwise alignment with the

V3 sequence in the X-ray structure by Huang et al. [15]. Based on

this alignment the structures of the V3 loops were modeled with

refinement limited to optimization of side-chain positions and

accommodation of insertions and deletions, if present. The Ca root

mean square deviation of the modeled structures to the template

on average was 0.085 nm with a standard deviation of 0.018 nm.

The electrostatic potential around the modeled structures was

computed by solving the Poisson-Boltzmann equation with APBS

[22] on a cubic grid with a spacing of 0.3 nm. PDB2PQR [35] was

used to determine charges and radii. Values for the dielectric

constant inside and outside V3 were scanned. Best results in the

tropism prediction were achieved with a value of e~5 both inside

and outside V3. Ionic strength was set to zero.

For the training of the machine learning model below, the

values of the electrostatic potential on a hull around the modeled

V3 structures was taken as input. The hull was defined as the set of

grid points with minimum distance to the solvent accessible surface

of the template V3 loop (solvent radius 0.14 nm) of n~1,2,3,:::
times the grid spacing distance, i.e. we tested hulls with distances of

0.3 nm, 0.6 nm, 0.9 nm, etc. to the solvent accessible surface. Best

results were obtained with a distance of 0.6 nm.

Machine Learning
Random forest analyses were carried out with the package

randomForest [17] of R [36]. ROC curves were analyzed with

package ROCr [37]. Cross-validation was performed in two ways.

Firstly, the out-of-bag error, as provided by the random forest

package was computed for the training and cross-validation set of

sequences described above (alternatively, we have employed ten-

fold external cross-validation but with essentially the same results).

The out-of-bag error is estimated by repeatedly bootstrapping

datasets, generating training sets comprising two thirds of these

datasets, and predicting the remaining third [17]. Secondly, we

have assessed the influence of sequence clusters originating from

the same patient by a leave-one-patient-out procedure, where the

random forest was trained on sequences of all patients except one,

and the tropisms of the sequence or sequences of this patient were

predicted; this was repeated with sequences of each patient being

used as test set once. If not mentioned otherwise performance

results reported in ‘‘Results/Discussion’’ refer to the leave-one-

patient-out procedure.

AUC values of the form a+d given in the text are averages over

ten random forest trainings with +d marking a 95% confidence

interval estimated with a t-distribution.

Comparison with other Methods
For comparative testing with other methods we collected from

recent publications [38–41] an independent test set. All sequences

from these publications were considered that did comply with the

criteria applied to the training dataset described above, and,

additionally were not already contained in that training set. In this

way we obtained a test set of 74 sequences (43 R5, 31 X4). The test

set contained sequences of subtypes B [39], AE [40], D [41], and

possibly A, C, D, F, G, H, J, AE, AG, CRF11, CRF12_BF,

CRF14_BG, URF from Ref. [38]. Since the last reference did not

contain assignments of sequences to subtypes, and as we had to

exclude some of the sequences from that reference because they

were already contained in our training set, the subtypes

contributed by Ref. [38] are not clear.

For the application of the 11/25 and 11/24/25 rule, sequences

were pairwisely aligned with the reference V3 sequence of the

HXB2 strain using Modeller [34]. HXB2 was taken from the Los

Alamos sequence database.

Table 1. Comparison with other methods on independent
test set.

Method Sensitivity Specificity Accuracy

geno2pheno 0.31 0.98 0.70

wetcat 0.63 0.98 0.83

two-levela 0.68 0.98 0.86

11/25 0.71 0.95 0.85

two-levelb 0.73 0.95 0.86

11/24/25 0.75 0.83 0.80

two-levelc 0.81 0.83 0.82

Performance of several methods on the same test set of 74 sequences with
experimentally determined tropism. ‘‘Two-level’’ refers to the method described
in this paper which is used at three different specificities, (a) at specificity of
geno2pheno and wetcat, (b) at specificity of 11/25 rule, (c) at specificity of 11/
24/25 rule.
doi:10.1371/journal.pcbi.1000743.t001
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geno2pheno and wetcat (SVM) were used via their web-

interfaces at http://coreceptor.bioinf.mpi-inf.mpg.de/ and http://

genomiac2.ucsd.edu:8080/wetcat/, respectively.

Supporting Information

Text S1 Supporting information on: subtype dependence of

prediction performance, statistics of multiple sequences originating

from same patient, and location of important regions of

electrostatics hull.

Found at: doi:10.1371/journal.pcbi.1000743.s001 (0.69 MB PDF)

Dataset S1 All V3-loop sequences (FASTA-format) of R5-tropic

virus used in the study for training and cross-validation.

Found at: doi:10.1371/journal.pcbi.1000743.s002 (0.07 MB

TXT)

Dataset S2 All V3-loop sequences (FASTA-format) of X4-tropic

virus used in the study for training and cross-validation.

Found at: doi:10.1371/journal.pcbi.1000743.s003 (0.01 MB

TXT)

Dataset S3 All V3-loop sequences (FASTA-format) of R5X4-

tropic (i.e. dualtropic) virus used in the study for training and

cross-validation.

Found at: doi:10.1371/journal.pcbi.1000743.s004 (2.00 KB TXT)
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