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Here we examine the association between DNA methylation in circulating leukocytes and

blood lipids in a multi-ethnic sample of 16,265 subjects. We identify 148, 35, and 4 novel

associations among Europeans, African Americans, and Hispanics, respectively, and an

additional 186 novel associations through a trans-ethnic meta-analysis. We observe a high

concordance in the direction of effects across racial/ethnic groups, a high correlation of effect

sizes between high-density lipoprotein and triglycerides, a modest overlap of associations

with epigenome-wide association studies of other cardio-metabolic traits, and a largely non-

overlap with lipid loci identified to date through genome-wide association studies. Thirty

CpGs reached significance in at least 2 racial/ethnic groups including 7 that showed asso-

ciation with the expression of an annotated gene. CpGs annotated to CPT1A showed evidence

of being influenced by triglycerides levels. DNA methylation levels of circulating leukocytes

show robust and consistent association with blood lipid levels across multiple racial/ethnic

groups.
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Abnormal blood lipid levels are important risk factors for
various diseases including cardiovascular disease1,
diabetes2, renal disease3, Alzheimer’s disease4, and

cancers5,6. Several large-scale genome-wide7,8 and exome-wide
association studies of lipids9,10 have identified single nucleotide
polymorphisms (SNPs) involved in lipid metabolism. However,
the biological mechanisms behind abnormalities in lipid meta-
bolism are not fully understood.

Complex traits are a manifestation of not only genetic but also
environmental factors which in part express themselves through
the epigenetic modification of DNA in all cell types. Epigenetic
modifications can explain differences in a phenotype between
monozygotic twins11 as well as changes in a phenotype within an
individual over time12. Epigenome-wide association studies
(EWAS) provide an opportunity to document differences in epi-
genetic marks between individuals through the quantification of
the degree of methylation at thousands of CpG sites across the
genome. To date, such studies have identified methylation sig-
natures associated with a number of cardiometabolic traits
including cigarette smoking13, BMI14, hepatic fat15, fasting insulin
or HOMA-IR16, incident type2 diabetes17, renal function18, blood
pressure19, and C-reactive protein20. In addition, several EWAS
identified CpGs significantly associated with blood lipid levels in
populations of European ancestry21–24. However, large-scale
multi-ethic studies to identify epigenetic determinants of blood
lipid levels are lacking25.

Here, we present a racial/ethnic groups specific meta-analysis of
15 EWAS of DNA from circulating white blood cells involving a
total 16,265 participants from 3 racial/ethnic groups to identify
CpGs with DNA methylation levels that are significantly associated
with blood lipid levels. We identify 187 racial/ethnic specific novel
CpG associations among Europeans, African Americans, and
Hispanics and an additional 186 novel association through a trans-
ethnic meta-analysis. To aid in the interpretation of our results, we
quantify the consistency of associations across racial/ethnic groups,
determine overlap between our findings and previously published

relevant genome wide and epigenome-wide association studies,
explore for the presence of cis-methylation quantitative trait loci
(cis-mQTL) and/or cis-expression quantitative trait methylation
(cis-eQTM) for CpG associations found to be significant in at least
2 racial/ethnic groups, and attempt to provide evidence on the
direction of these associations using bi-directional Mendelian
randomization.

Results
Study population. We analyzed 12 cohorts of Europeans (EA)
involving 11,114 participants, 7 cohorts of African Americans
(AA) involving 4,425 participants, and 2 cohorts of Hispanics
(HISP) involving 699 participants (Table 1, Supplementary
methods). The TwinsUK, WHI-BA23, and WHI-EMPC cohorts
were composed of female participants only while NAS was
composed of male participants only. The range of mean age, body
mass index (BMI), high-density lipoprotein (HDL) levels, low-
density lipoprotein (LDL) levels, and triglyceride (TG) levels was
42.7 to 76.0 year, 26.6 to 32.6 kg per m2, 45.5 to 59.3 mg per dl,
104.9 to 152.6 mg per dl, 74.1 to 168.5 mg per dl, respectively
(Table 1). The percentage of study participants taking any lipid
control medication at time of blood lipid measurement ranged
between 0% in the Amish to 44% in FHS.

EWAS stratified by racial/ethnic group. We measured DNA
methylation levels using the Illumina Infinium HumanMethyla-
tion 450 K Beadchip in peripheral blood leukocytes or whole
blood, except in GOLDN where CD4+ T cells exclusively were
used (Supplementary Data 1). We performed an EWAS on HDL,
LDL, and TG using four linear mixed effects models in each
cohort, stratified by racial/ethnic group and a random effects
meta-analysis26 with genomic control (GC) and Bonferroni cor-
rection for the number of probes tested (P < 1.09 × 10−7)
(Methods, Supplementary Table 1).

Table 1 Descriptive of the participated cohorts (N= 16,265).

Cohort N Age (year)
Mean ± SD

Female
Percent

BMI (kg/m2)
Mean ± SD

Percent on
Lipid meds

HDL (mg/dl)
Mean ± SD

LDL (mg/dl)
Mean ± SD

TG (mg/dl)
Mean ± SD

European (N= 11,114)
Amish 158 43.8 ± 13.2 54 27.8 ± 4.7 0 55.8 ± 14.9 139.5 ± 39.9 74.1 ± 39.4
BHS 676 42.8 ± 4.5 55 29.9 ± 6.7 12 45.5 ± 13.2 126.7 ± 34.2 142.4 ± 92.9
CHS 186 76.0 ± 5.0 55 27.1 ± 5.0 5 51.7 ± 13.5 117.1 ± 36.4 155.8 ± 82.0
FHS* 2,648 66.4 ± 8.9 54 28.3 ± 5.3 44 57.3 ± 18.0 104.6 ± 31.4 118.9 ± 69.8
GOLDN* 714 48.5 ± 15.9 50 28.5 ± 5.5 0 46.1 ± 13.0 123.8 ± 31.5 137.4 ± 85.8
KORA F4 1,651 61.0 ± 8.9 51 28.1 ± 4.8 16 56.5 ± 14.7 140.3 ± 35.3 129.9 ± 77.8
NAS 674 72.4 ± 6.8 0 28.0 ± 4.1 36 49.3 ± 12.9 120.1 ± 33.0 137.7 ± 84.0
PIVUS 963 70.1 ± 0.15 50 27.0 ± 4.3 16 58.6 ± 16.4 128.9 ± 33.9 112.6 ± 51.4
RS 724 59.9 ± 8.2 54 27.5 ± 4.8 26 54.3 ± 15.9 134.7 ± 37.6 131.5 ± 76.0
TwinsUK* 708 58.1 ± 9.3 100 26.6 ± 4.8 16 71.3 ± 17.8 123.9 ± 38.9 99.5 ± 52.1
WHI-BA23 940 68.3 ± 6.25 100 28.8 ± 5.9 14 51.0 ± 12.3 142.7 ± 37.6 154.0 ± 35.5
WHI-EMPC 1,072 64.7 ± 7.1 100 28.8 ± 5.8 10 59.2 ± 15.8 133.0 ± 34.1 158.6 ± 80.1
African (N= 4,452)
ARIC 1,877 56.5 ± 5.9 64 30.0 ± 6.2 8 53.4 ± 17.0 134.7 ± 38.8 112.1 ± 57.3
BHS 282 42.7 ± 4.7 61 32.6 ± 8.7 7 49.6 ± 14.5 120.8 ± 33.9 114.8 ± 76.9
CHS 189 73.0 ± 5.5 67 28.8 ± 5.0 4 59.3 ± 16.5 124.2 ± 34.7 114.6 ± 58.6
GENOA* 315 61.1 ± 7.6 73 31.0 ± 6.3 6 56.9 ± 17.4 125.2 ± 41.4 136.1 ± 63.6
HyperGEN 604 48.4 ± 11.2 67 32.5 ± 8.2 5 53.6 ± 15.0 122.6 ± 38.0 107.8 ± 62.5
WHI-BA23 652 62.8 ± 6.6 100 31.9 ± 6.8 17 54.8 ± 14.6 152.6 ± 43.8 122.6 ± 81.3
WHI-EMPC 533 62.7 ± 6.9 100 31.5 ± 6.1 10 58.1 ± 14.7 135.9 ± 37.9 119.6 ± 54.3
Hispanic (N= 699)
WHI-BA23 389 62.2 ± 6.9 100 29.6 ± 5.4 16 50.6 ± 13.2 142.7 ± 37.6 168.5 ± 95.6
WHI-EMPC 310 61.6 ± 6.2 100 29.6 ± 5.3 11 54.7 ± 12.9 128.8 ± 35.1 162.7 ± 77.1

*A family-based cohort; N Number of samples, SD Standard deviation, HDL high-density lipoprotein, LDL low-density lipoprotein, TG triglycerides.
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We identified 447, 25, and 496 CpGs for HDL, LDL, and TG,
respectively, among EA using the basic set of covariates (model 1
adjusted for age, sex, smoking, lipid medication, four SNP PCs,
estimated cell proportions, plate, row, and column of plate)
(Methods, Supplementary Data 2). When we further adjusted for
BMI (model 2 additionally adjusted for BMI), the numbers of
significant CpGs decreased substantially for HDL (146) and TG
(206) but increased modestly for LDL (30). Among AA, we
identified 34, 7, and 76 CpGs in model 1 for HDL, LDL, and TG,
respectively, and the numbers decreased to 9, 7, and 55 with a
further adjustment with BMI (model 2). For HISP, we identified
2, 0, and 6 CpGs in model 1 for HDL, LDL, and TG, respectively,
and the number decreased to 0 for HDL. Excluding participants
taking any lipid lowering medication decreased the sample size by
18% and decreased power but the effect estimates remained
similar (models 3 and 4 adjusted for the same set of covariates of
models 1 and 2, respectively, with the exception of adjustment for
the use of lipid medications, Methods). Among EA, we identified
74, 15, and 86 CpGs significantly associated (P < 1.09 × 10−7)
with HDL, LDL, and TG, respectively, using this most
conservative model 4 that excluded statin users and adjusted
for BMI (Fig. 1, Supplementary Data 2, Supplementary Fig. 1).
For AA, these numbers were 7, 5, and 43 and, for HISP, they were
2, 2, and 4 CpGs, respectively. Through trans-ethnic meta-
analyses of the same model, we additionally identified 49, 24, and
119 significant (P < 1.09 × 10−7) CpG-lipid level associations for
HDL, LDL, and TG, respectively, of which 46, 22, and 118 were
novel when compared to both our racial/ethnic specific analyses
and the literature.

Comparison of results across racial/ethnic groups. A majority
of significant CpG-lipid level associations in European population
did not reach statistical significance in other racial/ethnic groups.
For CpGs found to be significant in at least one racial/ethnic
group (model 4), we found a high rate of concordance (88 to
100%) in the direction of effect observed in Europeans versus that
observed in African Americans and, separately, Hispanics for all
three lipid fractions (Fig. 2). We found a high correlation between
effect sizes (Pearson correlation coefficient= 0.69 to 0.93) for
HDL and TG but not for LDL (−0.20 to 0.20). Lastly, regression
slopes between any 2 sets of betas were close to 1 for HDL (0.75,
1.03) and TG (0.68 to 1.12) but not for LDL (−0.28 to 0.26)
(Fig. 2). We calculated the correlations coefficients and estimated
regression slopes for a higher number of CpGs (122 CpGs with P
< 1.09 × 10−5) before and after natural log transformation to
further explore whether the differences in correlations and
regression slopes between LDL and HDL/TG could be a con-
sequence of having much smaller number of significant CpGs
and/or the use of a log transformed lipid measure. For
these analyses, we found both higher correlation of betas (0.21 to
0.49) and regression slopes (0.34 to 0.47) for LDL although still
not as high as those observed for HDL and TG (Supplementary
Fig. 2).

When comparing results across all 3 racial/ethnic groups, we
identified 4, 1, and 26 CpGs associated with HDL, LDL, and TG,
respectively, in more than one racial/ethnic group (Table 2). Of
these, 1 CpG, cg06500161, in ABCG1 was associated with both
HDL and TG in opposing directions. Consistent with our findings
for significant CpG-lipid trait associations overall, we found high
rate of concordance of the direction of the associations of the 30
CpGs across all 3 racial/ethnic group but variable effect sizes
(Supplementary Figs. 3-5). The 4 CpGs in the ABCG1, carnitine
palmitoyltransferase 1 A (CPT1A), sterol regulatory element
binding transcription factor 1 (SREBF1), and thioredoxin
interacting protein (TXNIP) genes identified in HISP for TG

were also significant in the EA and AA populations. We found
multiple CpGs to be significantly associated with TG levels
located within or near the phosphoglycerate dehydrogenase
(PHGDH), CPT1A, SREBF1, and ABCG1 genes. Twelve out of the
30 replicated CpGs significant in at least 2 racial/ethnic groups
have not been previously reported21–24 (Table 2).
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Overlap with prior related GWAS and EWAS. We examined
whether the CpGs identified in our lipid EWAS are located in or
near the genes implicated in previous lipid GWAS7,27,28. Among
EA, a total of 4 out of 106 genes had both CpGs and SNPs
significantly associated with a blood lipid: apolipoprotein A5
(APOA5), apolipoprotein B (APOB), myosin regulatory light
chain interacting protein (MYLIP), and PARP9 (Fig. 3). Among
AA, 4 out of 32 genes had been identified in both lipid EWAS
and GWAS: PARP9, Chromosome 7 Open Reading Frame 50
(C7orf50), ATP Binding Cassette Subfamily A Member 1
(ABCA1), and MYLIP. We further identified 192 CpG-SNP pairs
within 10Mbp at an additional 19 loci of which 30 pairs at 10 loci
were within 1Mbp (Supplementary Data 5).

Many of the CpGs identified in our lipid EWAS have been
previously identified in EWAS of BMI14, hepatic fat15, fasting
insulin or HOMA-IR16, incident type2 diabetes17, estimated
glomerular filtration rate (eGFR)18, blood pressure19, C-reactive
protein20, and/or cigarette smoking13 (Fig. 3, Supplementary
Table 2). About one half of the genes (33/192= 17% of CpGs)
identified in our BMI adjusted lipid EWAS have also been
implicated in previously published BMI EWAS14. There were also
twelve genes identified in more than two EWAS: ABCG1, CPT1A,
24-dehydrocholesterol reductase (DHCR24), PHGDH, phos-
phoethanolamine/phosphocholine phosphatase (PHOSPHO1),
seryl-tRNA synthetase (SARS), SKI proto-oncogene (SKI), solute
carrier family 1 member 5 (SLC1A5), solute carrier family 43
member 1 (SLC43A1), SLC7A11, SREBF1, and TXNIP. Among
EA, 37 out of 106 genes (39 out of 164 CpGs) have been identified
in EWAS of other phenotypes. There were 14 out of 32 genes (14
out of 54 CpGs) and 2 out of 6 genes (4 out of 8 CpGs) have been
identified in EWAS of other phenotypes for AA and HISP,
respectively.

Methylation quantitative trait loci analysis. We searched for
methylation quantitative trait loci (mQTL) influencing methyla-
tion levels of the 30 CpGs listed in Table 2. Five out of the
15 cohorts provided genetic data for this analysis including ARIC
(NAA= 1,717), GOLDN (NEA= 713), KORA (NEA= 1,379),
WHI-BA23 (NEA= 790, NAA= 540, and NHISP= 324), and
WHI-EMPC (NEA= 494, NAA= 424, and NHISP= 221). We
restricted our analysis to SNPs located within 25 kilobases up- or
downstream of the CpGs with a minor allele frequency (MAF) >
0.01 in each cohort and implemented a fixed effects meta-analysis
within each of the three racial/ethnic groups. A total of 11, 18,
and 5 CpGs had at least one significant mQTL in EA (number of

tests = 5549, Bonferroni corrected P= 9.01 × 10−6), AA (number
of tests=8316, Bonferroni corrected P= 6.01 × 10−6), and HISP
(number of tests=4,713, Bonferroni corrected P= 1.06 × 10−5),
respectively (Supplementary Data 3). We found 7 out of our 11
CpGs in EA to also be listed to have at least one mQTLs in the
mQTL DB (http://www.mqtldb.org/)29 (Supplementary Data 4).
For the 7 CpGs, 95% of the significant mQTL SNPs in mQTL DB
were also significant in our EA population and had consistent
direction of effect. Out of the 190 significant mQTLs (SNP-CpG
pairs) common to both our study and the mQTL DB, 51 (27%)
were found to be mQTLs in datasets spanning across the life
course in the mQTL DB including birth, childhood, adolescence,
pregnancy, and middle age.

Expression quantitative trait methylation analysis. The asso-
ciation between DNA methylation and gene expression was
investigated in the Framingham Heart Study (NEA= 4,278
including 2,726 offspring cohort participants and 1552 third
generation cohort participants)30. The DNA methylation levels of
7 out of the 30 CpGs listed in Table 2 were negatively associated
with the expression of their respective genes: phosphoglycerate
dehydrogenase (PHGDH) (cg14476101: P= 4.09 × 10−9), poly
(ADP-ribose) polymerase family member 9 (PARP9) (cg22930808
with a transcript Chr3:122398047–122449684: P= 5.58 × 10−10;
with a transcript Chr3:122246779–122283503: P= 3.27 × 10−6),
solute carrier family 7 member 11 (SLC7A11) (cg06690548: P=
3.34 × 10−12), CPT1A (cg09737197: P= 2.67 × 10−10; cg17058475:
P= 1.18 × 10−11), ABCG1 (cg07397296: P= 6.26 × 10−8;
cg06500161: P= 4.44 × 10−53). Three of these CpGs are in the 5′
UTR region while the remaining four are in the gene body. Aside
from one CpG in a CpG island, six were located in either the north
or south shore regions (Supplementary Table 3).

Mendelian randomization approach. We explored the causal
relationships between methylation and blood lipid levels for the 30
CpGs in EA (Table 2) using a bi-directional Mendelian Rando-
mization (MR) study design31,32. First, we used genetic risk scores
(GRS) for HDL, LDL, and TG constructed from established sus-
ceptibility loci for these phenotypes as instruments to examine the
relationship between blood lipids and methylation (Supplemen-
tary Table 4). We found the GRSs to be significantly associated
with their respective lipid levels in the 4 cohorts (GOLDN (NEA=
713), KORA (NEA= 1,379), WHI-BA23 (NEA= 790), and
WHI-EMPC (NEA= 494) participating in the MR follow-up
analysis (HDL: Pmeta= 1.86 × 10−37, LDL: Pmeta= 1.13 × 10−22,
TG: Pmeta= 1.13 × 10−8). Our Mendelian randomization analysis
suggested that the DNA methylation levels of three CpGs,
cg00574958 (P= 4.23 × 10−6), cg17058475 (P= 4.72 × 10−4), and
cg09737197 (P= 3.33 × 10−3), located in the 5′UTR region of the
CPT1A were influenced by blood TG levels (Supplementary
Table 5). Next, we investigated the effect of DNA methylation on
blood lipid levels. A total of 7 out of the 30 CpGs had at least one
significant mQTL with available GWAS results from the Global
Lipids Genetics Consortium results (Supplementary Table 6). We
implemented inverse-weighted MR method and MR-egger when
>2 mQTLs were available for a given CpG (3 CpGs out of 7).
None of the CpGs were significantly associated with lipid levels
using MR-egger.

Discussion
We report the first large-scale multi-ethnic epigenome-wide
association study (EWAS) of blood lipids. Our population specific
meta-analyses revealed 187 novel CpG-lipid trait associations and
identified a high concordance of the direction of effects across
racial/ethnic groups for all 3 lipid traits and a high correlation of

Fig. 1 Manhattan plots for the meta-analyses of the epigenome-wide
association studies. Manhattan plots for (a) high-density lipoprotein
(HDL), (b) low-density lipoprotein (LDL), and (c) triglycerides (TG) in
European (N= 11,114), African (N= 4,452), and Hispanic (N= 699)
populations. Results are plotted as negative log-transformed P values
(y-axis) across the genome (x-axis). Odd chromosomes are in green and
even chromosomes are in orange. The red horizontal line represents the
epigenome-wide significance threshold of 1.09 × 10−7. Linear mixed effects
models were implemented adjusting for age, sex (reference=male),
smoking variable (never/previous/current, reference= never), lipid
medication (Yes or No, reference=No), the top four principal components
from genotypes (SNPs), the proportion of 5 types of cells estimated with
the Houseman method (CD8 T lymphocytes, CD4 T lymphocytes, natural
killer cells, B cells, and monocytes), and random effects for plate, row, and
column, and BMI (model 4). The top CpGs of each chromosome were
annotated with a gene name (in blue font: identified in a racial/ethnic
group; red: identified in multiple racial/ethnic groups; bold: significantly
associated with multiple lipid measures).
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effects sizes for associations with HDL and TG. A majority of our
significant CpG-lipid associations do not implicate genes pre-
viously identified through GWAS of lipids7–10,27,28, but many of
our associations overlap with those identified in EWAS to date of
related cardiometabolic traits especially for TG and HDL14–19,33.
Thirty CpG-lipid trait associations were significant in at least 2
racial/ethnic groups with ~1/3 of these being novel. In subgroup
analyses, 19 significant CpGs also harbored mQTLs and 7 were
inversely associated with levels of expression of the annotated
gene. Lastly, our Mendelian randomization analyses suggested
that DNA methylation levels at one locus appeared to be influ-
enced by blood TG levels.

The numbers of statistically significant CpGs decreased dra-
matically for HDL and TG after adjusting for BMI. These findings
suggest that BMI serves as either a strong confounder or a strong
mediator of a large fraction of our CpG-lipid associations for
these traits. Even after adjusting for BMI, we found ~1/3 of CpGs
to be linked to BMI in other studies14. In addition to the potential
of residual confounding, we hypothesize that many CpGs may be
independently influenced by both BMI and blood lipid levels
(akin to how diet and exercise have an independent effect on
weight loss).

We found a relatively high overlap of findings from our study
with previous EWAS findings for cardiometabolic traits and a

Fig. 2 Scatter plots and regression lines of beta estimate pairs observed in two racial/ethnic groups for CpG-lipid trait associations. Plotted are betas
from CpGs found to be significant (P < 1.09 × 10−7) in one or more racial/ethnic group. Plots and lines are shown between Europeans (EA) and African
Americans (AA) (blue arrowheads/lines), Europeans (EA) and Hispanics (HA) (red triangles/lines), and African Americans (AA) and Hispanics (HA)
(green diamonds/lines) for (a) high-density lipoprotein (HDL), (b) low-density lipoprotein (LDL), and (c) triglycerides (TG). Numerical regression slope
and Pearson correlation coefficients are presented in the bottom right corner of each plot.
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relative paucity of overlap with lipid loci implicated through
GWAS. We hypothesize that the influence of important upstream
environmental determinants of the metabolic syndrome such as
diet and exercise may be responsible for these patterns although
substantial additional research is needed to prove this hypothesis
including studies measuring changes in epigenetic profiles of
multiple relevant cell types after dietary and physical activity
interventions.

We could not detect methylation QTLs (mQTLs) for many of
our 30 CpGs-lipid trait associations replicating across 2 racial/
ethnic groups. Among mQTLs identified, a majority were not
consistently associated with the CpG over the life course29.
Whether this observation reflects direct changes in methylation
levels of CpGs associated with lipid levels that occur over a life-
time of accumulated environmental exposures, such as diet and
exercise, remains unknown. Other environmental exposures or
time-dependent events leading to subtle changes in white blood
cell proportions may also be responsible for these observations.

We highlight 3 EWAS lipid loci uncovered through our meta-
analysis among the plethora of both novel and known findings.
First, we found a CpG to be associated with PARP9 among our
few LDL findings. PARP9 is homologous to PARP10 and both are
ADP-ribosyltransferases with 30% of their catalytic domains
being identical34,35. Both also have been previously identified as
either LDL or total cholesterol loci through GWAS28. Second, we
identified CpG associations in ABCG1 for both HDL and TG.
ABCG1 is a member of the superfamily of ATP-binding cassette
transporters that plays an important role in macrophage choles-
terol efflux. Notably, ABCA1, another member of this gene family,
has also been robustly linked to the control of HDL and TC levels
through GWAS36. We replicate the previously reported associa-
tion between ABCG1 methylation and ABCG1 expression37 and
note that expression levels of ABCG1 have also been found to be
positively correlated with obesity38. Lastly, the methylation status
of cg06500161 in ABCG1 is associated with an elevated risk of

developing type 2 diabetes39 while genetic variants mapped to this
locus are linked to atherosclerosis40,41. These constellations of
findings suggest that ABCG1may play a role in predisposing to or
mediating the effects of the metabolic syndrome. Third, we found
the methylation status of CpGs in CPT1A, a gene that initiates the
oxidation of long-chain fatty acids, to be influenced by blood
levels of TG through our MR analysis. The same CpG
(cg00574958) in CPT1A was also found to be influenced by blood
pressure levels in another EWAS19. In other human and animal
studies, DNA methylation levels of the CpGs in CPT1A have been
associated with CPT1A expression21, plasma adiponectin levels42,
the metabolic syndrome43, BMI14, hepatic fat15, and high fructose
consumption44,45. Collectively, these findings suggest that
methylation status of CPT1Amay mediate the downstream effects
of the metabolic syndrome.

The two major strengths of our study are its size and ethnic
diversity. These strengths allowed for improved power to detect
novel CpG-blood lipid trait associations and to robustly explore
the generalizability of the findings across multiple racial/ethnic
groups. Our study has limitations in other respects some of which
are common to all EWAS studies of blood. First, it remains
unclear whether epigenetic changes in blood cells serve as a good
surrogate of changes in the most relevant tissues controlling
blood lipid levels46. To establish a reliable surrogate tissue,
interindividual epigenetic differences must not only correlate
between blood and the tissue of interest but also exposures must
induce similar changes to both tissues46. Such evidence either
does not yet exist or is incomplete for most trait-exposure
combinations47–50. While circulating leucocytes are likely to exert
at least partial direct control over blood lipid levels51,52, other
relevant tissues/cells that we did not examine include hepatocytes,
adipocytes, and enterocytes. A second limitation common to all
EWAS of circulating leucocytes includes the potential for findings
to not be truly reflective of a chronic alteration of transcriptional
regulation from environmental perturbations but rather residual

Fig. 3 Venn diagram of genes identified through epigenome-wide association study of lipids and their overlap with other EWAS as well as genome-
wide association studies of lipids. Genes identified in the racial/ethnic specific (European, African, and Hispanic) stratified meta-analysis of CpG-lipid
associations involving either high-density lipoprotein (HDL), low-density lipoprotein (LDL), or triglycerides (TG) levels after adjusting for BMI and
excluding subjects on statins. Genes identified in more than one racial/ethnic population are in bold font. Genes identified in EWAS of related
cardiometabolic traits are marked with special characters: BMI (#), hepatic fat (*), fasting insulin or HOMA-IR ($), incident type2 diabetes (&), eGFR (^),
blood pressure (%), C-reactive protein (CRP) (@), and cigarette smoking (+). Genes identified in previous GWAS are underlined.
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confounding due to persistent cell subtype proportional hetero-
geneity despite the application of statistical deconvolution
techniques46,53,54. Lastly, the cross-sectional design of our study
makes it difficult to determine the directionality of our
associations54. We attempted to provide additional evidence of
directionality using Mendelian randomization techniques32, but
the power of our MR analyses was limited due to the lack of
availability of genetic data for many cohorts limiting sample size
combined with a lack of strong genetic instruments for many of
CpGs examined55. In addition, the known shared genetic back-
ground of HDL, LDL, and TG introduces the possibility of biases
due to pleiotropy in our MR analysis.

In conclusion, we identified 373 novel CpG-lipid traits asso-
ciations through the largest multi-ethnic EWAS to date. We
found a high concordance of the direction of effects for all 3 lipids
traits across racial/ethnic groups and a high correlation of effects
for HDL and TG with 30 CpGs—including 12 novel CpGs—
reaching stringent statistical significance in at least 2 racial/ethnic
groups. A large majority of implicated genes do not overlap with
lipid loci identified to date through GWAS although many loci
associated with HDL and TG in >2 racial/ethnic groups have been
associated with related cardio-metabolic traits in previous EWAS.
We provide some limited insights on mechanism of association
through our mQTL, eQTM, and MR analyses but additional
studies are needed before firm conclusions can be made on the
causality and mechanisms behind a large majority of the asso-
ciations we observed.

Methods
Study populations. A total of 15 cohorts (N= 16,265) from the epigenetics
working group in the Cohorts for Heart and Aging Research in Genomic Epide-
miology (CHARGE) consortium participated in this study. These included the Old
Order Amish (OOA), Atherosclerosis Risk in Communities (ARIC), Bogalusa
Heart Study (BHS), Cardiovascular Health Study (CHS), Framingham Heart Study
(FHS), Genetic Epidemiology Network of Arteriopathy (GENOA), Genetics of
Lipid Lowering Drugs and Diet Network (GOLDN), Hypertension Genetic Epi-
demiology Network (HyperGEN), Cooperative health research in the Region of
Augsburg (KORA), Normative Aging Study (NAS), Prospective Investigation of
Vascularity of Uppsala Elders Study (PIVUS), Rotterdam Study (RS), UK Adult
Twin Registry (TwinsUK), Women’s Health Initiative Broad Agency Announce-
ment 23 (WHI-BA23), and the Women’s Health Initiative Epigenetic Mechanisms
of PM-Mediated CVD (WHI-EMPC) cohorts. Four cohorts, BHS, CHS, WHI-
BA23, and WHI-EMPC, examined more than one racial/ethnic group. The total
number of cohorts in the European, African, and Hispanic study populations is 12
(N= 11,114), 9 (N= 4,452), and 2 (N= 699), respectively. The participating
cohorts are described in the Supplementary materials. All studies obtained written
informed consent from participants and were approved by local institutional
review boards and ethics committees.

Lipid measurements. High-density-lipoprotein (HDL, mg per dl) and triglycerides
(TG, mg per dl) were directly measured in blood samples taken from participants
after at least an 8 h fast. Low-density-lipoprotein (LDL, mg per dl) was inferred
using the Friedewald’s formula56 in all cohorts except for GOLDN, HyperGEN,
and KORA where LDL was measured directly. We did not infer LDL in subjects
with triglycerides >400 mg per dL and we excluded lipid measure from subjects
who did not fast for at least 8 h. We also excluded outliers as defined by >5 stan-
dard deviations from the mean of blood lipid in each cohort. To reduce skewness,
HDL and triglycerides were natural log-transformed.

DNA methylation measurement, QC, and normalization. DNA methylation was
produced by investigators from each cohort independently. Levels were measured
from peripheral blood leukocytes isolated from whole blood in all studies except
GOLDN where only CD4+ T cells were examined. The EZ DNA Methylation
Gold Kit (Zymo Research, Orange CA) was used for bisulfite conversion. The
Illumina® Infinium HumanMethylation450 BeadChip and the Illumina BeadX-
press reader were used to perform the methylation assays. Either the SWAN57

method in the minfi58 R package, the Beta Mixture Quantile method (BMIQ)59, the
DASEN method in the wateRmelon R package60, or the GenomeStudio® Methy-
lation Module was used for pre-processing and normalization of the data in each
cohort (Supplementary Data 1). For each CpG site, a beta-value was calculated
representing the percent methylation at that CpG site. We used an annotation file
provided on the Illumina website to annotate CpGs to genes. CpGs were annotated
to genes by Illumina using the following rules: those located within 1500 bp

upstream of transcription start site (TSS1500), TSS200, 5′UTR, 1st exon, gene body,
or 3′UTR of a gene were annotated to that gene. All other intergenic CpGs were not
annotated to a gene. To reduce technical batch effects, plate, row, and column
information were added as random effects in the association analyses. To reduce
confounding from cellular heterogeneity61, we estimated cell proportions using
Houseman’s method53 in each subject and used these proportions as covariates in
the association analyses.

Any single value with a detection p-value > 0.01 was set to missing. In each
cohort, we excluded probes with a detection p-value > 0.01 in greater than 5% of
samples. In addition, we excluded samples with a detection p-value > 0.01 in greater
than 5% of probes. To avoid spurious signals in DNA methylation data, we
excluded 29,233 CpGs that co-hybridize to alternate genomic sequences (highly
homologous to the intended targets)62.

Epigenome-wide association study. Epigenome-wide association analyses
(EWAS) were performed in each cohort stratified by racial/ethnic group (Eur-
opean, African, and Hispanic). For Model 1, a linear mixed effects model was used
to study the association between the DNA methylation level of a CpG (dependent
variable) and each of the lipid measures (independent variable; HDL, LDL, or TG),
adjusting for age, sex (reference=male), smoking variable (never/previous/current,
reference= never), lipid medication (Yes or No, reference=No), the top four
principal components from genotypes (SNPs), and the proportion of 5 types of
cells estimated with the Houseman method (CD8 T lymphocytes, CD4 T lym-
phocytes, natural killer cells, B cells, and monocytes)53. We added random effects
for plate, row, and column. We also included family structure as a random effect
among family-based studies. For Model 2, we further adjusted for BMI in addition
to Model 1 covariates. We also ran Model 3 and Model 4 which were analogous to
Model 1 and 2, respectively, in the subset of individuals not taking lipid-lowering
medication.

Meta-analysis. We performed meta-analyses of all the participating cohorts (N=
16,265) and also stratified by racial/ethnic group: European Americans (12 cohorts,
N= 11,114), African Americans (7 cohorts, N= 4,452), and Hispanics (2 cohorts,
N= 699). These meta-analyses were performed for each of the 4 models, respec-
tively. We used a random effects meta-analysis implemented in METASOFT26 to
take into account the heterogeneity of the effect sizes of different cohorts while
achieving a higher or comparable statistical power compared to fixed effects meta-
analysis. To avoid spurious findings from population substructure, we applied
genomic control63. We considered a p < 1.09 × 10−7 to be significant, equivalent to
a Bonferroni correction for the number of CpG probes. We then compared results
for all CpGs across all three racial/ethnic groups to identify the subset of CpGs with
significant associations across two or more racial/ethnic groups. These CpGs were
prioritized and followed-up with mQTL analysis, eQTM analysis, and a Mendelian
randomization approach for causal inference.

Overlap with prior related genome-wide association studies. To identify the
overlap between EWAS CpGs and genome-wide association studies (GWAS) SNPs
of lipids, we tried three approaches: (1) Identify a GWAS SNP and a EWAS CpG
pair located within 1Mbp; (2) Identify a GWAS SNP and a EWAS CpG pair
located within 10Mbp; and (3) Identify a GWAS SNP and a EWAS CpG pair
annotated to the same gene. SNPs were annotated to a gene if it is located within
the transcript boundary of a protein-coding gene or a nearest gene if it is located
outside of genes. The CpGs were annotated to a gene if it is located within 1500
base pairs of the transcription start site, 5′-UTR, gene body, or 3′-UTR using the
Illumina annotation file. Intergenic CpGs were not compared for this 3rd
approach.

Methylation quantitative trait loci. We investigated the association between
either imputed or genotyped SNPs located within 25 kb upstream or downstream
of each CpG and DNA methylation levels to identify cis-acting methylation
quantitative trait loci (mQTL). For imputed SNP data, we restricted the mQTL
analysis to SNPs with a good quality imputation (IMPUTE info >=0.4 or MACH
r^2 >=0.3). Subjects taking lipid lowering medications were excluded from this
analysis. Beta-values of DNA methylation levels were inverse-normal transformed
and regressed on age, sex, smoking (current/former/never), BMI, at least 4 SNP
PCs, cell proportions (WBC count and/or estimated WBC proportions (granulo-
cytes as a reference)), and technical covariates (plate, row, and column as random
effects) (two-sided test). Family information was also included as a random effect if
a cohort was a family-based study. We then regressed the residuals on each SNP of
interests stratified by racial/ethnic group.

Expression quantitative trait methylation. We extracted associations between
DNA methylation levels and gene expression in blood (expression quantitative trait
methylation or eQTM) from a pre-existing investigation involving 4278 partici-
pants of the FHS (2,726 offspring cohort participants and 1552 third-generation
cohort participants)30. For gene expression, whole blood was collected in PAX-
gene™ tubes (PreAnalytiX, Hombrechtikon, Switzerland) and frozen at −80 °C.
RNA was extracted using the whole blood RNA System Kit (Qiagen, Venlo,
Netherlands) and mRNA expression profiling was assessed using the Affymetrix
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Human Exon 1.0 ST GeneChip platform (Affymetrix Inc, Santa Clara, CA), which
contains more than 5.5 million probes targeting the expression of 17,873 genes.
The Robust Multi-array Average (RMA) package64 as used to normalize the gene
expression values and remove any technical or spurious background variation.

Linear mixed effects model was used to assess associations between residuals of
DNA methylation levels and residuals of gene expression levels (two-sided test).
We first regressed out the fixed effects of age, sex, white blood cell type proportions
as estimated through the Houseman method53, technical variables (sample storage
time, RNA integrity number), and the first component of a principal component
analysis and the random effects of amplification batch in the gene expression levels.
Next, we regressed out the fixed effects of age, sex, Houseman’s white blood cell
type proportions, and the first two PCs of a principal component analysis and the
random effect of batch (plate) from the DNA methylation levels. We then applied
an additional adjustment for 25 surrogate variables to both the gene expression and
DNA methylation data before the methylation-gene expression association
analysis. Surrogate variables were calculated using the gene expression data
(residualized for PC1, and technical variables as fixed effects and amplification
batch as random effect) and the DNA methylation data (residualized for PC1 and
PC2 as fixed effects and batch as random effect) adjusting for age, sex, and
Houseman’s blood cell type prediction.

Mendelian randomization approach. We applied a bi-directional Mendelian
randomization approach to shed light on the causal nature of associations we
identified between blood lipid levels and CpGs across ≥ 2 racial/ethnic
groups31,32,65–67. First, we created genetic risk scores (GRS) for increasing lipid
levels using either imputed (where IMPUTE info >=0.4 or MACH r^2 >=0.3) or
genotyped SNPs known to be robustly associated with lipids through prior large
scale GWAS7,8. The GRSs for each subject were calculated as the sum of the lipid
(HDL, LDL, or TG) increasing allele dosages of the SNPs listed in Supplementary
Table 4 divided by the number of SNPs used to calculate the specific GRS. We
performed a Mendelian randomization analysis in each study among participants
not taking lipid lowering medication followed by a meta-analysis of analogous
results in each study. Each lipid measure was regressed on the corresponding GRS
adjusting for age, sex, smoking, BMI, at least 4 SNP PCs, and a family effect if a
cohort was a family-based study. The DNA methylation level of each CpG was also
regressed on the corresponding GRS adjusting for age, sex, smoking, BMI, at least 4
SNP PCs, cell proportions, technical batch effects, and a family effect if a cohort
was family-based study. The study-specific estimates and standard errors of the
GRS-lipid and the GRS-CpG associations were used as input for a meta-analysis to
obtain overall estimates for GRS-lipid and GRS-CpG associations. The overall
estimates were then used to assess the causal effect of each lipid measure to a CpG
with a Mendelian randomization approach.

Secondly, we implemented Mendelian randomization65,66 method to study the
effect of DNA methylation on blood lipids levels. The identified significant mQTL
SNPs were used as an instrument for the CpGs of interest. Study participants
taking any lipid lowering medication were excluded in the Mendelian
randomization analysis. Beta-values of DNA methylation levels were inverse-
normal transformed and regressed on age, sex, smoking (current, former, or never),
BMI, at least 4 SNP PCs, cell proportions (WBC count and/or estimated WBC
proportions (gran as a reference)), and technical covariates (plate, row, and column
as random effects). Family information was also included as a random effect if a
cohort is a family-based study. Then the residuals were regressed on each SNP
located 25 kb up and downstream of the CpG site. The mQTL analyses were
performed separately for each racial/ethnic group. Each SNPs were also searched to
identify associations with lipid levels in the previous GWAS results from Global
Lipids Genetics Consortium (GLGC, http://csg.sph.umich.edu/willer/public/
lipids2013/)7. The estimates and standard errors of the SNP-CPG (obtained from
our samples) and SNP-lipid associations (obtained from the GLGC GWAS results)
were used as input for inverse-weighted MR and MR-egger methods to assess the
causal effect of each CpG to a lipid measure.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The methylation QTL association results as well as the full summary statistics for the
meta-analysis of the epigenome wide association study performed within each and across
all racial/ethnic groups combined for all four models and all three lipid traits are available
at [https://doi.org/10.5061/dryad.qfttdz0d8]. All other relevant data supporting the key
findings of this study are available within the article and its Supplementary Information
files or from the corresponding authors upon reasonable request. A reporting summary
for this Article is available as a Supplementary Information file.

Code availability
The following freely available software was used for analyses: R (V.3.4.4 and later, https://
www.r-project.org/) including minfi, wateRmelon, and qqman packages; Python 2.7.5
(https://www.python.org/downloads/); METASOFT (V.2.0.1, http://genetics.cs.ucla.edu/
meta_jemdoc/).

Received: 11 July 2019; Accepted: 25 May 2021;

References
1. Lozano, J. V. et al. Serum lipid profiles and their relationship to cardiovascular

disease in the elderly: the PREV-ICTUS study. Curr. Med Res Opin. 24,
659–670 (2008).

2. Petitti, D. B. et al. Serum lipids and glucose control: the SEARCH for Diabetes
in Youth study. Arch. Pediatr. Adolesc. Med. 161, 159–165 (2007).

3. Trevisan, R., Dodesini, A. R. & Lepore, G. Lipids and renal disease. J. Am. Soc.
Nephrol. 17, S145–S147 (2006).

4. Presecki, P. et al. Serum lipid levels in patients with Alzheimer’s disease. Coll.
Antropol. 35, 115–120 (2011).

5. Chandler, P. D. et al. Lipid biomarkers and long-term risk of cancer in the
Women’s Health Study. Am. J. Clin. Nutr. 103, 1397–1407 (2016).

6. His, M. et al. Prospective associations between serum biomarkers of lipid
metabolism and overall, breast and prostate cancer risk. Eur. J. Epidemiol. 29,
119–132 (2014).

7. Global Lipids Genetics, C. et al. Discovery and refinement of loci associated
with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

8. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci
for blood lipids. Nature 466, 707–713 (2010).

9. Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000
individuals. Nat. Genet. 49, 1758–1766 (2017).

10. Gao, C. et al. Exome sequencing identifies genetic variants associated with
circulating lipid levels in Mexican Americans: The Insulin Resistance
Atherosclerosis Family Study (IRASFS). Sci. Rep. 8, 5603 (2018).

11. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of
monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

12. Bjornsson, H. T. et al. Intra-individual change over time in DNA methylation
with familial clustering. JAMA 299, 2877–2883 (2008).

13. Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc
Genet. 9, 436–447 (2016).

14. Wahl, S. et al. Epigenome-wide association study of body mass index, and the
adverse outcomes of adiposity. Nature 541, 81–86 (2017).

15. Ma, J. et al. A peripheral blood DNA methylation signature of hepatic fat
reveals a potential causal pathway for non-alcoholic fatty liver disease.
Diabetes (2019).

16. Hidalgo, B. et al. Epigenome-wide association study of fasting measures of
glucose, insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and
Diet Network study. Diabetes 63, 801–807 (2014).

17. Chambers, J. C. et al. Epigenome-wide association of DNA methylation
markers in peripheral blood from Indian Asians and Europeans with incident
type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 3,
526–534 (2015).

18. Chu, A. Y. et al. Epigenome-wide association studies identify DNA
methylation associated with kidney function. Nat. Commun. 8, 1286
(2017).

19. Richard, M. A. et al. DNA methylation analysis identifies loci for blood
pressure regulation. Am. J. Hum. Genet. 101, 888–902 (2017).

20. Ligthart, S. et al. DNA methylation signatures of chronic low-grade
inflammation are associated with complex diseases. Genome Biol. 17, 255
(2016).

21. Irvin, M. R. et al. Epigenome-wide association study of fasting blood lipids in
the Genetics of Lipid-lowering Drugs and Diet Network study. Circulation
130, 565–572 (2014).

22. Dekkers, K. F. et al. Blood lipids influence DNA methylation in circulating
cells. Genome Biol. 17, 138 (2016).

23. Sayols-Baixeras, S. et al. Identification and validation of seven new loci
showing differential DNA methylation related to serum lipid profile: an
epigenome-wide approach. The REGICOR study. Hum. Mol. Genet 25,
4556–4565 (2016).

24. Braun, K. V. E. et al. Epigenome-wide association study (EWAS) on lipids: the
Rotterdam Study. Clin. Epigenetics 9, 15 (2017).

25. Braun, K. V. et al. The role of DNA methylation in dyslipidaemia: a systematic
review. Prog. Lipid Res. 64, 178–191 (2016).

26. Han, B. & Eskin, E. Random-effects model aimed at discovering associations
in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88,
586–598 (2011).

27. Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic
participants of the Million Veteran Program. Nat. Genet. 50, 1514–1523
(2018).

28. Hoffmann, T. J. et al. A large electronic-health-record-based genome-wide
study of serum lipids. Nat. Genet. 50, 401–413 (2018).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23899-y

10 NATURE COMMUNICATIONS |         (2021) 12:3987 | https://doi.org/10.1038/s41467-021-23899-y | www.nature.com/naturecommunications

http://csg.sph.umich.edu/willer/public/lipids2013/
http://csg.sph.umich.edu/willer/public/lipids2013/
https://doi.org/10.5061/dryad.qfttdz0d8
https://www.r-project.org/
https://www.r-project.org/
https://www.python.org/downloads/
http://genetics.cs.ucla.edu/meta_jemdoc/
http://genetics.cs.ucla.edu/meta_jemdoc/
www.nature.com/naturecommunications


29. Gaunt, T. R. et al. Systematic identification of genetic influences on
methylation across the human life course. Genome Biol. 17, 61 (2016).

30. Joehanes, R. et al. Integrated genome-wide analysis of expression quantitative
trait loci aids interpretation of genomic association studies. Genome Biol. 18,
16 (2017).

31. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for
causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98
(2014).

32. Relton, C. L. & Davey Smith, G. Two-step epigenetic Mendelian
randomization: a strategy for establishing the causal role of epigenetic
processes in pathways to disease. Int J. Epidemiol. 41, 161–176 (2012).

33. Mittelstrass, K. & Waldenberger, M. DNA methylation in human lipid
metabolism and related diseases. Curr. Opin. Lipido. 29, 116–124 (2018).

34. Yang, C. S. et al. Ubiquitin modification by the E3 Ligase/ADP-
Ribosyltransferase Dtx3L/Parp9. Mol. Cell 66, 503–516 e5 (2017).

35. Verheugd, P. et al. Regulation of NF-kappaB signalling by the mono-ADP-
ribosyltransferase ARTD10. Nat. Commun. 4, 1683 (2013).

36. Yvan-Charvet, L., Wang, N. & Tall, A. R. Role of HDL, ABCA1, and ABCG1
transporters in cholesterol efflux and immune responses. Arterioscler Thromb.
Vasc. Biol. 30, 139–143 (2010).

37. Pfeiffer, L. et al. DNA methylation of lipid-related genes affects blood lipid
levels. Circ. Cardiovasc Genet. 8, 334–342 (2015).

38. Miroshnikova, V. V. et al. Regulation of ABCA1 and ABCG1 gene expression
in the intraabdominal adipose tissue. Biomed. Khim 62, 283–289 (2016).

39. Dayeh, T. et al. DNA methylation of loci within ABCG1 and PHOSPHO1 in
blood DNA is associated with future type 2 diabetes risk. Epigenetics 11,
482–488 (2016).

40. Demina, E. P., Miroshnikova, V. V. & Schwarzman, A. L. Role of the ABC
transporters A1 and G1, key reverse cholesterol transport proteins, in
atherosclerosis. Mol. Biol. (Mosk.) 50, 223–230 (2016).

41. Peng, P. et al. A preliminary study of the relationship between promoter
methylation of the ABCG1, GALNT2 and HMGCR genes and coronary heart
disease. PLoS ONE 9, e102265 (2014).

42. Aslibekyan, S. et al. CPT1A methylation is associated with plasma
adiponectin. Nutr. Metab. Cardiovasc. Dis. 27, 225–233 (2017).

43. Das, M. et al. Association of DNA Methylation at CPT1A Locus with
Metabolic Syndrome in the Genetics of Lipid Lowering Drugs and Diet
Network (GOLDN) Study. PLoS ONE 11, e0145789 (2016).

44. Basciano, H., Federico, L. & Adeli, K. Fructose, insulin resistance, and
metabolic dyslipidemia. Nutr. Metab. (Lond.) 2, 5 (2005).

45. Ohashi, K. et al. High fructose consumption induces DNA methylation at
PPARalpha and CPT1A promoter regions in the rat liver. Biochem. Biophys.
Res. Commun. 468, 185–189 (2015).

46. Michels, K. B. et al. Recommendations for the design and analysis of
epigenome-wide association studies. Nat. Methods 10, 949–955 (2013).

47. Huang, Y. T. et al. Epigenome-wide profiling of DNA methylation in paired
samples of adipose tissue and blood. Epigenetics 11, 227–236 (2016).

48. Walton, E. et al. Correspondence of DNA methylation between blood and
brain tissue and its application to Schizophrenia research. Schizophr. Bull. 42,
406–414 (2016).

49. Crujeiras, A. B. et al. DNA methylation map in circulating leukocytes mirrors
subcutaneous adipose tissue methylation pattern: a genome-wide analysis
from non-obese and obese patients. Sci. Rep. 7, 41903 (2017).

50. Barajas-Olmos, F. et al. Altered DNA methylation in liver and adipose tissues
derived from individuals with obesity and type 2 diabetes. BMC Med. Genet.
19, 28 (2018).

51. Inouye, M. et al. An immune response network associated with blood lipid
levels. PLoS Genet. 6, e1001113 (2010).

52. Nath, A. P. et al. An interaction map of circulating metabolites, immune gene
networks, and their genetic regulation. Genome Biol. 18, 146 (2017).

53. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell
mixture distribution. BMC Bioinform. 13, 86 (2012).

54. Birney, E., Smith, G. D. & Greally, J. M. Epigenome-wide association studies
and the interpretation of disease-omics. PLoS Genet. 12, e1006105 (2016).

55. Brion, M. J., Shakhbazov, K. & Visscher, P. M. Calculating statistical power in
Mendelian randomization studies. Int J. Epidemiol. 42, 1497–1501 (2013).

56. Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the
concentration of low-density lipoprotein cholesterol in plasma, without use of
the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).

57. Maksimovic, J., Gordon, L. & Oshlack, A. SWAN: Subset-quantile within
array normalization for illumina infinium HumanMethylation450 BeadChips.
Genome Biol. 13, R44 (2012).

58. Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package
for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30,
1363–1369 (2014).

59. Teschendorff, A. E. et al. A beta-mixture quantile normalization method for
correcting probe design bias in Illumina Infinium 450 k DNA methylation
data. Bioinformatics 29, 189–196 (2013).

60. Pidsley, R. et al. A data-driven approach to preprocessing Illumina 450K
methylation array data. BMC Genomics 14, 293 (2013).

61. Jaffe, A. E. & Irizarry, R. A. Accounting for cellular heterogeneity is critical in
epigenome-wide association studies. Genome Biol. 15, R31 (2014).

62. Chen, Y. A. et al. Discovery of cross-reactive probes and polymorphic CpGs in
the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8,
203–209 (2013).

63. Devlin, B., Roeder, K. & Wasserman, L. Genomic control, a new approach to
genetic-based association studies. Theor. Popul Biol. 60, 155–166 (2001).

64. Irizarry, R. A. et al. Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

65. Smith, G. D. & Ebrahim, S. Mendelian randomization: prospects, potentials,
and limitations. Int J. Epidemiol. 33, 30–42 (2004).

66. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with
invalid instruments: effect estimation and bias detection through Egger
regression. Int J. Epidemiol. 44, 512–525 (2015).

67. Greenland, S. An introduction to instrumental variables for epidemiologists.
Int J. Epidemiol. 29, 722–729 (2000).

Acknowledgements
We thank our Amish community and research volunteers for their long-standing part-
nership in research, and acknowledge the dedication of our Amish liaisons, field workers
and the Amish Research Clinic staff, without which these studies would not have been
possible. We thank the staff and participants of the ARIC study for their important
contributions. We would also like to thank the families that participated in the GENOA
study. The authors are grateful to the Rotterdam Study participants, the staff involved
with the Rotterdam Study and the participating general practitioners and pharmacists.
The generation and management of the Illumina 450 K methylation array data (EWAS
data) for the Rotterdam Study was executed by the Human Genotyping Facility of the
Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Nether-
lands. We thank Mr. Michael Verbiest, Ms. Mila Jhamai, Ms. Sarah Higgins, Mr. Marijn
Verkerk, and Lisette Stolk PhD for their help in creating the methylation database. We
thank Ms. Mila Jhamai, Ms. Sarah Higgins, Marjolein Peters, MSc, Mr. Marijn Verkerk
and Jeroen van Rooij, MSc for their help in creating the RNA array expression database.
Infrastructure for the CHARGE Consortium is supported in part by the National Heart,
Lung, and Blood Institute grant R01HL105756. The Atherosclerosis Risk in Communities
study has been funded in whole or in part with Federal funds from the National Heart,
Lung, and Blood Institute, National Institutes of Health, Department of Health and
Human Services (contract numbers HHSN268201700001I, HHSN268201700002I,
HHSN268201700003I, HHSN268201700004I, and HHSN268201700005I). Funding was
also supported by 5RC2HL102419 and R01NS087541. The CHS research was supported
by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222,
N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083,
N01HC85086, 75N92021D00006; and NHLBI grants U01HL080295, R01HL087652,
R01HL092111, R01HL105756, R01HL103612, R01HL111089, R01HL116747,
R01HL120393, and U01HL130114 with additional contribution from the National
Institute of Neurological Disorders and Stroke (NINDS). Additional support was pro-
vided through R01AG023629 from the National Institute on Aging (NIA) as well as
Laughlin Family, Alpha Phi Foundation, and Locke Charitable Foundation. A full list of
principal CHS investigators and institutions can be found at CHS-NHLBI.org. The
provision of genotyping data was supported in part by the National Center for Advan-
cing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of
Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant
DK063491 to the Southern California Diabetes Endocrinology Research Center. The
content is solely the responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health. The Framingham Heart Study is
funded by National Institutes of Health contract N01- HC-25195. The laboratory work
for this investigation was funded by the Division of Intramural Research, National Heart,
Lung, and Blood Institute, National Institutes of Health and an NIH Director’s Challenge
Award (D. Levy, Principal Investigator). The GOLDN epigenetics study is funded by the
NIH National Heart, Lung, and Blood Institute grant R01 HL104135-01. Support for the
Genetic Epidemiology Network of Arteriopathy (GENOA) was provided by the National
Heart, Lung and Blood Institute (HL054457, HL100185, HL119443, and HL133221) of
the National Institutes of Health. German Research Center for Environmental Health,
which is funded by the German Federal Ministry of Education and Research (BMBF) and
by the State of Bavaria. Furthermore, KORA research was supported within the Munich
Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of
LMUinnovativ. This work was supported by a grant (WA 4081/1-1) from the German
Research Foundation. The TwinsUK epigenetic study received support from the ESRC
(ES/N000404/1). The TwinsUK study funded by the Wellcome Trust; European Com-
munity’s Seventh Framework Programme (FP7/2007–2013); National Institute for
Health Research (NIHR)- funded BioResource, Clinical Research Facility and Biomedical
Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust in partnership
with King’s College London. SNP genotyping was performed by The Wellcome Trust
Sanger Institute and National Eye Institute via NIH/CIDR. The PIVUS study was sup-
ported by Swedish Research Council (Grant no. 2012-1397), Knut och Alice Wallenberg

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23899-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3987 | https://doi.org/10.1038/s41467-021-23899-y |www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Foundation (Grant no. 2013.0126), Swedish Heart-Lung Foundation (grant no.
20140422), and Swedish Diabetes Foundation (Grant no. 2013-024). The Rotterdam
Study EWAS data was funded by the Genetic Laboratory of the Department of Internal
Medicine, Erasmus MC, and by the Netherlands Organization for Scientific Research
(NWO; project number 184021007) and made available as a Rainbow Project (RP3;
BIOS) of the Biobanking and Biomolecular Research Infrastructure Netherlands
(BBMRI-NL). The generation and management of RNA-expression array data for the
Rotterdam Study was executed and funded by the Human Genotyping Facility of the
Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Nether-
lands. The Women’s Health Initiative data, WHI-BA23 and WHI-EMPC, were generated
through an NHLBI Broad Agency Announcement contract (HHSN268201300006C) and
a National Institute of Environmental Health Sciences grant (R01-ES020836). The WHI
program is funded by the National Heart, Lung, and Blood Institute, National Institutes
of Health, U.S. Department of Health and Human Services through contracts
HHSN268201100046C, HHSN268201100001C, HHSN268201100002C,
HHSN268201100003C, HHSN268201100004C, and HHSN271201100004C.

Author contributions
M.A.J., M.M., M.R.I., and T.L.A. contributed to study design. M.A.J., R.W., R.G., R.J.,
E.S., X.Z., K.V.E.B. AND, A.K.H., T.Z., E.C.M., J.S., T.M.B., J.A.B., M.E.M., J.R.O., C.Y.,
P.S., W.Z., E.B.W., S.G. contributed to cohort-specific data analyses. M.A.J. contributed
to meta-analyses of EWAS and mQTL, and Mendelian randomization analyses. M.A.J.
and T.L.A. contributed to interpretation of the results and writing of manuscript. M.M.,
R.W., R.G., K.V.E.B., T.M.B., T.M., B.M.P., E.I., M.F., J.T.B., L.L., M.W. contributed to
critical review of manuscript. E.B., M.G., W.G., L.P., M.M.N., T.M., C.G., A.P., E.B.W.,
J.A.S., K.D., J.v.M., A.U., M.A.I., M.G., D.Z., L.L., S.L., T.D.S., Y.I.C., C.D., A.R.S., D.M.A.,
S.H., P.S.T., S.K., B.M.P., N.S., J.T.B., E.I., W.C., A.D., D.A., M.W., L.H., E.A.W., A.B.,
D.L., M.F., M.R.I., and T.L.A. contributed to cohort design and management, and data
collection.

Competing interests
Alan R Shuldiner is an employee of Regeneron Pharmaceuticals, Inc. Bruce M Psaty
serves on the DSMB of a clinical trial funded by the manufacturer (Zoll LifeCor) and on
the Steering Committee of the Yale Open Data Access Project funded by Johnson &
Johnson. Kim Valeska Emilie Braun works in ErasmusAGE, a center for aging research
across the life course funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc. and AXA.

All other authors declare no competing interests. The funders had no role in design and
conduct of the study; collection, management, analysis, and interpretation of the data;
and preparation, review or approval of the manuscript.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-23899-y.

Correspondence and requests for materials should be addressed to M.-A.J. or T.L.A.

Peer review information Nature Communications thanks Jenny van Dongen and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

This is a U.S. Government work and not under copyright protection in the US; foreign
copyright protection may apply 2021, corrected publication 2021

1Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA. 2Department of Medicine, Stanford University
School of Medicine, Stanford, CA, USA. 3Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, MD, USA. 4Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA. 5Research Unit Molecular Epidemiology, Institute
of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. 6Institute of Epidemiology,
Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. 7Department of Epidemiology, University of
North Carolina, Chapel Hill, NC, USA. 8Hebrew SeniorLife, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
9The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston,
Houston, TX, USA. 10Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. 11Department of
Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA. 12Department of Medical Sciences, Molecular
Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden. 13Department of Epidemiology, Tulane University School of
Public Health and Tropical Medicine, New Orleans, LA, USA. 14Department of Twin Research and Genetic Epidemiology, School of Life Course
Sciences, King’s College London, London, UK. 15GENYO, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian
Regional Government, Granada, Spain. 16Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA. 17Cardiovascular
Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA. 18Cardiovascular Health Research
Unit, Department of Medicine, University of Washington, Seattle, WA, USA. 19Division of Endocrinology, Diabetes, and Nutrition, University of
Maryland School of Medicine, Baltimore, MD, USA. 20Program for Personalized and Genomic Medicine, University of Maryland School of
Medicine, Baltimore, MD, USA. 21School of Public Health, University of Texas Health Science Center at Houston, Huston, TX, USA. 22Division of
Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA. 23Institute of Genetic Epidemiology, Helmholtz Zentrum
München, German Research Center for Environmental Health, Neuherberg, Germany. 24IBE, Faculty of Medicine, LMU Munich, Munich, Germany.
25Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz,
Germany. 26Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.
27Institute of Human Genetics, Technical University Munich, Munich, Germany. 28Survey Research Center, Institute for Social Research, Ann
Arbor, MI, USA. 29Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA. 30Department of Internal Medicine,
Erasmus MC University Medical Center, Rotterdam, The Netherlands. 31School of Biomedical Informatics, University of Texas Health Science
Center at Houston, Houston, TX, USA. 32Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science
Center, Beijing, China. 33Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, and
Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA. 34HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
35Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. 36Department of
Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA. 37VA Palo Alto Healthcare System, Palo

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23899-y

12 NATURE COMMUNICATIONS |         (2021) 12:3987 | https://doi.org/10.1038/s41467-021-23899-y | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-23899-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications


Alto, CA, USA. 38Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA. 39Cardiovascular Health Research Unit, Departments
of Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA, USA. 40Kaiser Permanente Washington Health Research
Institute, Seattle, WA, USA. 41Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA.
42Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA. 43Department of Biostatistics and Epidemiology, MRC Centre for
Environment and Health, School of Public Health, Imperial College, London, UK. 44Department of Preventive Medicine, Feinberg School of
Medicine, Northwestern University, Chicago, IL, USA. 45Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.
46Department of Environmental Health Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA. 47Department of Environmental
Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA. 48Framingham Heart Study, Framingham, MA, USA.
✉email: mina.jhun82@gmail.com; tassimes@stanford.edu

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23899-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3987 | https://doi.org/10.1038/s41467-021-23899-y |www.nature.com/naturecommunications 13

mailto:mina.jhun82@gmail.com
mailto:tassimes@stanford.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	A multi-ethnic epigenome-wide association study of leukocyte DNA methylation and blood lipids
	Results
	Study population
	EWAS stratified by racial/ethnic group
	Comparison of results across racial/ethnic groups
	Overlap with prior related GWAS and EWAS
	Methylation quantitative trait loci analysis
	Expression quantitative trait methylation analysis
	Mendelian randomization approach

	Discussion
	Methods
	Study populations
	Lipid measurements
	DNA methylation measurement, QC, and normalization
	Epigenome-wide association study
	Meta-analysis
	Overlap with prior related genome-wide association studies
	Methylation quantitative trait loci
	Expression quantitative trait methylation
	Mendelian randomization approach

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




