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Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous
sensors attached to the subject’s body and permit continuous monitoring of numerous physiological signals reflecting the state
of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient
Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people.
In this paper, we propose the method for activity recognition and subject identification based on random projections from
high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance
between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject
identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented.

1. Introduction

The societies in the developed countries are rapidly aging.
In 2006, almost 500 million people worldwide were 65 years
of age or older. By 2030, that total number of aged people is
projected to increase to 1 billion. The most rapid increase of
aging population occurs in the developing countries, which
will see a jump of 140% by 2030 [1]. Moreover, the world’s
population is expected to reach 9.3 billion by 2050 [2], and
people who are above 60 years old will make up 28% of
the population. Dealing with this situation will require huge
financial resources to support the ever-increasing living cost,
where human life expectancy is expected to reach 81 years by
2100.

As older people may have disorders of body functions or
suffer from age-related diseases, the need for smart health
assistance systems increases each year. A common method
of monitoring geriatric patients is a physical observation,
which is costly, requires a lot of human staff, and is increas-
ingly infeasible in view of massive population aging in
the following years. Many Ambient Assisted Living (AAL)

applications such as care-providing robots, video surveillance
systems, and assistive human-computer interaction technolo-
gies require human activity recognition. While the primary
users of the AAL systems are of course the senior (elderly)
people, the concept also applies to mentally and physically
impaired people as well as people suffering from diabetes
and obesity, who may need assistance at home, and people of
any age interested in personal fitness monitoring. As a result,
the sensor-based real-time monitoring system to support
independent living at home has been a subject of many
recent research studies in human activity recognition (HAR)
domain [3–10].

Activity recognition can be defined as the process of
how to interpret sensor data to classify a set of human
activities [11]. HAR is a rapidly growing area of research that
can provide valuable information on health, wellbeing, and
fitness of monitored persons outside a hospital setting. Daily
activity recognition using wearable technology plays a central
role in the field of pervasive healthcare [12]. HAR has gained
increased attention in the last decade due to the arrival of
affordable and minimally invasive mobile sensing platforms
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such as smartphones. Smartphones are innovative platforms
for HAR because of the availability of different wireless
interfaces, unobtrusiveness, ease of use, high computing
power and storage, and the availability of sensors, such
as accelerometer, compass, and gyroscope, which meet the
technical and practical hardware requirements for HAR tasks
[13–15]. Moreover, technological development possibilities of
other applications are still arising, including virtual reality
systems.Therefore, these machines present a great possibility
for the development of innovative technology dedicated for
the AAL systems.

One of the keymotivating factors for usingmobile phone-
based human activity recognition in the AAL systems is the
relationship and correlation between the level of physical
activity and the level of wellbeing of a person. Recording and
analysing precise information on the person’s activities are
beneficial to keeping the progress and status of the disease (or
mental condition) and can potentially improve the treatment
of person’s conditions and diseases, as well as decreasing
the cost of care. Recognizing indoor and outdoor activities
such as walking, running, or cycling can be useful to provide
feedback to the caregiver about the patient’s behaviour.When
following the daily habits and routines of users, one can
easily identify deviations from routines, which can assist
the doctors in diagnosing conditions that would not be
observed during routine medical examination. Another key
enabler of the HAR technology is the possibility of providing
independent living for the elderly as well as for patients
with dementia and other mental pathologies, which could be
monitored to prevent undesirable consequences of abnormal
activities. Furthermore, by using persuasive techniques and
gamification, HAR systems can be designed to interact with
users to change their behaviour and lifestyles towards more
active and healthier ones [16].

Recently, various intelligent systems based on mobile
technologies have been constructed.HARusing smartphones
or other types of portable or wearable sensor platforms
has been used for assessing movement quality after stroke
[17], such as upper extremity motion [18], for assessing
gait characteristics of human locomotion for rehabilitation
and diagnosis of medical conditions [19], for postoperative
mobilization [20], for detecting Parkinson’s disease, back
pain, and hemiparesis [21], for cardiac rehabilitation [22], for
physical therapy, for example, if a user is correctly doing the
exercises recommended by a physician [23, 24], for detecting
abnormal activities arising due to memory loss for dementia
care [25, 26], for dealing with Alzheimer’s [27] and neu-
rodegenerative diseases such as epilepsy [28], for assessment
of physical activity for children and adolescents suffering
from hyperlipidaemia, hypertension, cardiovascular disease,
and type 2 diabetes [29], for detecting falls [30, 31], for
addressing physical inactivity when dealing with obesity [32],
for analysing sleeping patterns [33], for estimating energy
expenditures of a person to assess his/her healthy daily
lifestyle [34], and for recognizing the user’s intent in the
domain of rehabilitation engineering such as smart walking
support systems to assist motor-impaired persons and the
elderly [35].

In this paper, we propose a new method for offline
recognition of daily human activities based on feature dimen-
sionality reduction using random projections [36] to low
dimensionality feature space and using the Jaccard distance
between kernel density probabilities as a decision function for
classification of human activities.

The structure of the remaining parts of the paper is
as follows. Section 2 presents the overview of related work
in the smartphone-based HAR domain with a particular
emphasis on the features extracted from the sensor data.
Section 3 describes the proposedmethod. Section 4 evaluates
and discusses the results. Finally, Section 5 presents the
conclusions and discusses future work.

2. Overview of HAR Features
and Related Work

All tasks of the HAR domain require correct identification of
human activities from sensor data, which, in turn, requires
that features derived from sensor data must be properly
categorized and described. Next, we present an overview of
features used in the HAR domain.

2.1. Features. While numerous features can be extracted from
physical activity signals, increasing the number of features
does not necessarily increase classification accuracy since the
features may be redundant or may not be class-specific:

(i) Time domain features (such as mean, median, vari-
ance, standard deviation, minimum, maximum, and
root mean square, applied to the amplitude and
time dimensions of a signal) are typically used in
many practical HAR systems because of being less
computationally intensive; thus, they can be easily
extracted in real time.

(ii) Frequency-domain features require higher computa-
tional cost to distinguish between different human
activities.Thus, they may not be suitable for real-time
AAL applications.

(iii) Physical features are derived from a fundamental
understanding of how a certain human movement
would produce a specific sensor signal. Physical
features are usually extracted from multiple sensor
axes, based on the physical parameters of human
movements.

Based on the extensive analysis of the literature and
features used by other authors (esp. by Capela et al. [17],
Mathie et al. [37], and Zhang and Sawchuk [38]), we have
extracted 99 features of data, which are detailed in Table 1.

2.2. Feature Selection. Feature selection is the process of
selecting a subset of relevant features for use in construction
of the classification model. Successful selection of features
allows for simplification of models to make them easier to
interpret, to decrease model training times, and to better
understand difference between classes. Using feature selec-
tion allows removing redundant or irrelevant features with-
out having an adverse effect on the classification accuracy.
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Table 1: Catalogue of features.

Feature number Description Equation (notation)
4–6 Acceleration (𝑥-, 𝑦-, and 𝑧-axes) 𝑎

𝑥
, 𝑎
𝑦
, 𝑎
𝑧

7–9 Gyroscope (𝑥-, 𝑦-, and 𝑧-axes) 𝑔
𝑥
, 𝑔
𝑦
, 𝑔
𝑧

10–15 Moving variance of 100 samples of
acceleration and gyroscope data

var = 1

𝑁 (𝑁 − 1)

(𝑁

𝑁

∑

𝑖=1

𝑥
2

𝑖
− (

𝑁

∑

𝑖=1

𝑥
𝑖
)

2

), here 𝑥 = 𝑎
𝑥
, 𝑎
𝑦
, 𝑎
𝑧
, 𝑔
𝑥
, 𝑔
𝑦
, 𝑔
𝑧

16-17 Movement intensity of acceleration and
gyroscope data

MI
𝑎
= √𝑎

2

𝑥
+ 𝑎
2

𝑦
+ 𝑎
2

𝑧

MI
𝑔
= √𝑔

2

𝑥
+ 𝑔
2

𝑦
+ 𝑔
2

𝑧

18 Movement intensity of difference
between acceleration and gyroscope data MI

𝑔𝑎
= √(𝑔

𝑥
− 𝑎
𝑥
)
2

+ (𝑔
𝑦
− 𝑎
𝑦
)

2

+ (𝑔
𝑦
− 𝑎
𝑦
)

2

19–21 Moving variance of 100 samples of
movement intensity data

var = 1

𝑁 (𝑁 − 1)

(𝑁

𝑁

∑

𝑖=1

𝑥
2

𝑖
− (

𝑁

∑

𝑖=1

𝑥
𝑖
)

2

), here 𝑥 = MI
𝑎
,MI
𝑔
,MI
𝑔𝑎

22–24 Polar coordinates of acceleration data
𝜑
𝑎
= arctan (𝑎

𝑦
, 𝑎
𝑥
),

𝑟
𝑎
= √𝑎

2

𝑥
+ 𝑎
2

𝑦
,

𝑧
𝑎
= 𝑎
𝑧

25–27 Polar coordinates of gyroscope data
𝜑
𝑔
= arctan (𝑔

𝑦
, 𝑔
𝑥
),

𝑟
𝑔
= √𝑔

2

𝑥
+ 𝑔
2

𝑦
,

𝑧
𝑔
= 𝑔
𝑧

28–30 Polar coordinates of difference between
acceleration and gyroscope data

𝜑
𝑎𝑔
= arctan (𝑎

𝑦
− 𝑔
𝑦
, 𝑎
𝑥
− 𝑔
𝑥
),

𝑟
𝑎𝑔
= √(𝑎

𝑦
− 𝑔
𝑦
)

2

+ (𝑎
𝑥
− 𝑔
𝑥
)
2,

𝑧
𝑎𝑔
= 𝑎
𝑧
− 𝑔
𝑧

31 Simple moving average of acceleration
data

SMA
𝑎
=

1

𝑁

(

𝑁

∑

𝑖=1





𝑎
𝑥





+

𝑁

∑

𝑖=1






𝑎
𝑦






+

𝑁

∑

𝑖=1





𝑎
𝑧





)

32 Simple moving average of gyroscope data SMA
𝑔
=

1

𝑁

(

𝑁

∑

𝑖=1





𝑔
𝑥





+

𝑁

∑

𝑖=1






𝑔
𝑦






+

𝑁

∑

𝑖=1





𝑔
𝑧





)

33 Simple moving average of difference
between acceleration and gyroscope data

SMA
𝑎𝑔
=

1

𝑁

(

𝑁

∑

𝑖=1





𝑎
𝑥
− 𝑔
𝑥





+

𝑁

∑

𝑖=1






𝑎
𝑦
− 𝑔
𝑦






+

𝑁

∑

𝑖=1





𝑎
𝑧
− 𝑔
𝑧





)

34 First eigenvalue of moving covariance
between acceleration data 𝐸

𝑎
= eig
1
(cov (𝑎

𝑥
(1 : 𝑁) , 𝑎

𝑦
(1 : 𝑁) , 𝑎

𝑧
(1 : 𝑁)))

35 First eigenvalue of moving covariance
between gyroscope data 𝐸

𝑔
= eig
1
(cov (𝑔

𝑥
(1 : 𝑁) , 𝑔

𝑦
(1 : 𝑁) , 𝑔

𝑧
(1 : 𝑁)))

36
First eigenvalue of moving covariance of
difference between acceleration and
gyroscope data

𝐸
𝑎𝑔
= eig
1
(cov (𝑎

𝑥
− 𝑔
𝑥
, 𝑎
𝑦
− 𝑔
𝑦
, 𝑎
𝑧
− 𝑔
𝑧
))

37–42 Moving energy of acceleration and
gyroscope data

ME =

1

𝑁

𝑁

∑

𝑖=1

𝑥
2

𝑖
, here 𝑥 = 𝑎

𝑥
, 𝑎
𝑦
, 𝑎
𝑧
, 𝑔
𝑥
, 𝑔
𝑦
, 𝑔
𝑧

43–48
Difference between moving maximum
and moving minimum of acceleration
and gyroscope data

MinMax = max
1≤𝑖≤𝑁

(𝑥
𝑖
) − min
1≤𝑖≤𝑁

(𝑥
𝑖
), here 𝑥 = 𝑎

𝑥
, 𝑎
𝑦
, 𝑎
𝑧
, 𝑔
𝑥
, 𝑔
𝑦
, 𝑔
𝑧

49 Moving correlation between 𝑥- and
𝑦-axis of acceleration data MC𝑥𝑦

𝑎
= corr (𝑎

𝑥
, 𝑎
𝑦
)

50 Moving correlation between 𝑥-axis and
𝑧-axis of acceleration data MC𝑥𝑧

𝑎
= corr (𝑎

𝑥
, 𝑎
𝑧
)

51 Moving correlation between 𝑦-axis and
𝑧-axis of acceleration data MC𝑦𝑧

𝑎
= corr (𝑎

𝑦
, 𝑎
𝑧
)

52 Moving correlation between 𝑥-axis and
𝑦-axis of gyroscope data MC𝑥𝑦

𝑔
= corr (𝑔

𝑥
, 𝑔
𝑦
)

53 Moving correlation between 𝑥-axis and
𝑧-axis of gyroscope data MC𝑥𝑧

𝑔
= corr (𝑔

𝑥
, 𝑔
𝑧
)

54 Moving correlation between 𝑦-axis and
𝑧-axis of gyroscope data MC𝑦𝑧

𝑔
= corr (𝑔

𝑦
, 𝑔
𝑧
)
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Table 1: Continued.

Feature number Description Equation (notation)

55–57 Projection of gyroscope data onto
acceleration data

𝑃 = 𝑎 −

(𝑔
𝑇

𝑎𝑔)





𝑔





2

58 Moving mean of orientation vector of
acceleration data

MMA =

1

𝑁

𝑁

∑

𝑖=1

𝜑
𝑖
, here 𝜑 =

arccos (𝑎
𝑥
⋅ 𝑎
𝑦
)





𝑎
𝑥





⋅






𝑎
𝑦







59 Moving variance of orientation vector of
acceleration data

MVA =

1

𝑁 (𝑁 − 1)

((

𝑁

∑

𝑖=1

𝜑
𝑖
)

2

−

𝑁

∑

𝑖=1

𝜑
2

𝑖
), 𝜑 =

arccos (𝑎
𝑥
⋅ 𝑎
𝑦
)





𝑎
𝑥





⋅






𝑎
𝑦







60 Moving energy of orientation vector of
acceleration data

MEA =

1

𝑁

𝑁

∑

𝑖=1

𝜑
2

𝑖
, here 𝜑 =

arccos (𝑎
𝑥
⋅ 𝑎
𝑦
)





𝑎
𝑥





⋅






𝑎
𝑦







61–63 Moving energy of difference between
acceleration and gyroscope data

ME
𝑎𝑔
=

1

𝑁

𝑁

∑

𝑖=1

(𝑥
𝑖
− 𝑦
𝑖
)
2, here 𝑥 = 𝑎

𝑥
, 𝑎
𝑦
, 𝑎
𝑧
, 𝑦 = 𝑔

𝑥
, 𝑔
𝑦
, 𝑔
𝑧

64 Moving energy of difference between
𝑥-axis and 𝑦-axis of acceleration data

ME
𝑥𝑦
=

1

𝑁

𝑁

∑

𝑖=1

(𝑎
𝑥,𝑖
− 𝑎
𝑦,𝑖
)

2

65 Moving energy of difference between
𝑥-axis and 𝑧-axis of acceleration data

ME
𝑥𝑧
=

1

𝑁

𝑁

∑

𝑖=1

(𝑎
𝑥,𝑖
− 𝑎
𝑧,𝑖
)
2

66 Moving energy of difference between
𝑦-axis and 𝑧-axis of acceleration data

ME
𝑦𝑧
=

1

𝑁

𝑁

∑

𝑖=1

(𝑎
𝑦,𝑖
− 𝑎
𝑧,𝑖
)

2

67
Moving mean of orientation vector of
difference between acceleration and
gyroscope data

MMA =

1

𝑁

𝑁

∑

𝑖=1

𝜑
𝑖
, here 𝜑 =

arccos ((𝑎
𝑥
− 𝑔
𝑥
) (𝑎
𝑦
− 𝑔
𝑦
))





𝑎
𝑥
− 𝑔
𝑥





⋅






𝑎
𝑦
− 𝑔
𝑦







68
Moving variance of orientation vector of
difference between acceleration and
gyroscope data

MVA =

1

𝑁 (𝑁 − 1)

((

𝑁

∑

𝑖=1

𝜑
𝑖
)

2

−

𝑁

∑

𝑖=1

𝜑
2

𝑖
), 𝜑 =

arccos ((𝑎
𝑥
− 𝑔
𝑥
) (𝑎
𝑦
− 𝑔
𝑦
))





𝑎
𝑥
− 𝑔
𝑥





⋅






𝑎
𝑦
− 𝑔
𝑦







69
Moving energy of orientation vector of
difference between acceleration and
gyroscope data

MEA =

1

𝑁

𝑁

∑

𝑖=1

𝜑
2

𝑖
, here 𝜑 =

arccos ((𝑎
𝑥
− 𝑔
𝑥
) (𝑎
𝑦
− 𝑔
𝑦
))





𝑎
𝑥
− 𝑔
𝑥





⋅






𝑎
𝑦
− 𝑔
𝑦







70 Moving mean of orientation vector of
gravity data

MMA
𝑔
=

1

𝑁

𝑁

∑

𝑖=1

𝜑
𝑖
, here 𝜑 =

arccos (𝑔
𝑥
⋅ 𝑔
𝑦
)





𝑔
𝑥





⋅






𝑔
𝑦







71 Moving variance of orientation vector of
gravity data

MVA
𝑔
=

1

𝑁 (𝑁 − 1)

((

𝑁

∑

𝑖=1

𝜑
𝑖
)

2

−

𝑁

∑

𝑖=1

𝜑
2

𝑖
), 𝜑 =

arccos (𝑔
𝑥
⋅ 𝑔
𝑦
)





𝑔
𝑥





⋅






𝑔
𝑦







72 Moving energy of orientation vector of
gravity data

MEA
𝑔
=

1

𝑁

𝑁

∑

𝑖=1

𝜑
2

𝑖
, here 𝜑 =

arccos (𝑔
𝑥
⋅ 𝑔
𝑦
)





𝑔
𝑥





⋅






𝑔
𝑦







73
Moving mean of orientation vector of
difference between acceleration and
gravity data

MMA
𝑎𝑔
=

1

𝑁

𝑁

∑

𝑖=1

𝜑
𝑖
, 𝜑 =

arccos (𝑎
𝑥
⋅ 𝑎
𝑦
)





𝑎
𝑥





⋅






𝑎
𝑦







−

arccos (𝑔
𝑥
⋅ 𝑔
𝑦
)





𝑔
𝑥





⋅






𝑔
𝑦







74
Moving variance of orientation vector of
difference between acceleration and
gravity data

MVA
𝑎𝑔
=

1

𝑁 (𝑁 − 1)

((

𝑁

∑

𝑖=1

𝜑
𝑖
)

2

−

𝑁

∑

𝑖=1

𝜑
2

𝑖
),

𝜑 =

arccos (𝑎
𝑥
⋅ 𝑎
𝑦
)





𝑎
𝑥





⋅






𝑎
𝑦







−

arccos (𝑔
𝑥
⋅ 𝑔
𝑦
)





𝑔
𝑥





⋅






𝑔
𝑦







75
Moving energy of orientation vector of
difference between acceleration and
gravity data

MEA
𝑎𝑔
=

1

𝑁

𝑁

∑

𝑖=1

𝜑
2

𝑖
, 𝜑 =

arccos (𝑎
𝑥
⋅ 𝑎
𝑦
)





𝑎
𝑥





⋅






𝑎
𝑦







−

arccos (𝑔
𝑥
⋅ 𝑔
𝑦
)





𝑔
𝑥





⋅






𝑔
𝑦







76–81 Moving cumulative sum of acceleration
and gyroscope data

MCS =
𝑁

∑

𝑗=1

𝑗

∑

𝑖=1

𝑥
𝑖
, here 𝑥 = 𝑎

𝑥
, 𝑎
𝑦
, 𝑎
𝑧
, 𝑔
𝑥
, 𝑔
𝑦
, 𝑔
𝑧

82 Simple moving average of cumulative
sums of acceleration data

SMAMCS
𝑎
=

1

𝑁

𝑁

∑

𝑖=1

MCS
𝑎,𝑖

83 Simple moving average of cumulative
sums of gyroscope data

SMAMCS
𝑔
=

1

𝑁

𝑁

∑

𝑖=1

MCS
𝑔,𝑖
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Table 1: Continued.

Feature number Description Equation (notation)

84
Simple moving average of cumulative
sums of difference between accelerometer
and gyroscope data

SMAMCS
𝑎𝑔
=

1

𝑁

𝑁

∑

𝑖=1

(MCS
𝑎,𝑖
−MCS

𝑔,𝑖
)

85–90 Moving 2nd-order cumulative sum of
acceleration and gyroscope data

MCS =
𝑁

∑

𝑗=1

𝑗

∑

𝑖=1

MCS
𝑖

91–93
Moving 2nd-order cumulative sum of
differences between cumulative sums of
acceleration and gyroscope data

MCS
𝑎𝑔
=

𝑁

∑

𝑗=1

𝑗

∑

𝑖=1

(MCS𝑎
𝑖
−MCS𝑔

𝑖
)

94–96 Polar coordinates of moving cumulative
sum of acceleration data

𝜑


𝑎
= arctan (MCS𝑎

𝑦
,MCS𝑎

𝑥
),

𝑟


𝑎
= √(MCS𝑎

𝑥
)
2

+ (MCS𝑎
𝑦
)

2

,

𝑧


𝑎
= MCS𝑎

𝑧

97–99 Polar coordinates of moving cumulative
sum of gyroscope data

𝜑


𝑔
= arctan (MCS𝑔

𝑦
,MCS𝑔

𝑥
),

𝑟


𝑔
= √(MCS𝑔

𝑥
)
2

+ (MCS𝑔
𝑦
)

2

,

𝑧


𝑔
= MCS𝑔

𝑧

100–102
Polar coordinates of moving cumulative
sum of differences between acceleration
and gyroscope data

𝜑


𝑎𝑔
= arctan (MCS𝑎

𝑦
−MCS𝑔

𝑦
,MCS𝑎

𝑥
−MCS𝑔

𝑥
),

𝑟


𝑎𝑔
= √(MCS𝑎

𝑥
−MCS𝑔

𝑥
)
2

+ (MCS𝑎
𝑦
−MCS𝑔

𝑦
)

2

,

𝑧


𝑎𝑔
= MCS𝑎

𝑧
−MCS𝑔

𝑧

There are four basic steps in a typical feature selectionmethod
[58]: generation of candidate feature subset, an evaluation
function for feature candidate subset, a generation stopping
criterion, and a validation procedure.

Further, we analyse several feature selection methods
used in the HAR domain.

ReliefF [59] is a commonly used filter method that ranks
features by weighting them based on their relevance. Feature
relevance is based on how well data instances are separated.
For each data instance, the algorithm finds the nearest data
point from the same class (hit) and nearest data points from
different classes (misses).

Matlab’s Rankfeatures ranks features by a given class
separability criterion. Class separability measures include the
absolute value of a statistic of a two-sample 𝑡-test, Kullback-
Leibler distance, minimum attainable classification error,
area between the empirical ReceiverOperatingCharacteristic
(ROC) curve and the randomclassifier slope, and the absolute
value of the statistic of a two-sample unpairedWilcoxon test.
Measures are based on distributional characteristics of classes
(e.g., mean, variance) for a feature.

Principal component analysis (PCA) is the simplest
method to reduce data dimensionality. This reduced dimen-
sional data can be used directly as features for classification.
Given a set of 𝑁 features, a PCA analysis will produce new
data variables (PCA components) as linear combinations
of the features with the highest variance in the subspace
orthogonal to the preceding PCA component. As variability
of the data can be captured by a relatively small number of
PCs, PCA can achieve high level of dimensionality reduction.
Several extensions of the PCA method are known such as
kernel PCA, sparse PCA, and multilinear PCA.

Correlation-based Feature Selection (CFS) [60] is a filter
algorithm that ranks subsets of features by a correlation-
based heuristic evaluation function. A feature is considered
to be a good one if it is relevant to the target concept but is
not redundant to any of the other relevant features. Goodness
of measure is expressed by a correlation between features,
and CFS chooses the subset of features which has the highest
measure. The chosen subset holds the property that features
inside this subset have high correlation with the class and are
unrelated to each other.

Table 2 summarizes the feature selection/dimensionality
reduction methods in HAR.

A comprehensive review of feature selection algorithms
in general as well as in the HAR domain can be found in [58,
61–63].

2.3. Summary. Related work in the HAR domain is summa-
rized in Table 3. For each paper, the activities analysed, types
of sensor data used, features extracted, classification method
applied, and accuracy achieved (as given by the referenced
papers) are given.

3. Method

3.1. General Scheme. The typical steps for activity recognition
are preprocessing, segmentation, feature extraction, dimen-
sionality reduction (feature selection), and classification [24].
Themain steps of activity recognition include (a) preprocess-
ing of sensor data (e.g., denoising), (b) feature extraction,
(c) dimension reduction, and (d) classification. The prepro-
cessing step includes noise removal and representation of
raw data. The feature extraction step is used to reduce large
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Table 2: Summary of feature selection/dimensionality reduction methods in HAR.

Method Advantages Disadvantages Complexity

PCA

High dimensionality
reduction; reduction of noise;
lack of redundancy of data due
to orthogonality of
components

The covariance matrix is difficult to be
evaluated accurately; even the simplest
invariance could not be captured by the
PCA unless the training data explicitly
provides for it

𝑂(𝑝
2

𝑛 + 𝑝
3

), where 𝑛 are data
points, each represented with
𝑝 features

ReliefF Low computational
complexity

Unstable due to random selection of
instances 𝑂(𝑝 ⋅ 𝑛 ⋅ log 𝑛)

Rankfeatures
Features highly correlated
with already selected features
are less likely to be included

It assumes that data classes are normally
distributed

It depends upon class
separability criterion

CFS It evaluates a subset of features
rather than individual features

It fails to select locally predictive features
when they are overshadowed by strong,
globally predictive features

𝑂(𝑛(

𝑝
2

− 𝑝

2

))

input sensor data to a smaller set of features (feature vector),
which preserves information contained in the original data.
The dimensionality reduction step can be applied to remove
the irrelevant (or less relevant) features and reduce the
computational complexity and increase the performance of
the activity recognition process.The classification step is used
to map the feature set to a set of activities.

In this paper, we do not focus on data preprocessing and
feature extraction but rather on dimensionality reduction and
classification steps, since these two are crucial for further
efficiency of AAL systems. The proposed method for human
activity recognition is based on feature dimensionality reduc-
tion using random projections [36] and classification using
kernel density function estimate as a decision function
(Figure 1).

3.2. Description of the Method. During random projec-
tion, the original 𝑑-dimensional data is projected to a 𝑘-
dimensional (𝑘 ≪ 𝑑) subspace using a random 𝑘 × 𝑑 matrix
𝑅. The projection of the data onto a lower 𝑘-dimensional
subspace is 𝑋𝑅𝑃

𝑘×𝑁
= 𝑅
𝑘×𝑑

𝑋
𝑑×𝑁

, where 𝑋
𝑑×𝑁

is the original
set of 𝑁 𝑑-dimensional observations. In the derived pro-
jection, the distances between the points are approximately
preserved, if points in a vector space are projected onto a
randomly selected subspace of suitably high dimension (see
the Johnson-Lindenstrauss lemma [64]). The randommatrix
𝑅 is selected as proposed by Achlioptas [36] as follows:

𝑟
𝑖𝑗
=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

+1, probability 1
6

0, probability 2
3

−1, probability 1
6

.

(1)

Given the low dimensionality of the target space, we can
treat the projection of low-dimensional observations onto
each dimension as a set of random variables for which the
probability density function (PDF) can be estimated using
kernel density estimation (KDE) (or Parzenwindow)method
[65].

If 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
is a sample of a random variable, then

the kernel density approximation of its probability density
function is

̂
𝑓
ℎ
(𝑥) =

1

𝑁ℎ

𝐾(

𝑥 − 𝑥
𝑖

ℎ

) , (2)

where 𝐾 is some kernel and ℎ is the bandwidth (smoothing
parameter). 𝐾 is taken to be a standard Gaussian function
with mean zero and variance 1 of the examined data features:

𝐾 (𝑥) =

1

√2𝜋

𝑒
−(1/2)𝑥

2

. (3)

For a two-dimensional case, the bivariate probability
density function is calculated as a product of univariate
probability functions as follows:

̂
𝑓 (𝑥, 𝑦) =

̂
𝑓 (𝑥) ⋅

̂
𝑓 (𝑦) . (4)

Here, 𝑥 and 𝑦 are data in each dimension, respectively.
However, each random projection produces a different

mapping of the original data points which reveals only a part
of the data manifold in higher-dimensional space. In case
of the binary classification problem, we are interested in a
mapping that separates data points belonging to two different
classes best.

As a criterion for estimating the mapping, we use the
Jaccard distance metric between two probability density esti-
mates of data points representing each class. The advantage
of the Jaccard distance metric as compared to other metrics
of distance such as Kullback-Leibler (KL) divergence and
Hellinger distance is its adaptability to multidimensional
spaces where compared points show relations to different
subsets. Therefore, it is well adapted to the developed model
of human activity features, where according to description in
the previous section we have divided them into some sets of
actions. Furthermore, the computational complexity of the
Hellinger distance is very high, while KL divergence might
be unbounded.

The Jaccard distance, which measures dissimilarity
between sample sets, is obtained by subtracting the Jaccard
coefficient from 1 or, equivalently, by dividing the difference
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Table 3: Summary of related works in the HAR domain.

Author Activities Sensor data Features Feature
selection

Classification
method Accuracy

Atallah et al.
[39]

Lying down, preparing
food, eating and
drinking, socialising,
reading, dressing,
walking, treadmill
walking, vacuuming,
wiping tables, running,
treadmill, running,
cycling, sitting
down/getting up, and
lying down/getting up

Acceleration
sensors

Averaged entropy over 3
axes, main FFT frequency
(averaged) over 3 axes,
energy of the 0.2Hz
window centred around
main frequency over total
FFT energy (3-axis
average), and averaged
mean of cross covariance
between every 2 axes

ReliefF, Simba,
and MRMR

kNN, Bayesian
classifier 90%

Bayat et al. [40]

Running, slow walk, fast
walk, aerobic dancing,
stairs up, and stairs
down

Triaxial
accelerometer

Mean along 𝑧-axis,
MinMax, STD, and RMS
for Am, APF along 𝑥-axis,
𝑦-axis, and 𝑧-axis, VarAPF,
STD along 𝑥-axis, 𝑦-axis,
and 𝑧-axis, RMS along
𝑥-axis, 𝑦-axis, and 𝑧-axis,
correlation between 𝑧-axis
and 𝑦-axis, and MinMax
along 𝑥-axis, 𝑦-axis, and
𝑧-axis

Feature
clustering

Multilayer
perceptron,
SVM, Random
Forest, and
Logit Boost

81%–91%

Berchtold et al.
[41]

Standing, sitting, lying,
walking, climbing stairs,
cycling, and being
stationary

Accelerometer Variance, mean None Fuzzy inference 97.3%

Capela et al.
[17]

Sitting, standing, and
lying; ramp up and ramp
down; stairs up and
stairs down; transition
between activities

Linear
acceleration,
gravity, and
velocity sensors

Range, mean, standard
deviation, kurtosis, moving
average, covariance matrix,
skewness, zero cross rate,
and mean cross rate

None

Näıve-Bayes,
Support Vector
Machine, and
j48 decision tree

97%

Gupta and
Dallas [30]

Jumping, running,
walking, sitting,
sitting-to-standing, and
standing-to-kneeling

Triaxial
accelerometer

Energy, entropy, mean,
variance, mean trend,
windowed mean difference,
variance trend, windowed
variance difference,
detrended fluctuation
analysis coefficients,
𝑋-𝑍-energy, and max.
difference acceleration

ReliefF, SFFS kNN, Naive
Bayes 98%

Henpraserttae
et al. [42]

Sitting, lying, standing,
and walking Accelerometer Mean and standard

deviation None
Rules and
threshold based
classification

90%

Hoque and
Stankovic [43]

Leaving house, using
toilet, taking shower,
sleeping, preparing
breakfast, preparing
dinner, getting snack,
getting drink, using
washing machine, and
using dishwasher

Location
sensors
(open/closed)

Magnitude None
Custom
clustering
method

64.5%–89.9%

Iso and
Yamazaki [44]

Walking, running, stairs
up/down, and fast
walking

Accelerometer
Wavelet components,
periodograms, and
information entropy

None Bayesian
probabilities 80%

Kose et al. [45]
Walking, running,
biking, sitting, and
standing

Accelerometer
Min., max., average,
variance, FFT coefficients,
and autocorrelation

None Clustered kNN 95.2%–97.5%
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Table 3: Continued.

Author Activities Sensor data Features Feature
selection

Classification
method Accuracy

Kwapisz et al.
[46]

Walking, jogging, stairs
up/down, sitting, and
standing

Accelerometer

Mean, std. dev., average
absolute difference, average
resultant acceleration, time
between peaks, and binned
distribution

None

Decision tree,
logistic
regression, and
MNN

91.7%

Lane et al. [47]
Driving, being
stationary, running, and
walking

GPS,
accelerometer,
and microphone

Mean, variance None Näıve-Bayes 85–98%

Lee and Cho
[48]

Standing, walking,
running, stairs up/down,
shopping, and taking bus

Accelerometer 𝑥-, 𝑦-, and 𝑧-axes
acceleration values None Hierarchical

HMM 70%–90%

Mannini and
Sabatini [49]

Walking, walking
carrying items, sitting &
relaxing, working on
computer, standing still,
eating or drinking,
watching TV, reading,
running, bicycling,
stretching, strength
training, scrubbing,
vacuuming, folding
laundry, lying down and
relaxing, brushing teeth,
climbing stairs, riding
elevator, and riding
escalator

Acceleration
sensors

DC component, energy,
frequency-domain entropy,
and correlation coefficients

SFFS (Pudil
algorithm)

Continuous
emissions,
Hidden Markov
Model

99.1%

Mathie et al.
[37]

Various human
movements, including
resting, walking, and
falling

Triaxial
acceleration
sensor

Integrated area under curve None Binary decision
tree

97.7%
(sensitivity)

98.7%
(specificity)

Maurer et al.
[50]

Walking, standing,
sitting, running, and
ascending and
descending the stairs

Multiple sensors

Mean, root mean square,
standard deviation,
variance, mean absolute
deviation, cumulative
histogram, 𝑛th percentiles,
interquartile range, zero
crossing rate, mean
crossing rate, and sq. length
of𝑋, 𝑌

Correlation-
based Feature
Selection
(CFS)

Decision trees
(C4.5
algorithm),
𝑘-Nearest
Neighbor,
Näıve-Bayes,
and Bayes Net

80%–92%

Miluzzo et al.
[51]

Sitting, standing,
walking, and running

Accelerometer,
GPS, and audio

DFT, FFT features, mean,
std. dev. and number of
peaks per unit, and time
deviation of DFT power

None Decision tree 79%

Pärkkä et al.
[52]

Lying down, rowing,
ex-biking,
sitting/standing,
running, and Nordic
walking

GPS, audio,
altitude, EKG,
accelerometer,
compass,
humidity, light,
temperature,
heart rate, pulse,
respiratory
effort, and skin
resistance

Peak frequency of up-down
chest acceleration, median
of up-down chest
acceleration, peak power of
up-down chest
acceleration, variance of
back-forth chest
acceleration, sum of
variances of 3D wrist
acceleration, and power
ratio of frequency bands
1–1.5Hz and 0.2–5Hz
measured from chest
magnetometer

Heuristic Decision tree 86%
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Table 3: Continued.

Author Activities Sensor data Features Feature
selection

Classification
method Accuracy

Saponas et al.
[53] Walking, jogging Accelerometer

124 features: Nike + iPod
Packet Payload, magnitude
(mean, std. dev., min.,
max., and min. minus
max.), frequency (energy in
each of the first 10
frequency components of
DFT, energy in each band
of 10 frequency
components, largest
frequency component, and
index of the largest
frequency component)

None Näıve-Bayesian
Network

97.4% (within-
person),
99.48%

(cross-person)

Siirtola and
Röning [54]

Walking, running,
cycling, driving, sitting,
and standing

Accelerometer

Magnitude, std., mean,
min., max., percentiles (10,
25, 50, 75, and 90), and sum
and square sum of
observations above/below
percentile (5, 10, 25, 75, 90,
and 95) of magnitude
acceleration and square
sum of 𝑥 & 𝑧

None Decision tree +
kNN/QDA 95%

Sohn et al. [55] Walking, driving, and
dwelling GPS

Spearman rank correlation,
variance, and mean
Euclidean distance over a
window of measurements

None Logistic
regression 85%

Yang [56]
Sitting, Standing,
walking, running,
driving, and bicycling

Accelerometer

Mean, std., zero crossing
rate, 75th percentile,
interquartile, spectrum
centroid, entropy, and
cross-correlation

None
Decision tree,
Näıve-Bayes,
kNN, and SVM

90%

Zhu and Sheng
[57]

Sitting, standing, lying,
walking,
sitting-to-standing,
standing-to-sitting,
lying-to-sitting, and
sitting-to-lying

3D acceleration Mean, variance None Neural network
ensemble 67%–98%

Data 
acquisition Denoising Feature 

generation

Learning Best 
projection

Prediction
using KDE Activity

Figure 1: General scheme of the proposed method.

of the sizes of the union and the intersection of two sets by
the size of the union:

𝑑
𝐽
(𝐴, 𝐵) = 1 − 𝐽 (𝐴, 𝐵) =

|𝐴 ∪ 𝐵| − |𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|

. (5)

In the proposed model, the best random projection with
the smallest overlapping area is selected (see an example in
Figure 2).

To explore the performance and correlation among
features visually, a series of scatter plots in a 2D feature
space is shown in Figure 3. The horizontal and vertical
axes represent two different features. The points in different
colours represent different human activities.

In case of multiple classes, the method works as a one-
class classifier: recognizing instances of a positive class, while
all instances of other classes are recognized as outliers of the
positive class.
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Figure 2: Graphical illustration of good separation versus bad separation of kernel density estimation functions (Subject 1, Trial 1, Walking
Forward versus Walking Upstairs; 2nd dimension).
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Figure 3: Example of classification: walking versus running (Subject 1, Trial 1) classes randomly projected in a bidimensional feature subspace.

3.3. Algorithm. Thepseudocode of the algorithms for finding
the best projection and using it for classification in low-
dimensional space is presented in Pseudocodes 1 and 2,
respectively.

4. Experiments

4.1. Dataset. To evaluate the performance of the proposed
approach for HAR from the smartphone data, we used the
part of the dataset (USC Human Activity Dataset [38])
recorded using the MotionNode device (sampling rate:

100Hz; 3-axis accelerometer range: ±6 g; 3-axis gyroscope
range: ±500 dps). The dataset consists of records recorded
with 14 subjects (7 male, 7 female; age: 21–49) of 12 activities,
5 trials each. During data acquisition, MotionNode was
attached on the front right hip of subjects.

The recorded low-level activities are as follows: Walking
Forward (WF), Walking Left (WL), Walking Right (WR),
Walking Upstairs (WU), Walking Downstairs (WD), Run-
ning Forward (RF), Jumping Up (JU), Sitting (Si), Standing
(St), Sleeping (Sl), Elevator Up (EU), and Elevator Down
(ED). Each record consists of the following attributes: date,
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ALGORITHM: FindBestProjection

INPUT: data1, data2 – data for class1 and class2 [nxm matrices]

threshold – iterating parameter

OUTPUT: bestProjection

BEGIN

Jaccard = MAXINT;

WHILE (Jaccard > threshold)

generate Random Projection matrix projection
project m-dimensional data1 & data2 into 2D pdata1 & pdata2
FOREACH dimension of pdata1 & pdata2

calculate kernel density distributions

calculate Jaccard intersection of pdata1 & pdata2

END FOREACH

Memorize bestProjection with smallest Jaccard

END

RETURN bestProjection

END

Pseudocode 1: Pseudocode of FindBestProjection.

ALGORITHM: BinaryClassify

INPUT: sample [1xm matrix], bestProjection [mx2 matrix],

density estimates fx1,fy1 (class +1), and

fx2,fy2 (class -1) [1xn vectors]

OUTPUT:classLabel

BEGIN

pSample = sample * bestProjection

IF (fx1(pSample) * fy1(pSample) > fx2(pSample) * fy2(pSample))

LET classLabel = +1

ELSE

LET classLabel = -1

END

RETURN classLabel

END

Pseudocode 2: Pseudocode of binary classification.

subject number, age, height, weight, activity name, activity
number, trial number, sensor location, orientation, and read-
ings. Sensor readings consist of 6 readings: acceleration along
𝑥-, 𝑦-, and 𝑧-axes and gyroscope along 𝑥-, 𝑦-, and 𝑧-axes.
Each trial was performed on different days at various indoor
and outdoor locations.

4.2. Results. In Table 4, we describe the top three best features
from Table 1 (see column Feature number) ranked by the
Matlab Rankfeatures function using the entropy criterion.

The results of feature ranking presented in Table 5 can be
summarized as follows:

(i) For Walking Forward, Walking Left, and Walking
Right, the important features are moving variance of
acceleration and gyroscope data, movement intensity
of gyroscope data, moving variance of movement
intensity of acceleration data, first eigenvalue of mov-
ing covariance between acceleration data, and polar
angle of moving cumulative sum of gyroscope data.

(ii) For Walking Upstairs andWalking Downstairs, mov-
ing variance of gyroscope along 𝑧-axis, movement
intensity of gyroscope data, and moving variance of
movement intensity are the most important.

(iii) For Running Forward, moving variance of 100 sam-
ples of acceleration along 𝑥-axis, moving variance of
100 samples of gyroscope along 𝑧-axis, and moving
energy of acceleration are distinguishing features.

(iv) For Jumping Up, the most important features are
moving variance of acceleration, moving variance of
movement intensity, and moving energy of accelera-
tion.

(v) For Sitting,movement intensity of gyroscope data and
movement intensity of difference between accelera-
tion and gyroscope data are the most important.

(vi) For Standing,moving variance ofmovement intensity
of acceleration data, moving variance of accelera-
tion along 𝑥-axis, and first eigenvalue of moving
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Table 4: Top features for binary classification of human activities.

Activity WL WR WU WD RF JU Si St Sl EU ED

WF 97, 88, 91 85, 100,
88 15, 63, 42 14, 39, 34 10, 15, 60 10, 19, 37 17, 18, 30 19, 36, 35 34, 19, 36 15, 36, 35 15, 42, 63

WL 97, 91, 88 97, 63, 42 87, 97, 86 10, 37, 19 10, 37, 19 17, 18, 30 19, 36, 34 34, 19, 36 15, 36, 35 15, 42, 63
WR 63, 42, 15 34, 87, 39 10, 59, 37 10, 37, 19 17, 18, 30 19, 34, 14 34, 19, 85 15, 36, 35 15, 42, 63
WU 87, 39, 78 63, 42, 15 10, 19, 63 17, 18, 26 19, 14, 62 34, 19, 35 15, 36, 35 15, 42, 63
WD 65, 38, 34 10, 19, 60 17, 18, 7 19, 10, 20 19, 34, 35 15, 36, 35 15, 42, 63
RF 35, 36, 62 38, 36, 17 19, 10, 15 34, 19, 35 15, 36, 35 15, 42, 63
JU 4, 22, 16 19, 10, 15 19, 34, 36 15, 42, 63 15, 42, 63
Si 22, 5, 38 22, 4, 85 15, 42, 63 59, 60, 15
St 76, 85, 39 10, 15, 36 59, 11, 60
Sl 15, 22, 42 59, 60, 94
EU 59, 60, 10
WF: Walking Forward; WL: Walking Left; WR: Walking Right; WU: Walking Upstairs; WD: Walking Downstairs; RF: Running Forward; JU: Jumping Up; Si:
Sitting; St: Standing; Sl: Sleeping; EU: Elevator Up; ED: Elevator Down.

Table 5: The confusion matrix of within-subject activity classification using Rankfeatures.

Activity WF WL WR WU WD RF JU Si St Sl EU ED
WF 1 0.774 0.980 0.874 0.985 0.996 0.980 0.997 0.999 1 0.999 1
WL 0.774 1 0.989 0.968 0.958 0.998 0.996 0.951 0.999 1 0.999 1
WR 0.980 0.989 1 0.798 0.998 0.997 0.988 0.988 0.971 1 0.981 1
WU 0.874 0.968 0.798 1 0.708 0.985 0.979 0.962 0.998 1 0.971 1
WD 0.985 0.958 0.998 0.708 1 0.992 0.878 0.967 0.850 1 0.986 1
RF 0.996 0.998 0.997 0.985 0.992 1 0.978 0.991 0.996 0.957 0.994 1
JU 0.980 0.996 0.988 0.979 0.878 0.978 1 0.973 1 0.929 1 1
Si 0.997 0.951 0.988 0.962 0.967 0.991 0.973 1 0.987 1 0.126 0.992
St 0.999 0.999 0.971 0.999 0.850 0.995 1 0.987 1 1 0.326 0.887
Sl 1 1 1 1 1 0.957 0.930 1 1 1 1 0.992
EU 0.999 0.999 0.981 0.971 0.986 0.994 1 0.126 0.326 1 1 0.697
ED 1 1 1 1 1 1 1 0.992 0.887 0.992 0.697 1
Mean 0.965 0.969 0.974 0.937 0.944 0.990 0.975 0.911 0.918 0.989 0.840 0.964
Baseline 0.650 0.616 0.616 0.712 0.713 0.621 0.641 0.627 0.642 0.651 0.640 0.628
WF: Walking Forward; WL: Walking Left; WR: Walking Right; WU: Walking Upstairs; WD: Walking Downstairs; RF: Running Forward; JU: Jumping Up; Si:
Sitting; St: Standing; Sl: Sleeping; EU: Elevator Up; ED: Elevator Down.

covariance of difference between acceleration and
gyroscope data are the most distinctive.

(vii) For Sleeping, the most prominent features are first
eigenvalue of moving covariance between accelera-
tion data andmoving variance of movement intensity
of acceleration data.

(viii) For Elevator Up and Elevator Down, the most com-
monly selected feature is moving variance of 𝑧-axis
of gyroscope data. Other prominent features are
first eigenvalue of moving covariance of difference
between acceleration and gyroscope data andmoving
energy of 𝑧-axis of gyroscope data.

These results can be considered as consistent from what
can be expected from the physical analysis of humanmotions
in the analysed dataset.

The evaluation of HAR classification algorithms is usually
made through the statistical analysis of the models using the

available experimental data.Themost commonmethod is the
confusion matrix which allows representing the algorithm
performance by clearly identifying the types of errors (false
positives and negatives) and correctly predicted samples over
the test data.

The confusion matrix for within-subject activity recogni-
tion using Matlab’s Rankfeatures is detailed in Table 5. The
classification was performed using 5-fold cross-validation,
using 80% of data for training and 20% of data for test-
ing. Grand mean accuracy is 0.9552; grand mean precision
is 0.9670; grand mean sensitivity is 0.9482; grand mean
specificity is 0.9569; grand mean recall is 0.9482; grand
mean 𝐹-score is 0.9482.The baseline accuracy was calculated
using only the top 2 features selected by Rankfeatures, but
without using random projections. The results show that
features derived using random projections are significantly
better than features derived using a common feature selection
algorithm.
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Table 6: The confusion matrix of within-subject activity classification using ReliefF.

Activity WF WL WR WU WD RF JU Si St Sl EU ED
WF 1.000 0.998 0.892 0.931 0.993 1.000 0.999 1.000 1.000 1.000 1.000 1.000
WL 0.998 1.000 0.853 0.989 0.997 1.000 1.000 0.999 1.000 0.896 0.971 1.000
WR 0.892 0.853 1.000 0.789 0.964 1.000 1.000 0.999 1.000 0.853 1.000 1.000
WU 0.931 0.989 0.789 1.000 0.702 1.000 1.000 0.996 0.956 0.992 0.999 1.000
WD 0.993 0.997 0.964 0.702 1.000 0.965 0.998 0.655 0.997 0.982 1.000 0.975
RF 1.000 1.000 1.000 1.000 0.965 1.000 0.688 0.999 1.000 1.000 1.000 1.000
JU 0.999 1.000 1.000 1.000 0.998 0.688 1.000 1.000 1.000 0.993 1.000 1.000
Si 1.000 0.999 0.999 0.996 0.655 0.999 1.000 1.000 0.491 0.967 0.328 0.313
St 1.000 1.000 1.000 0.956 0.997 1.000 1.000 0.491 1.000 0.766 0.528 0.901
Sl 1.000 0.896 0.853 0.992 0.982 1.000 0.993 0.967 0.766 1.000 1.000 1.000
EU 1.000 0.971 1.000 0.999 1.000 1.000 1.000 0.328 0.528 1.000 1.000 0.765
ED 1.000 1.000 1.000 1.000 0.975 1.000 1.000 0.313 0.901 1.000 0.765 1.000
Mean 0.984 0.975 0.946 0.946 0.936 0.971 0.973 0.812 0.887 0.954 0.883 0.913
Baseline 0.621 0.637 0.600 0.695 0.703 0.644 0.618 0.628 0.640 0.644 0.635 0.642
WF: Walking Forward; WL: Walking Left; WR: Walking Right; WU: Walking Upstairs; WD: Walking Downstairs; RF: Running Forward; JU: Jumping Up; Si:
Sitting; St: Standing; Sl: Sleeping; EU: Elevator Up; ED: Elevator Down.

To take a closer look at the classification result, Table 5
shows the confusion table for classification of activities. The
overall averaged recognition accuracy across all activities is
95.52%, with 11 out of 12 activities having accuracy values
higher than 90%. If we examine the recognition performance
for each activity individually, Running Forward, Jumping
Up, and Sleeping will have very high accuracy values. For
Running Forward, the accuracy of 99.0% is achieved. Inter-
estingly, the lowest accuracy was achieved for Elevator Up
activity, only 84.0%, while it was most often misclassified
with Sitting and Standing. Elevator Down is misclassified
with Elevator Up (only 69.7% accuracy). This result makes
sense since Sitting on a chair, Standing, and Standing in a
moving elevator are static activities, and we expect difficulty
in differentiating different static activities. Also, there is some
misclassification when deciding on a specific direction of
activity; for example, Walking Left is confused with Walking
Forward (77.4% accuracy) andWalkingUpstairs (87.4% accu-
racy). Walking Upstairs is also confused with Walking Right
(79.8% accuracy) andWalking Downstairs (70.8% accuracy).
This is due to the similarity of any walk-related activities.

For comparison, the confusion matrix for within-subject
activity recognition obtained using the proposed method
with ReliefF feature selection is detailed in Table 6. The
classification was performed using 5-fold cross-validation,
using 80% of data for training and 20% of data for testing.
Grandmean accuracy is 0.932; grandmean precision is 0.944;
grand mean sensitivity is 0.939; grand mean specificity is
0.933; grand mean recall is 0.939; grand mean 𝐹-score is
0.922.

The baseline accuracy was calculated using only the
top 2 features selected using ReliefF, but without using
random projections. Again, the results show that features
derived using random projections are significantly better
than features derived using the ReliefF method only.

Surprisingly, though the classification accuracy of the
specific activities differed, the mean accuracy metric results

are quite similar (but still worse, if grand mean values are
considered). The features identified using ReliefF feature
selection were better at separating Walking Forward from
Walking Left and Standing from Elevator Up activities but
proved worse for separating other activities such as Sitting
from Standing.

For subject identification, the data from all physical
actions is used to train the classifier. Here, we consider one-
versus-all subject identification problem. Therefore, the data
of one subject is defined as positive class, and the data of all
other subjects is defined as negative class. In this case, also
5-fold cross-validation was performed, using 80% of data for
training and 20%of data for testing.The results of one-versus-
all subject identification using all activities for training and
testing are presented in Table 7.While the results are not very
good, they still are better than random baselines: grandmean
accuracy is 0.477; precision is 0.125; recall is 0.832; and 𝐹-
score is 0.210.

If an activity of a subject has been established, separate
classifiers for each activity can be used for subject identifica-
tion. In this case, also 5-fold cross-validation was performed,
using 80% of data for training and 20% of data for testing,
and the results are presented in Table 8. The grand mean
accuracy is 0.720, which is better than random baseline.
However, if we consider only the top three walking-related
activities (Walking Forward,Walking Left, orWalkingRight),
the mean accuracy is 0.944.

Finally, we can simplify the classification problem to
binary classification (i.e., recognize one subject against
another).This simplification can bemotivated by the assump-
tion that only a few people are living in an AAL home (far
less than 14 subjects in the analysed dataset). Then, the data
from a pair of subjects performing a specific activity is used
for classification and training. Separate classifiers are built for
each pair of subjects, the results are evaluated using 5-fold
cross-validation, and the results are averaged. The results are
presented in Table 9. Note that the grand mean accuracy has
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Table 7: Results of one-versus-all subject identification (all activi-
ties).

Subjects Accuracy Precision Recall 𝐹-score
S1 0.657 0.142 0.744 0.239
S2 0.273 0.075 0.917 0.139
S3 0.549 0.078 0.716 0.140
S4 0.496 0.073 0.697 0.132
S5 0.323 0.068 0.931 0.127
S6 0.863 0.220 0.637 0.328
S7 0.265 0.055 0.920 0.103
S8 0.107 0.071 0.985 0.132
S9 0.683 0.229 0.967 0.370
S10 0.156 0.091 0.943 0.166
S11 0.755 0.263 0.905 0.407
S12 0.689 0.167 0.533 0.254
S13 0.373 0.115 0.881 0.203
S14 0.493 0.112 0.866 0.198
Mean 0.477 0.123 0.832 0.210
Random baseline 0.071 0.071 0.929 0.133

Table 8: Results of one-versus-all subject identification for specific
activities.

Activity Accuracy 𝐹

Walking Forward 0.947 0.727
Walking Left 0.955 0.769
Walking Right 0.931 0.722
Walking Upstairs 0.857 0.551
Walking Downstairs 0.833 0.497
Running Forward 0.832 0.496
Jumping Up 0.814 0.453
Sitting 0.506 0.391
Standing 0.722 0.432
Sleeping 0.589 0.292
Elevator Up 0.337 0.235
Elevator Down 0.318 0.232
Mean 0.720 0.483
Random baseline 0.071 0.133

increased to 0.947, while, for the top three walking-related
activities (Walking Forward,Walking Left, orWalkingRight),
the grand mean accuracy is 0.992.

5. Evaluation and Discussion

Random projections have been used in the HAR domain for
data dimensionality reduction in activity recognition from
noisy videos [69], feature compression for head pose estima-
tion [70], and feature selection for activity motif discovery
[71]. The advantages of random projections are the simplicity
of their implementation and their scalability, robustness to
noise, and low computational complexity: constructing the
random matrix 𝑅 and projecting the 𝑑 × 𝑁 data matrix into
𝑘 dimensions are of order 𝑂(𝑑𝑘𝑁).

Table 9: Accuracy of binary subject identification using separate
activities.

Activity Accuracy 𝐹

Walking Forward 0.992 0.987
Walking Left 0.989 0.987
Walking Right 0.993 0.993
Walking Upstairs 0.977 0.970
Walking Downstairs 0.974 0.971
Running Forward 0.980 0.974
Jumping Up 0.983 0.980
Sitting 0.883 0.859
Standing 0.940 0.932
Sleeping 0.956 0.953
Elevator Up 0.856 0.847
Elevator Down 0.846 0.822
Mean 0.947 0.939
Random baseline 0.5 0.5

The HAD dataset has been used in HAR research by
other authors, too. Using the same HAD dataset, Zheng
[66] has achieved 95.6% accuracy. He used the means and
variances of magnitude and angles as the activity features
and the magnitude and angles that were produced by a
triaxial acceleration vector. Classifier used the Least Squares
Support Vector Machine (LS-SVM) and Näıve-Bayes (NB)
algorithm to distinguish different activity classes. Sivaku-
mar [67] achieved 84.3% overall accuracy using symbolic
approximation of time series of accelerometer and gyro-
scope signal. Vaka [68] achieved 90.7% accuracy for within-
person classification and 88.6% accuracy for interperson
classification using Random Forest. The features used for
the recognition were time domain features: mean, standard
deviation, correlation between𝑋 and 𝑌, correlation between
𝑌 and 𝑍, correlation between𝑋 and𝑍, and rootmean square
of a signal. Our results (95.52% accuracy), obtained using the
proposedmethod, are very similar to the best results of Zheng
for activity recognition task.

The results obtained by different authors using the USC-
HAD dataset are summarized in Table 10.

We think that it would be difficult to achieve even higher
results due to someproblemswith the analysed dataset, which
include a set of problems inherent to many Human Activity
Datasets as follows:

(i) Accurate Labelling of All Activities. Existing activity
recognition algorithms usually are based on super-
vised learning where the training data depends upon
accurate labelling of all human activities. Collecting
consistent and reliable data is a very difficult task since
some activities may have been marked by users with
wrong labels.

(ii) Transitionary/Overlapping Activities.Often people do
several activities at the same time. The transition
states (such as walking-standing, lying-standing) can
be treated as additional states, and the recognition
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Table 10: Summary of HAR results using USC-HAD dataset.

Reference Features Classification method Accuracy

Zheng [66] Means and variances of magnitude and
angles of acceleration along 𝑥-, 𝑦- & 𝑧-axes

Least Squares Support Vector Machine
(LS-SVM), Näıve-Bayes (NB) 95.6%

Sivakumar [67] Accelerometer and gyroscope data Symbolic approximation 84.3%

Vaka [68] Mean, std. dev., correlation between𝑋 & 𝑌,
𝑌 & 𝑍, and𝑋 & 𝑍, and RMS Random Forest 90.7%

This paper 99 times, frequency and physical features Heuristic (random projections + PDFs +
Jaccard distance) 95.52%

model can be trained with respect to these states to
increase the accuracy.

(iii) Context Problem. It occurs when the sensors are
placed at an inappropriate position relative to
the activity being measured. For example, with
accelerometer-based HAR, the location where the
phone is carried, such as in the pocket or in the bag,
impacts the classification performance.

(iv) Subject Sensitivity. It measures dependency of the
trained classificationmodel upon the specifics of user.

(v) Weak Link between Basic Activities andMore Complex
Activities. For example, it is rather straightforward
to detect whether the user is running, but inferring
whether the user is running away from danger or
jogging in a park is different.

(vi) Spurious Data. Most published studies handle the
problem of the fuzzy borders by manual data crop-
ping.

6. Conclusion

Monitoring and recognizing human activities are important
for assessing changes in physical and behavioural profiles
of the population over time, particularly for the elderly and
impaired and patients with chronic diseases. Although a wide
variety of sensors are being used in various devices for activity
monitoring, the positioning of the sensors, the selection of
relevant features for different activity groups, and providing
context to sensormeasurements still pose significant research
challenges.

In this paper, we have reviewed the stages needed to
implement a human activity recognition method for auto-
matic classification of human physical activity from on-body
sensors. A major contribution of the paper lies in pursuing
the random projections based approach for feature dimen-
sionality reduction.The results of extensive testing performed
on the USC-HAD dataset (we have achieved overall accuracy
of within-person classification of 95.52% and interperson
identification accuracy of 94.75%) reveal the advantages
of the proposed approach. Gait-related activities (Walking
Forward, Walking Left, and Walking Right) allowed the best
identification of subjects opening the way for a multitude
of applications in the area of gait-based identification and
verification.

Future work will concern the validation of the proposed
method using other datasets of human activity data as well
as integration of the proposed method in the wearable sensor
systemwe are currently developing for applications in indoor
human monitoring.
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